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ON TOTALLY UMBILICAL HYPERSURFACE WITH
CONHARMONIC CURVATURE TENSOR

FÜSUN ÖZEN AND SEZGIN ALTAY

Abstract. The purpose of this paper is to study conharmonically recurrent

Weyl spaces corresponding to the tensor Khijk. In Section II, some relations
which are needed in Section III are obtained. In Section III, it is shown that

while the totally umbilical hypersurface Wn of the recurrent Weyl space is

conharmonically Ricci recurrent, Wn is recurrent. After then, it is proved
that conharmonically recurrent Weyl space is also conformally recurrent, but

the converse is true if and only if the condition ∇̇lR = λlR holds.

1. Introduction

The geometrical features of Weyl’s theory consists of a space-time manifold Wn

on which is defined a symmetric (torsion free) linear connection Γ and, in the
first instance, a Lorentz metric g. The manifold Wn and all structures on Wn are
assumed smooth. The connection Γ is not assumed to be a metric connection with
respect to g or any other metric on Wn. Rather, Γ and g are related in such a
way as to recreate Weyl’s original idea that parallel transport, with respect to Γ,
of a tangent vector k at p ∈ Wn along a curve c to a point q ∈ Wn may result in
change of the length of k (with respect to g). However the ratio of the lengths of
k at p and q, where this makes sense (i.e., if k is non-null), depends only on p, q
and c and not on k . Let Wn be a manifold of dimension n (n > 2) and let Γ
be a symmetric linear connection on Wn. Then Γ is called a Weyl connection if
there exists a metric g on Wn such that ∇g = g ⊗ T for some 1-form T on Wn,
where ∇ denotes covariant differentiaton with respect to Γ. If Wn admits a Weyl
connection, it is called a Weyl manifold.

In local coordinates this reads ∇kgij = 2Tkgij where in coordinate notation
∇k denotes the covariant derivative with respect to Γ, and is just means that the
tensor g is recurrent with respect to Γ with recurrence 1-form T . With gij , Γ, and
the complementary vector Tk, this is equivalent to the following expression for the
connection associated with Γ:

(1.1) Γh
kl =

1
2
ghm(∂lgmk + ∂kgml − ∂mgkl)− (δh

kTl + δh
l Tk − ghmgklTm),
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Now suppose that Γ is fixed but g and T are changed to ğ = λpg and T̆ =
T + ∂(lnλ) where λ is real valued function on Wn. Then ∇ğ = ğ⊗ T̆ still holds as
does (1.1) for Γ, ğ and T̆ . Such changes (g, T ) → (λpg, T + ∂(lnλ)) are the gauge
transformations introduced by Weyl [1], [2].

Suppose that the metrics of Wn and Wn+1 are elliptic and that they are given
by gijduiduj and gabdxadxb, respectively, which are connected by the relation

(1.2) gij = gabx
a
i xb

j (i, j = 1, 2, ..., n; a, b = 1, 2, ..., n + 1)

where xa
i denotes the covariant derivative of xa with respect to ui. On the basis of

(1.1) [3] and [4], using Tk as a normalizer Zlatanov introduced in [5] a prolonged
covariant differentiation of the satellites A of gij with weight {p} by the law

(1.3) ∇̇kA = ∇kA− pTkA.

One can show that the prolonged covariant derivative of A, relative to Wn and
Wn+1, is related by

(1.4) ∇̇kA = xc
k∇̇cA.

By [5] we have ∇̇kgij = 0 and ∇̇kgij = 0 where gij is the reciprocal tensor of
gij .

Let na be the contravariant components of vector field in Wn+1 normal to Wn

and let it normalized by the condition gabn
anb = 1. The moving frame

{
xi

a, na

}
in Wn, reciprocal to moving frame {xa

i , na} is defined by the relations [2]

(1.5) nana = 1, naxa
i = 0, naxi

a = 0, xa
i xj

a = δj
i .

Differentiating covariantly of each side of (1.5)4 with respect to uk and remem-
bering that the weight of xa

i is {0}, the following form

(1.6) ∇̇kxa
i = ∇kxa

i = wikna

holds.
The curvature tensor of the hypersurface Rh

ijk is given by

(1.7) Rh
ijk =

∂Γh
ik

∂xj
−

∂Γh
ij

∂xk
+ Γh

mjΓ
m
ik − Γh

mkΓm
ij

where Rh
ijk = ghmRmijk.

2. Totally umbilical hypersurface immersed in a recurrent Weyl
space

If Wn admits of a tensor field T... such that

(2.1) ∇̇kT ... = λkT...

where λk is a non-zero vector field of Wn, then Wn is called a T-recurrent Weyl
space and is denoted by Tn −W .

We note that, since the prolonged covariant derivative preserves the weight, φs

is a satellite of gij with weight {0}.
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A hypersurface of a Weyl space is called totally umbilical if wij = ρgij where ρ

is a satellite of gij with weight {−1}. From this definition it follows that ρ = M
n

where M is the mean curvature of the hypersurface defined by M = wijg
ij . A

hypersurface of a Weyl space is called totally geodesic if wij = 0.
The generalization of Gauss and Mainardi-Codazzi equations have the following

forms [6]

(2.2) Rhijk = Ωhijk + R̄abcdx
a
hxb

ix
c
jx

d
k

(2.3) ∇̇kwij − ∇̇jwik + R̄abcdx
b
ix

c
jx

d
kna = 0

where R̄abcd is the covariant curvature tensor of Wn+1 and Ωhijk is the Sylvestrian
of wij defined by Ωhijk = whjwik−whkwij . These formulae have also been obtained
in [7].

Let Wn be a hypersurface of recurrent Weyl space Wn+1 with recurrence vector
φa which is not orthogonal to the hypersurface Wn. If we denote the tangential
component of φa by φr, then we have

(2.4) φk = xa
kφa.

Since Wn+1 is recurrent-Weyl space, we can write

(2.5) λrR̄abcd = ∇̇rR̄abcd = xe
r∇̇eR̄abcd.

Using (2.2), we get

(2.6) ∇̇rRhijk = ∇̇rΩhijk + ∇̇r(R̄abcdx
a
hxb

ix
c
jx

d
k).

With the help of the equations (1.6) and (2.5), the formula (2.6) can be brought
in the following form [6]

(2.7)

∇̇rRhijk = ∇̇rΩhijk + φeR̄abcdx
a
hxb

ix
c
jx

d
kxe

r + R̄abcdx
b
ix

c
jx

d
kwhrn

a+

+ R̄abcdx
a
hxc

jx
d
kwirn

b + R̄abcdx
a
hxb

ix
d
kwjrn

c+

+ R̄abcdx
a
hxb

ix
c
jwkrn

d .

If we use the equations (2.2),(2.3),(2.4),(2.7) and remembering that wij = M
n gij

and M is scalar invariant, then we find

(2.8)
∇̇rRhijk = φrRhijk +

M

n2
[(∇̇jM)Ghirk + (∇̇kM)Ghijr + (∇̇iM)Gkjrh

+ (∇̇hM)Gkjir] +
2M

n2
(∇̇rM)Ghijk −

M2

n2
φrGhijk

where Ghijk = ghjgik − ghkgij . Multiplying (2.8) by ghk and gij , we obtain, re-
spectively

(2.9)
∇̇rRij = φrRij +

M

n2
[(2− n)(∇̇jM)gir − 2n(∇̇rM)gij+

+ (2− n)(∇̇iM)gjr] +
M2

n2
(n− 1)φrgij
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(2.10) ∇̇rR = φrR +
2M

n2
(∇̇rM)(−n2 − n + 2) +

M2

n
(n− 1)φr.

3. Conharmonic curvature tensor of a Weyl space

Let Wn(gij , Tk) and W̄n(ḡij , T̄k) be two Weyl spaces with connections ∇k and
∇̄k, respectively, and let the map τ : Wn → W̄n be a conformal mapping. As a
special case, let the transformed expressions of the fundamental metric tensor gij

and the coefficients of Weyl connection Γi
kl be the following forms [8]

(3.1) ḡij = gij , ḡij = gij ,

(3.2) Γ̄i
kl = Γi

kl + δi
kPl + δi

lPk − gklg
imPm,

where the vector Pk is called the vector of conformal mapping such as

(3.3) Pk = Tk − T̄k.

Let us seek the differentiable harmonic function A with weight {p} defined by
[9]

(3.4) Ā = ec
∫

Pjduj

A, c =
2− n− 2p

2
.

and then, we have the following expression

(3.5) gkl∇kPl +
1
2
(n− 2)P kPk = 0.

Since a conformal transformation with Pk satisfying (3.5) transforms a harmonic
function into a harmonic one in above sense: (3.4), we call it conharmonic trans-
formation.

The conharmonic curvature tensor is in the following form [10]

(3.6)

Kh
ijk = Rh

ijk −
1
n

(δh
kR[ij] − δh

j R[ik] + gijg
hmR[mk] − gikghmR[mj]+

+ 2δh
i R[kj])−

1
(n− 2)

(δh
kR(ij) − δh

j R(ik) + gijg
hmR(mk)−

− gikghmR(mj)) .

The conharmonic curvature tensor Kh
ijk of a Weyl space satisfies the following

condition [10]

(3.7) Kij =
1

2− n
gijR

where Kij is conharmonic Ricci tensor.

If a Weyl hypersurface Wn immersed in a recurrent Weyl space Wn+1 is totally
geodesic, then the hypersurface is recurrent Weyl with recurrence vector λr [6].

A totally geodesic hypersurface Wn immersed in a recurrent Weyl space Wn+1

is conharmonically recurrent (n > 2).
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Proposition 3.1. If Wn is conharmonically Ricci-recurrent (may not be Ricci-
recurrent), then the expression φr − 2Tr is locally gradient (n > 2).

Proof. From (3.7) and (2.1), we get ∇̇rR = φrR. Thus, remembering that the
scalar curvature R is scalar invariant with weight {−2}, using (1.3), we have

φs − 2Ts =
∇sR

R
(R = c1R̄; c1 6= 0, const.)

where R̄ is the scalar curvature of Weyl space Wn+1. Then, we say that φs − 2Ts

is locally gradient.

Theorem 3.1. If a totally umbilical Weyl hypersurface Wn immersed in a
recurrent Weyl space Wn+1 is a conharmonically Ricci-recurrent, then Wn is a
conharmonically recurrent Weyl space (n > 2).

Proof. Let Wn be a totally umbilical hypersurface of a recurrent Weyl space
Wn+1. Let Wn be also conharmonically Ricci-recurrent. Multiplying (2.10) by gij ,
we get

(3.8) ∇̇r(gijR) = φr[Rgij +
M2

n
(n− 1)gij ] +

2M

n2
gij(∇̇rM)(−n2 − n + 2).

Using the equation (3.7) in the form (3.8), we find

(3.9)
1
n2

gij(n− 1)[nM2φr − 2(n + 2)M(∇̇rM)] = 0,

then, we obtain

(3.10)
∇̇rM

M
=

n

2(n + 2)
φr.

On the other hand, from the equation (2.9),

(3.11) ∇̇rR[jk] = φrR[jk]

and

(3.12)
∇̇rR(jk) = φrR(jk) +

M2

n2
(n− 1)φrgjk

+
M

n2
[(2− n)(∇̇kM)gjr − 2n(∇̇rM)gjk + (2− n)(∇̇jM)gkr].

Taking the prolonged covariant derivative of (3.6) with respect to ur and putting
the equations (3.11) and (3.12) in this expression, then we get

(3.13)

∇̇rKhijk = ∇̇rRhijk + φr(Khijk −Rhijk)−

− 2M2

n2(n− 2)
(n− 1)φrGihjk −

M

n2(n− 2)
[(2− n)(∇̇iM)Gkjhr+

+ (2− n)(∇̇jM)Ghikr − 4n(∇̇rM)Ghikj+

+ (2− n)(∇̇hM)Girjk − (2− n)(∇̇kM)Ghijr] .
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Using (2.8) in (3.13), we obtain

(3.14) ∇̇rKhijk = φrKhijk −
1

n(n− 2)
GhijkM [(∇̇rM)

2(n + 2)
n

− φrM ].

Using the expression (3.10), we get

(3.15) ∇̇rKhijk = φrKhijk.

Corollary 3.1. If a totally umbilical Weyl hypersurface Wn immersed in a
recurrent Weyl space Wn+1 is a conharmonically Ricci-recurrent, then Wn is a
recurrent Weyl space (n > 2).

Proof. Multiplying (2.8) by ghr and gik and using the equation (3.10), we
obtain

(3.16) ghrgik(∇̇rRhijk − φrRhijk) =
(n− 1)(n− 2)

2n2
M2φj .

If we multiply the expression (3.13) by ghr and gik and use the equations (3.10),
(3.15) and (3.16), we get M2φj = 0. From this, since φj 6= 0 , (n > 2), we find
M = 0. In this case, using M = 0 and the expression (3.13), the proof is completed.

Corollary 3.2. If a totally umbilical Weyl hypersurface Wn immersed in a
recurrent Weyl space Wn+1 is a conharmonically recurrent, then Wn is a recurrent
Weyl space (n > 2).

Proof. Conharmonically recurrent Weyl space is also conharmonically Ricci
recurrent. From Corollary 3.1, the result is clear.

Corollary 3.3. If a totally umbilical Weyl hypersurface Wn immersed in a
recurrent Weyl space Wn+1 is a Ricci recurrent, then Wn is a recurrent Weyl space
(n > 2).

Proof. Since Ricci recurrent Weyl space is also conharmonically Ricci recurrent,
from Corollary 3.1, the proof is clear.

Theorem 3.2. A conharmonically recurrent Weyl space is also a conformally
recurrent Weyl space. Conversely, a conformally recurrent Weyl space with its re-
currence vector field φr is conharmonically recurrent if its scalar curvature satisfies
∇̇rR = λrR.

Proof. Suppose that Wn be a conharmonically recurrent Weyl space. The so-
called conformal curvature tensor introduced by F. Özen and S.A. Uysal [12], is in
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the following form

Chijk = Rhijk +
2

n(n− 2)
[ghkR[ij] − ghjR[ik] + gijR[hk] − gikR[hj] − (n− 2)ghiR[kj]]

− 1

n− 2
(ghkRij − ghjRik + gijRhk − gikRhj)

+
R

(n− 1)(n− 2)
(ghkgij − ghjgik).

The conformal tensor Chijk and conharmonic tensor Khijk are related by the fol-
lowing condition [12]

(3.17) Chijk = Khijk −
R

(n− 1)(2− n)
(ghkgij − ghjgik).

Transvecting (3.17) with ghk and gij and using (3.7), we have ∇̇rR = φrR. Con-
sequently, from (3.17), we find

(3.18) ∇̇rChijk = φrChijk.

Hence, every conharmonically recurrent Weyl space is conformally recurrent.
Conversely, let Wn be a conformally recurrent Weyl space with the recurrence

vector φr. In this case, the equation (3.18) holds. Thus from (3.17), we get

∇̇rChijk − φrChijk = ∇̇rKhijk − φrKhijk −
(ghkgij − ghjgik

(n− 1)(2− n)
(∇̇rR− φrR).

Hence, ∇̇rKhijk = φrKhijk if ∇̇rR = φrR is satisfied.

References

[1] G.S. Hall: Weyl manifolds and connections, J. Math. Phys. 33, No.7, (1992), 2633-2638.

[2] A. Norden: Affinely Connected Spaces, GRMFL Moscow, (1976).
[3] V. Hlavaty: Theorie d’immersion d’une Wm dans Wn, Ann. Soc. Polon. Math. 21 (1949),

196-206.
[4] G. Zlatanov: Networks in the two-dimensional space of Weyl. Comptes Rendus de l’Academie

Bulgare des Sciences. 29 (1976), 619-622, (in Russian).

[5] G. Zlatanov: Nets in the n-dimensional space of Weyl, C.R. Acad. Bulgare Sci., 41 No.10,
(1988), 29-32.

[6] E.Ö. Canfes and A. Özdeger: Some applications of prolonged differentiation in Weyl spaces,
Journal of Geometry, 60 (1997), 7-16.

[7] H. Pedersen and Y.S. Poon, A. Swann: Einstein-Weyl Deformations and Submanifolds.

Preprint No.11, Marts 1995.
[8] G. Zlatanov: On the Conformal Curvature Geometry of Nets in an n-dimensional Weyl space,

Izv. Vyssh. Uchebn. Zaved. Math., No. 8, (1991), 19-26.
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250 FÜSUN ÖZEN AND SEZGIN ALTAY

Istanbul Technical University, Faculty of Sciences and Letters, Department of

Mathematics, 80626 Maslak Istanbul, Turkey

E-mail address: fozen@sariyer.cc.itu.edu.tr


