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ASPECTS OF TIME-DEPENDENT SECOND-ORDER
DIFFERENTIAL EQUATIONS: BERWALD-TYPE CONNECTIONS

W. SARLET AND T. MESTDAG

1. Introduction: time-dependent second-order equations

At one of the previous editions of this conference, M. Crampin gave a talk
on the construction of a linear connection associated to an arbitrary system of
second-order equations (Sode for short) [4]. Some people in the audience, with
expertise in Finsler geometry, made the comment that this had to be essentially
the Berwald connection. However, Crampin’s story was about a connection on
some pullback bundle (which the original Berwald construction is not) and, more
importantly, it was about time-dependent Sodes, i.e. it had to do with the affine
bundle structure of a jet space, rather than the vector bundle structure of a tangent
bundle. Moreover, at about the same time, a few other constructions of such linear
Sode-connections were published independently by Massa and Pagani [7] and by
Byrnes [3], and these are all quite different! So, the least one can say is that it is far
from obvious how the qualification “Berwald-type connection” could be attributed
to all of these constructions.

The purpose of the present contribution is precisely to explain a general frame-
work for understanding the subtle differences between the above mentioned connec-
tions and for describing accurately what “Berwald-type” means in a time-dependent
context. As such, it gives a survey of an elaborate study on these matters [8] which
will be published elsewhere.

We begin by recalling the basic features about modelling time-dependent Sodes.
Consider the first jet bundle J1π of a bundle π : E → IR.

A Sode-field Γ is a vector field on J1π with the properties 〈Γ, dt〉 = 1 and
S(Γ) = 0, where S is the vertical endomorphism:

S = θi ⊗ ∂

∂vi
, θi = dxi − vidt.

Locally, Γ is of the form

Γ =
∂

∂t
+ vi ∂

∂xi
+ f i(t, x, v)

∂

∂vi
.

Γ defines a horizontal distribution on J1π which we will indicate most of the time
by the corresponding horizontal projector field PH . We have:

PH = 1
2 (I − LΓS + dt⊗ Γ),
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and

Im PH = sp
{

Γ,Hi =
∂

∂xi
− Γj

i

∂

∂vj

}
where Γj

i = − 1
2

∂f j

∂vi
.

An accurate description of the natural decomposition of X (J1π) which originates
from this horizontal distribution, inevitably brings the bundle π0

1
∗(τE) → J1π of

the diagram below into the picture.

-

-

-

? ?

IR
ππ0

1

J1π

π0
1
∗(τE)

E

TE

τE

Observe first that there exists a canonical section of π0
1
∗(τE) → J1π, denoted

by

T =
∂

∂t
+ vi ∂

∂xi
.

The C∞(J1π)-module of such sections (which are called vector fields along π0
1), will

be denoted by X (π0
1). It has the natural decomposition:

X (π0
1) ≡ X (π0

1)⊕ 〈T〉.
In other words, for each X ∈ X (π0

1), we write

X = X + 〈X, dt〉T, with X = Xi(t, x, v)
∂

∂xi
.

Looking at the larger module X (J1π) now, we have Γ = TH and there is a corre-
sponding decomposition:

X (J1π) ≡ X (π0
1)

H ⊕X (π0
1)

V

≡ X (π0
1)

H ⊕X (π0
1)

V ⊕ 〈Γ〉
Typically, for ξ ∈ X (J1π) we will write (as in [6])

ξ = ξH
H + ξV

V

= ξH

H

+ ξV

V

+ 〈ξ, dt〉Γ,

with ξH ∈ X (π0
1) and ξH , ξV ∈ X (π0

1). The horizontal and vertical lift operations
from X (π0

1) to X (J1π) are given by:

X
V

= Xi ∂

∂vi
, X

H

= XiHi.

The fact that horizontal vector fields on J1π further decompose into a component
along Γ and an element of X (π0

1)
H

has an effect on most tensorial quantities of
interest. For example, we have

PH = PH + dt⊗ Γ = θi ⊗Hi + dt⊗ Γ.
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Roughly speaking, the complexity of the time-dependent picture (as compared to
the autonomous framework) originates precisely from the fact that there is a certain
freedom in “fixing the time-component”, or better the “Γ-component”. Note in
passing that we cannot incorporate the framework for time-dependent second-order
equations as proposed in [2, 9] in our comparative discussion, because it takes the
choice of a trivialization of J1π for granted, which means that time and space
coordinates are kept strictly separated. As a result, some of the constructions of
these authors do not have an intrinsic meaning in our set-up.

2. An associated linear connection on J1π

An interesting, though rather peculiar, construction of a linear connection asso-
ciated to a Sode was given by Massa and Pagani [7]. For completeness, let us recall
that by linear connection on J1π we mean an operator ∇ξ : X (J1π) → X (J1π),
defined for each ξ ∈ X (J1π) and having the properties

∇ξ(Fη) = F ∇ξη + ξ(F ) η,

∇Fξη = F ∇ξη. F ∈ C∞(J1π)

The construction of such a ∇ in [7] is very indirect. The idea is to narrow down
the list of candidates by gradually introducing extra requirements on the ∇ under
construction, until in fact there is only one left. It is only at the very last stage
that a particular Sode Γ comes into the picture to which the connection then can
be said to be associated. We briefly summarize the main steps in that construction
here.

The first fundamental requirements are that we should have:

∇ξdt = 0, ∇ξS = 0,

∇
X

V Y
V

= 0, ∀X, ∀ basic Y ,

where the last condition is just a technical way of expressing that the connection
should preserve parallel transport in the fibres.

For the second stage, let T be the torsion of the as yet undetermined ∇, i.e.
T (ξ, η) = ∇ξη −∇ηξ − [ξ, η], and let us define operators P and Q by

P (η) = T (γ, S(η)), Q(η) = S(T (γ, η)) + 〈η, dt〉γ
where γ is an arbitrary Sode. Massa and Pagani show that these are projection
operators which, as the notation indicates, do not depend on the choice of γ. The
additional requirements now are that P and Q must be complementary and P must
be parallel, i.e.

P + Q = I and ∇ξP = 0.

Next, let curv denote the curvature of the as yet undetermined ∇:

curv(ξ, η) = ∇ξ∇η −∇η∇ξ −∇[ξ,η].

Require now further that

curv(γ, X
V

) = 0, ∀X, ∀ Sode γ.
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At this stage, it is a theorem that under the above requirements, ∇ will be com-
pletely determined as soon as we know for any pre-assigned Sode Γ, the value of
∇γΓ for arbitary Sodes γ.

The final step in the construction of Massa and Pagani then consists in fixing
the remaining freedom by requiring simply that for a given Γ ∇γΓ = 0, from which
it actually follows that

∇ξΓ = 0, ∀ξ ∈ X (J1π).

A quite remarkable feature of this construction is that the projector P , which
afterall was defined in terms of the torsion of the linear connection under construc-
tion, in the end turns out to coincide with the operator PH which (together with
Γ) determines the horizontal distribution of the non-linear connection coming from
Γ.

3. An associated linear connection on π0
1
∗(τE) → J1π

By way of contrast with the preceding section, let us now recall the direct con-
struction of a linear connection, as presented by Crampin et al [6].

Given the Sode Γ with its PH , define the operator D : X (J1π)×X (π0
1) → X (π0

1)
by

DξX = [PH(ξ), XV ]
V

+ [PV (ξ), XH ]
H

+ PH(ξ)(〈X, dt〉)T.

It is easy to verify that D is a linear connection on π0
1
∗(τE) → J1π, i.e. we have

Dξ(FX) = F DξX + ξ(F )X,

DFξX = F DξX F ∈ C∞(J1π).

For brevity, a connection on the bundle π0
1
∗(τE) → J1π will be called simply a

connection on π0
1
∗(τE) in what follows.

Coming back to our introduction now, it will no doubt be clear that under-
standing how the two different constructions so far described are related, is not
an entirely trivial matter. In particular, we wish to identify a scheme which will
allow to qualify both of these connections as being of Berwald type. Note that
as a prerequisite, we will have to establish some sort of mechanism for comparing
connections on π0

1
∗(τE) with connections on J1π.

We have found excellent guidance for our comparative study in recent work on
Finsler and Berwald-type connections within the autonomous framework by Anas-
tasiei [1], Szilasi [11] and Crampin [5]. The extra dimension which comes with
the time-dependent framework apparently leaves us a choice in “fixing the time-
component”. It turns out that in order to accomodate all existing constructions
within an overall scheme, we need to introduce equivalence classes of connections.
The final question thus inevitably will be: how should one select an optimal repre-
sentative of the class of Berwald-type connections?
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4. Finsler- and Berwald-type connections

Most of what follows can be developed starting from an arbitary horizontal
distribution on J1π (see [8]). To fix the idea, however, we will limit ourselves here
to the situation where the data are: a given Sode Γ on J1π and the corresponding
horizontal distribution represented by PH .

Only connections (either on J1π or on π0
1
∗(τE)) with the following properties

will be taken into account and will characterize what we call connections of Finsler
type:

D on π0
1
∗(τE) ∇ on J1π

Dξ(X (π0
1)) ⊂ X (π0

1)

∇ξ

(
X (π0

1)
H
)

⊂ X (π0
1)

H

∇ξ

(
X (π0

1)
V
)

⊂ X (π0
1)

V

∇ξJ |X (J1π) = 0

Here J is the degenerate almost complex structure coming from the horizontal
distribution: J(X

H

) = X
V

, J(X
V

) = −X
H

, J(Γ) = 0.
So, under these assumptions, (PH ,∇) is called a Finsler pair , and we use the

same terminology also for the couple (PH ,D). This may seem a little odd in
the latter case, since no horizontal distribution is needed to express the simple
assumption on D. However, we need a horizontal distribution when we want to
introduce for example a notion of torsion for D (see later) and also when we want
to “raise” a given D to a corresponding ∇ (or class of ∇’s) on J1π.

Let us first describe the mechanism of raising and lowering connections which
will be useful for our purposes.

• For a given pair (PH ,D), we construct a class of ∇ by putting

∇ξX
H

= (DξX)
H

, ∇ξX
V

= (DξX)
V

, ∇ξΓ = K(ξ),

where K is a type (1,1) tensor field on J1π which is left free to choose.
Note that there exists a natural direct formula for constructing a particular

∇ out of a given pair (PH ,D). It is given by

∇ξη = (DξηH)H + (DξηV )V

and corresponds to making the choice K(ξ) = (DξT)H within the above
general scheme.

• Conversely, for a given Finsler pair (PH ,∇), we construct a class of D by
putting

DξX = (∇ξX
H

)
H

= (∇ξX
V

)
V
, DξT = L(ξ),

where the C∞(J1π)-linear map L : X (J1π) → X (π0
1) again is left arbitrary.

D or ∇ now are said to be of Berwald type if ∀X ∈ X (π0
1), we have

DξX = [PH(ξ), X
V

]
V

+ [PV (ξ), X
H

]
H
.
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Clearly, this definition says nothing about the action of D on T. Hence, when the
connection we start from is a ∇, the defining relation for being of Berwald type
expresses a requirement on any of the D’s which correspond to ∇ in the above
scheme.

That the direct construction of a D in the preceding section yields a connection
of Berwald type is now quite trivial of course. It is shown in detail in [8] that the
same is true for the ∇ of Massa and Pagani.

One way of comparing different constructions of Berwald-type connections now,
is to look, in some sense, at the difference in the choice of K. More precisely, this
can be done as follows: if a D on π0

1
∗(τE) is the starting point, we take the natural

direct formula for a corresponding ∇ explained above and read from its action on
Γ directly what the tensor field K does. Applied to the D of the previous section,
this gives K(ξ) = ξV

H

.
If, on the other hand, a ∇ on J1π is were we start from, we can look at any

of the corresponding D-connections in its restriction to X (π0
1), and then look for

the tensor field K which is needed to restore the original ∇. Applied to the ∇ of
Massa and Pagani, we get K = 0.

At this point, we can mention another ∇ on J1π, associated to a given time-
dependent Sode, which was constructed independently by Byrnes [3]. It is also
a connection of Berwald type in the sense of our present definition and one can
verify that the corresponding choice of the tensor field K this time is: K(ξ) =
ξV

H − Φ(ξH)
V

, where Φ is the so-called Jacobi endomorphism of Γ (see e.g. [6]).
From this first point of comparison, the construction of Byrnes may look like a

rather artificial way to proceed, but there is another way of describing the differ-
ences which will make it look less exotic.

Note in passing that working with a connection D on π0
1
∗(τE) (where the fi-

bre dimension is n + 1), is clearly more ‘economical’ than working with a corre-
sponding ∇ on J1π (with fibre dimension 2n + 1). Roughly speaking, leaving the
time-component apart, passing from a D to a ∇ somehow ‘doubles the number of
formulas’ ! However, ∇ is needed to give meaning to the notion of torsion.

Looking at the torsion is now the second way by which we will compare the
three constructions described so far.

A local basis of vector fields on J1π is of the form {Γ, Xi
H

, Xi
V }, where {Xi}

is a local basis for X (π0
1). The image of the torsion tensor T , when acting on

pairs of such vector fields, in turn can be decomposed into horizontal and vertical
components. When all such decompositions are consistently taken into account, it
turns out that T is completely determined by nine in general non-vanishing type
(1,2) tensors along π0

1 . We can call these the ‘torsion tensors’ for D and they are
defined as follows (with notations which match those of [11, 5] for the autonomous
case):
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A(X,Y ) = T (X
H

, Y
H

)
H

AT(X) = T (Γ, X
H

)
H

R(X,Y ) = T (X
H

, Y
H

)
V

RT(X) = T (Γ, X
H

)
V

B(X,Y ) = T (X
H

, Y
V

)
H

BT(X) = T (Γ, X
V

)
H

P(X,Y ) = T (X
H

, Y
V

)
V

PT(X) = T (Γ, X
V

)
V

S(X,Y ) = T (X
V

, Y
V

)
V

Now, for a D of Berwald type, we have

B = P = S = 0

and in fact (due to the Sode nature of the PH under consideration) also

A = 0.

R generically will not be zero, since it is essentially the curvature of PH . Thus
we see from the left column in the table that for an autonomous Γ, Berwald-type
means maximally vanishing torsion!

For the time-dependent situation, a comparison of the three linear connections
under consideration leads to the following conclusions.

• The construction of Byrnes continues the idea of maximally vanishing torsion
by fixing the freedom in the time-component exactly in such a way that also

AT = RT = BT = PT = 0.

• For the D of Crampin et al (raised to a ∇ by the natural direct formula), we
have

AT = BT = PT = 0, but RT 6= 0.

• In the case of Massa and Pagani finally:

only AT = PT = 0 while BT = −I|X (π0
1).

From this point of view, one might say that it is the construction of Massa and
Pagani which is the more exotic one! In any event, it is not yet clear from these
arguments whether one of the three connections deserves preference over the other.



290 W. SARLET AND T. MESTDAG

5. A side step

Let U be a type (1,1) tensor field along π0
1 .

Given any horizontal distribution PH , one can define various lifted tensors on
J1π, denoted by UH;H , UH;V , UV ;H , UV ;V respectively, as follows (see [10]):

UH;H(XH) = U(X)H
, UH;H(X

V

) = 0,

UH;V (XH) = U(X)V
, UH;V (X

V

) = 0,

UV ;H(XH) = 0, UV ;H(X
V

) = U(X)
H

,

UV ;V (XH) = 0, UV ;V (X
V

) = U(X)
V

.

The reason why it is forced upon us to look at such tensor fields is that any U on
J1π has a unique decomposition into the form:

U = UH;H
1 + UH;V

2 + UV ;H
3 + UV ;V

4 ,

with U2(X (π0
1)) ∈ X (π0

1), U3(T) = 0, U4(X (π0
1)) ∈ X (π0

1), and U4(T) = 0.
Proposition: If (PH ,∇) is a Finsler pair and D is any associated connection

on π0
1
∗(τE), we have

∇ξU = 0 ⇐⇒ DξUi = 0,

provided that

∇ξTH = (DξT)H and DξT ∈ 〈T〉.

We discover with this result two quite natural conditions, which in fact have a
simple and elegant interpretation. The first condition means that the procedure
for raising a D to a corresponding ∇ is taken to be the natural one: ∇ξη =
(DξηH)H +(DξηV )V . With the extra condition DξT ∈ 〈T〉, taken together with the
restriction on D we started from in the previous section, we will have that D fully
respects the natural decomposition

X (π0
1) ≡ X (π0

1)⊕ 〈T〉.

We shall take the hint which comes from this side step into account for deciding
about the optimal choice of a Berwald-type connection now.

6. An optimal representative in the Berwald class

Let us come back now to the question whether one of the three constructions of
a Berwald-type connection explained before, deserves preference over the others.
Closer analysis, in part inspired by the observations of the preceding section, have
brought us to the conclusion that none of them is completely satisfactory. Certainly,
insisting on maximally vanishing torsion, also in the T-components, does not seem
to have any essential advantage in the time-dependent framework. Instead, it looks
much more interesting to have, not only
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D on π0
1
∗(τE) ∇ on J1π

Dξ(X (π0
1)) ⊂ X (π0

1)
∇ξ

(
X (π0

1)
H
)

⊂ X (π0
1)

H

∇ξ

(
X (π0

1)
V
)

⊂ X (π0
1)

V

but also

DξT ∈ 〈T〉 ∇ξΓ ∈ 〈Γ〉.
From this perspective, only the ∇ of Massa and Pagani (which happens to have
the most non-zero torsion components) would seem to be satisfactory. That con-
struction, however, as reported in Section 2, clearly suffers from the fact that it is
very indirect. In addition, for reasons of ‘economy’ in the number of connection
components, what we really prefer is a connection D on π0

1
∗(τE).

At this point, let us look again at the direct construction formula for DξX in
Section 3. The first two terms of the defining relation are identical to those for the
autonomous situation. In fact, the construction of Crampin et al originated from
copying the formula from the autonomous case and adding a correction term to
make sure that Dξ has the right derivation property for a linear connection.

There is, however, another way of doing this! Indeed, if we replace X by X in
the first two terms, these still reduce to the same formula in case there is no extra
time variable. But the correction term which is needed then is different. We thus
come to the following new direct construction of a linear connection on π0

1
∗(τE):

DξX =[PH(ξ), X
V

]
V

+ [PV (ξ), X
H

]
H

+ ξ(〈X, dt〉)T.

It immediately follows that with this D we have: DξT = 0. Making a choice for DξT
is the only freedom we have in selecting a representative of the class of Berwald-
type connections we introduced, so obviously, the new construction amounts to
making the simplest possible choice.

If for any reason, we want to have a corresponding ∇ on jet at our disposal, we
can stick to natural ‘raising formula’ mentioned before, namely: ∇ξη = (DξηH)H +
(DξηV )V . It then follows that also ∇ξΓ = 0 and in fact, the resulting ∇ then turns
out to coincide with the connection of Massa and Pagani!

7. Generalization of other well-known connections in Finsler
geometry

We briefly sketch finally how the connections of Cartan, Chern-Rund and
Hashiguchi can be generalized to the present framework. Such a generalization
merely requires having one extra geometrical object as part of the data, namely a
symmetric type (0,2) tensor field along π0

1 . As before, we will consider the case here
that the horizontal distribution we start from comes from a Sode Γ, but everything
works just as well for any other given horizontal distribution. In almost every step
of the constructions which follow, there is freedom again in fixing a T-component,
but having now our optimal Berwald-type connection in mind, we will choose such
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components to be zero also wherever possible. More importantly, however, there
is another type of freedom which requires making a choice. Indeed, as we learn
from [9] in the context of autonomous, so-called generalized Lagrange spaces, the
construction of a metrical connection is unique to within selecting certain torsion
components. Following these authors we will fix the analogous torsion components
in our time-dependent picture to be zero as well.

So, let g be a symmetric type (0,2) tensor field along π0
1 , with the properties:

g(T, ·) = 0, and g|X (π0
1) is non-singular.

Define type (1,2) tensor fields CV and CH along π0
1 by requiring firstly that

g(CV (X,Y ), Z) = D
X

V g (Y ,Z) + D
Y

V g (X,Z)−D
Z

V g (X,Y ),

g(CH(X, Y ), Z) = DXH g (Y ,Z) + D
Y

H g (X, Z)−D
Z

H g (X, Z),

and by fixing the remaining freedom as follows:

CV ( . ,T) = CV (T, . ) = 0, CH( . ,T) = 0.

Let D be the ‘optimal’ Berwald-type connection of the preceding section. Then,
for any other connection D̂ on π0

1
∗(τE), we know that

D̂ξX −DξX = δ(ξ,X)

defines a tensorial object δ. Splitting ξ, as by now familiar, into its horizontal and
vertical components, we can introduce type (1,2) tensor fields δV and δH along π0

1

by putting

δV (Z, X) = δ(Z
V

, X), δV (T, X) = 0,

δH(Z,X) = δ(ZH , X).

Since DξT = 0, we shall require to have the property D̂ξT = 0 as well, for which
the conditions are: δV (Z,T) = 0 and δH(Z,T) = 0. Any new connection can
now be constructed from the Berwald-type D by making a choice for the non-zero
components of δV and δH . We thus arrive at the following concepts:

• The Cartan-type connection on π0
1
∗(τE) is determined by

δV = 1
2CV , δH = 1

2CH .

• The Hashiguchi-type connection on π0
1
∗(τE) is determined by

δV = 1
2CV , δH = 0.

• The Chern-Rund-type connection on π0
1
∗(τE) is determined by

δV = 0, δH = 1
2CH .

One easily proves that the following properties hold true, which are the analogues of
the well-known properties of the corresponding connections in classical Finsler ge-
ometry: (i) for the Cartan-type connection, we have D̂ξg = 0; (ii) in the Hashiguchi
case: D̂

X
V g = 0; (iii) for the Chern-Rund-type connection: D̂XH g = 0.
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As is customary: making the connection more metrical, also in this more general
set-up, is at the expense of introducing more torsion.
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