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APPLICATIONS OF BOTT CONNECTION TO FINSLER
GEOMETRY

TADASHI AIKOU

1. INTRODUCTION

In the present paper, we shall investigate connections theory in complex Finsler
geometry. The basic tool in this paper is the so-called Bott connection which is
a partial connection defined by a splitting on the fundamental sequence of vector
bundles (see the definition below).

Let w : E — M be a holomorphic vector bundle over a complex manifold. We
denote by T and T the holomorphic tangent bundles of £ and M respectively.
Moreover we denote by T/ the relative tangent bundle of the holomorphic pro-
jection w. Then we get the fundamental sequence of vector bundles:

(1.1) 0 — Tg/n —— Tg 25 7Ty — O,

We also denote by €2} the corresponding holomorphic cotangent bundle.

We take an open covering Y = {U,V,---} of M with a local frame field sy =
(1, -+, 8r) of E on each U. The covering {(U, sy)}vey induces a complex coor-
dinate system (zp,&y) on each 7~ 1(U), where zy = (2}, -+ ,2}%) is a coordinate
on U and &y = (&), -+, &) is the fibre coordinate on 77 1(2) = E, (2 € U). If we
denote by

quy = (gUV;) :UNV — GL(T, (C)

the transition functions relative to the covering {(U, sy ) }vew, the coordinate trans-
formation law is given by the form

2y = zp(2v) _
& =Y guvi(zv)&.

We define a local section {opy} of 7°Q), ® Tg/m over 7Y UNV) by

agUV;‘ j o 0
UUV—Z Z 82‘0; 'fv Zv®@~

(A1 J
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Then we can easily verify that the family {oyy} satisfies oyy + ovw + owy =0
on UNVNW # ¢. A splitting h of the sequence (1.1) is defined by a local sections
{Nu} of Q) ® T/ over m~(U) satisfying

(12) NV_NU:UUV-

If a splitting h : n*Tyy — Tg is given in this sequence, we have a natural
connection V : I'(Tg/n) — I'(Te/m ® Q) on the bundle @ : Tg/y — E from
the given splitting h. In Finsler geometry, such a connection V plays an important
role.

2. BOTT CONNECTIONS

2.1. Ehresmann connections. Let 7 : £ — M be a holomorphic vector bundle
over a complex manifold M. An FEhresmann connection H for m is a smooth
distribution H C Ty for which the morphism dr in the sequence (1.1) induces an
isomorphism H = 7*T),. If an Ehresmann connection H is given for 7, we get a
smooth splitting

(2.1) Tp=H® Ty

For a fixed Ehresmann connection H, the smooth splitting (2.1) induces the dual
splitting Q% = H* & 7*Q},, and thus the differential operators d : Op — Qk is
decomposed as d = d¥ + d" by the differential d" : Ox — 7*Q}, along H and
the differential d¥ : O — Q}; Y; along vertical direction. We also decompose the
operators @ and 0 as @ = 0¥ + 0" and 0 = 9” + 9" respectively.

We denote by S the sheaf of germs of linear functionals along the fibres of 7. A
splitting A is defined by the action of 9" on S. If we put "¢ = — > Ni(z,&)dz®
on each 7= 1(U), the functions {N}} satisfy the homogeneity

(22) Ngz(z7>\§) = )\N;(Z,E)

for all A € C. For such functions { N’ }, we define a local section Ny of m*Q3, @7k /m
by Ny = Y. Nidz® ® (9/0¢*), then we can easily verify that { Ny} satisfies (1.2).
The splitting h : 7*Ty — T/ is defined by the lift X, of natural frame fields
{0/0z}:

d ; d
(2.3) Xo=5 2~ ZNa<z,£>a@.

A splitting h is said to be linear if 9"S € S® H*. In this case, since the functions
N/ (z,€) is linear in (') along the fibre E., there exist functions 77, (2) satisfying
N =3 75,(2)€7. Then we see that the (1,0)-form 6%(2) = 3 73, (2)dz* defines a
connection V : I'(E) — I'(E ® T;) of E. In the present paper, we shall consider
the case where h is a non-linear case.

An Ehresmann connection H of 7 is said to be integrable if it the distribution H
is closed under the Lie bracket operator: [I'(H),I'(H)] C I'(H). The obstruction
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for H to be integrable is given by the torsion form T = (T*%) defined by

_ 1 . .
i % (e} B i e =0
T ——§ZRaﬁdz Ndz —ZRade Ndz",
a,f3 a,f3
where the inetgrability tensors R, 5 and R, 5 are defined by
Ry = XpN;, — XoNj, R ;= X;N,

respectively with the conjugate X4 of X,. Moreover, we define & = (@%) by

i (9N& e
(2.4) o= i dz°.

It is easily seen that, if T'=0 and @ = 0, then H is integrable and holomorphic.

Remark 2.1. If the bundle 7 : E — M admits a holomorphically integrable
Ehresmann connection H, we have the holomorphic splitting Tg = 7T & Tg/n-
Furthermore the fundamental group 71 (M) acts on the canonical fibre X by com-
plex automorphism, and so w : £ — M is the fibre bundle associated with the
universal covering M, that is, E = (M x X)/m(M).

2.2. Bott connections. A morphism D : I'(Tg/n) — I'(Te/m ® QL) is called a
partial connection on the relative tangent bundle @ : Ty /y; — F if it satisfies the
Leibniz condition D(fs) = d"f ® s+ fDs for Vs € I'(Tg ) and ¥ f € C*°(E). An
Ehresmann connection H for 7 induces a partial connection D on Ty, as follows.

Definition 2.1. ([Ai5]) A partial connection D of (1,0)-type on T/, defined by
DxY = P((X,Y])

for VX € I'(H) and VY € I'(Tgn) is called a complex Bott connection, where
P :Tg — Tg/p is the natural projection.

The connection form w = (w}) of D is given by the (1,0)-form w} = > I'}, dz*
with
ON?
981

(2'5) F;a(zvg) =

By the homogeneity (2.2) of N, we have
(2.6) > I (2,6)¢ = NL.

The curvature form £2° = D? of D is given by 2P = d"w +w A w. Then we have



4 TADASHI AIKOU

Proposition 2.1. The curvature 27 of the Bott connection D is given by

(2.7) QP =1 - dND,
where IT = (II}) is defined by
. or OR, R
I = 56 =~ 728 dz* A dz’ Za dz* A dz’

Proof. Since XgI'}, = (XpN\)/0¢ + Zfla > we have

(2.8) 6hw§+2wf/\w§-:—72 aaﬁdz AdZP.
1
Similarly we have

(2.9) w = Z aaﬁdz A dZ? Z@;—/\a%
1

Hence we have 2 = IT — ® A\ ®.
Q.E.D.
If the curvature 27 of D vanishes identically, then D is said to be flat.

3. FINSLER GEOMETRY

3.1. Finsler metrics. Let 7 : E — M be a complex vector bundle with a complex
structure Jg € End(E) over a smooth manifold M.

Definition 3.1. A Finsler metric on E is a smooth assignment of a norm || - ||,
to each fibre B, = = !(z) (x € M). A complex Finsler metric of a complex vector
bundle (E, Jg) is a Finsler metric on F satisfying

(3.1) l(alp(z) +bJp(@)) €, = Va* + b [€],

for V¢ € E, and Va,b € R, where I is the identity morphism of E. The triplet
(E,Jg, || - ||) is called a complex Finsler vector bundle.

Let E ® C be the complexfication of E, and let E® C = E™ @ EL0 be the
canonical decomposition. The condition (3.1) is equivalent to

(3-2) [(a+v=1b)¢]|, = Va2 + b2 l¢]],,

where a,b € R and ¢ € EL0 = C".

In the sequel, we assume that E is a holomorphic vector bundle of rank(E) =
r (> 2) over a complex manifold M. For explicit expressions of Finsler met-
rics, we use the natural coordinate system on E induced from an open covering

{U, sv)}veu-
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Let F' : E — R be the fundamental function relative to the covering {(U, sy) }veu
of (E,| - ) defined by HU||3 = Foyy(v), where oy : 7 1(U) — U x C" the lo-
cal trivialization adapted to {(U, sy)}uey. The function F satisfies the following
conditions:

1. F(z,€) >0 and F(z,£) =0 if and only if cpl_,l(z,g) =0,

2. F(z,X) = |\2F(z,€) for Y\ € C,

3. Fis smooth on E* = E — {0}.

Then || - || is said to be convex if the Hermitian matrix (F};) defined by
0*F
(33 5= 55

is positive-definite. It is easily shown that the definition of convexity is independent
on the choice of the open cover {U, (sy)} of E. If || - || is convex, then (F;;) defines
a Hermitian metric (-,-) on @ : T/ — E by

o 0
(3.4) <8§“3§3> = F;.

Remark 3.1. The complex structure Jg of E is naturally lifted to a complex
structure Jz on the bundle Tg/y = 7*E = E by Jz := 7*Jg. If we denote
by g(X,Y) the real part of (X,Y), that is, (X,Y) = g(X,Y) + v/—1g(JzX,Y),
the real metric g satisfies g(Jz X, JzY) = ¢(X,Y), and thus the g is a so-called
generalized Finsler metric on E by a theorem due to Ichijyo[Ic3] and Fukui[Fu].

The Hermitian metric defined by (3.4) induces a Kéahler metric on each fibre
E, = C". Hence the 00-exact real (1,1)-form wg = /—1900F defines a pseudo-
Kaéhler metric on the total space F whose restriction w, to each fibre F, is a Kéahler
metric on E,.

Example 3.1. Let h = (h;;(z)) be an arbitrary Hermitian metric on E. The
function L : E — R defined by

(3.5) F(2,6) =) hg(2)€'¢

defines a convex Finsler metric on £. O

Example 3.2. Let D be a strictly convex domain of C**! with smooth boundary.
The Kobayashi-Royden metric Kp is defined by Kp(z,€) := inf {1/R}, where the
infimum is taken all holomorphic maps ¢ : A(R) — M satisfying ¢(0) = z and
do(d/dt)e = & for V(z,€) € Tp. By the early work due to Lempert[Le], the function
F = K% defines a convex Finsler metric on the tangent bundle Tp. O
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3.2. Bott connections of Finsler bundles. Let (E,| - ||) be a convex Finsler
vector bundle. We define a splitting h : 7#*Ty; — Tg of the sequence (1.1) so that
its Bott connection D is metrical with respect to the Hermitian metric (-, -):

(3.6) d"(X,Y) = (DX,Y) + (X, DY)

for all X, Y € I'(Tg/ar). Since this condition can be written as 6hF* > Foswi,
we have

i im qh
(3.7) wh =Y F"0"Fjm.

Then, from (2.6) we have

Proposition 3.1. For the fundamental function F, the functions
3.8 mz mz Jm 7
( ) Z Zaaé'm Z 0z g

define an Ehresmann connection H for w, where (F™") is the inverse of (Fjj).

We define a splitting h of the sequence (1.1) by the coefficients N! in (3.8), from
which we get a canonical Bott connection D of {Tg/az, (-, -)} by the formula (2.5).
If we define a section & of T p by

;0
&= zj:g']@a
the relations (2.6) is equivalent to
(3.9) DE =0,
and, since (€,&) = F(z,€) and D satisfies the metrical condition (3.6), we have
(3.10) d"F =90"F +0"F =

For the Bott connection D of (E, || - ||), we have proved the following proposition.

Proposition 3.2. ([Ai3]) Let D be the complex Bott connection of (E, || - ||) defined
by the connect@'on H of (4.11). Then we have

2. Bhw—i—w/\wEO,

By this proposition, some quantities are simplified. By the identity 0"w+wAw =
0, the curvature 27 of D is given by

(3.11) NP = dhw,
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and its components R; are given in the form R; =5 R;a de"‘ A dz?, where

(3.12) R, 5(2,6) = =X3I7,

is the curvature tensor of 2°. ;From (2.5) and the homogeneity (2.2) of N¢, w
have

(3.13) Y UR. ;=R

J

We consider a Finsler bundle (E, || - ||) whose Bott connection D is flat. By
definitions and the identity (3.13), we have foﬁ = 0 and thus IT = 0. Then, by

(2.7), we have @ = 0. Hence we get
ON'!
< = (),
&I

and

ON!  ON} rON,

0z8 — 938 Z B 855 aﬁ =0
We see that, if 2P = 0, then the coefficients N/ are holomorphic. Hence we have
Proposition 3.3. If the Bott connection D of (E,|| - ||) is flat, then the sequence
(1.1) splits holomorphically.

If D is flat, since R}, 5 = RgB =0, the PDE

v’
0z«

(3.14) = =N (2,¥(2))

is completely integrable and has a holomorphic solution (*(z) = ¥¥(z, (20, &)) for

)
an arbitrary initial point (zo,&) € E. By the identity (2.6), this PDE is also
written as

(3.15) o 4 S L cla)¢ =

For a solution (*(2) of (3.14), we define a holomorphic section ¢ of Tg/m by

(=Y () .
2 98 ) (2.2
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Then, by definition, we have ||¢(z)]|* = (,¢) = F(z,((z)) and

P , [ OF act (OF
2 el :() Ly X (or
9z 92% ) (2 ¢(2)) 25 9 ) (2.2

OF | OF
- (a - ZN&%)
! (2:€(2))

= (onF>(
=0.

2,¢(2))

Hence the norm of ¢ is constant, and so ¢ is a non-vanishing holomorphic section
of E. On the other hand, since the condition (3.15) can be written as D¢ = 0, we
see that the flatness of D implies the existence of parallel section of Tg /.

Theorem 3.1. If the Bott connection D of (E,| - ||) s flat, then there exists a
flat Hermitian metric on E.

Proof. For the solution ¢ € H(M, O(E)) of (3.14), we define a holomorphic map
fe: M — E by fe(z) = (2,{(2)). We introduce a Hermitian metric g = (g;;(2)) on
E by

9i5(2) = Fi5(2,¢(2)).
The Hermitian connection 9; of (E,g) is given by

05 =2 9" 00jm =) _ (F"0"Fjm) , o = fZwj.

m

Hence the curvature 29 = f 2P of (E, g) vanishes identically.
Q.E.D.

3.3. Complex Finsler connections and flat Finsler metrics. The complex
Bott connection D of (E, || - ||) is extended to an ordinary connection V on Tg ;.
In fact, since Tg/py = m* E, the relative tangent bundle Tg/); admits a canonical
relative flat connection VO : I'(Tg/n) — I'(Tg/m ® Q) characterized by the
property VO(r~ts) = 0 for every s € I'(E). The connection V : I'(Tg/) —
I(Tg @ Q) is given by

V=DaoV’

It is noted that V is not compatible with the Hermitian metric (-,-) on Tg/p;.

Definition 3.2. The connection V is called the Finsler connection of (E,|| - ||).
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Since 0"w + w A w = 0, the curvature form 2V = dw + w A w of V is given by
(3.16) OV = 0P + d°w.

In the case of d'w = 0, then we have 2V = 2P, In this case, such a (E, || - ) is
said to be modeled on a complexr Minkowski space, and it is proved that there exists
a Hermitian metric hr on E such that the Finsler connection V is given by pull-
back 7*V"F of the Hermitian connection V* of hr (cf. [Ail]). If the curvature
2V of V vanishes identically, then V is said to be flat. In this case, (E,| - ||) is
modeled on a complex Minkowski space and its associated Hermitian metric hp is
flat.

A Hermitian bundle (E,h) is flat if and only if there exists an open cover
{(U, sv)}veu of E with a parallel orthonormal holomorphic frame syy. Then its
norm function Fj, with respect to {(U, sy)}tvey is independent on the base point
z € M. In the case of Finsler metrics, the flatness of Finsler metrics is defined as
follows:

Definition 3.3. A complex Finsler vector bundle (E,| - ||) is said to be flat if
there exists an open cover {(U, sy)} of E such that the pseudo-Kéhler potential F
of the Kéahler morphism E — M relative to {(U, sy)}ueu is independent on the
base point z € M.

Unlike the case of Hermitian metrics, by Theorem 4.2, the flatness of D does not
implies the flatness of Finsler metrics. In [Ai3] and [Ai4], we have discussed the
flatness of the connection V with relation to the flatness of Finsler metrics. The
following theorem is given in [Ai3]. The proof is essentially the same as the one in
[Ai3], however, we shall reproduce here for the convenience.

Theorem 3.2. A complex Finsler vector bundle (E, || - ||) is flat if and only if the
curvature RY of V vanishes identically.

Proof. We denote by F' the fundamental function of | - || relative to a fixed
covering {U, (sy)}. We suppose that (E, | - ||) is flat. The fundamental function F
relative to the adapted covering {(U, sy) }uey is independent on z € M. Then, by
(3.8) the coefficients N¢ vanish identically, and so by (2.5) the connection forms
w vanish on each U € Y. Hence, from (3.11) and (3.16) the curvature RV of V
vanishes identically.

Conversely we shall prove that the flatness of V implies the flatness of (E, || - ||).
For this purpose, we shall fix an open covering {(U, sy)}uecy. Then it defines a
local trivialization ¢ : 771 (U) — U x C" by pp(v) = (2%, &) for Yo = 3 €¥s4(2) €
7~ 1(U). Since V is flat, (E,] - ||) is modeled on a complex Minkowski space and
its associated Hermitian metric hg is flat. Thus V is the Hermitian connection of
this flat Hermitian metric hrp. Hence we can introduce a holomorphic frame field
Su = (81, -+ ,5,) on each U € U with respect to which the connection form & of
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V vanishes identically on each U € . Hence we have another local trivialization
v : mHU) — U x C" by ¢py(v) = (2%,€) for Yo = 32 €5,(2) € n~(U). We
denote by Ay = (A%) the transition function between the frame fields sy and 3y,
that is, 5;(z) = > si(2)A}(2). The coordinate transition ¥y = ¢y o @y is given
by

Wy (z2,8) = | 2%, Ai(2)€

We note that, since 5y is a parallel frame filed on U, the functions A;(z) satisfy

OA: .
(3.17) azi + ) I (2)A2) =0
1
on each U € Y. The fundamental function F of || - || relative to {(U, 5y)} is given
PU K
m 1( ) Yu R
UxCr

Then, since A%(z) satisfy (3.17) we have
0 0 ; iz O 0 ; 0
Uy | 5= | = 5= =) T (2)Al(2)¢ — =-—-) N! - = Xo
v () = 5 S Tl g = i~ LMl
and X, F = 0 by (3.10), we have

oF 9 . o)
@ = (82;0‘) (WUF) = wU* <aza> = XaF - Oa

which shows F = F(£). Hence (E,|| - ||) is flat.
Q.E.D.

By the proof of Theorem 4.3, we have

Corollarly 3.1. A complex Finsler bundle (E,| - 1) is flat if and only if it is
modeled on a complex Minkowski space and its associated Hermitian bundle (E, hr)
is flat.
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4. SOME REMARKS

Let mp, : Pg — M be the projective bundle associated with E. We denote by
7L, : L — Pg the tautological line bundle, and we also denote by Lg the open
submanifold of Lg consisting of the non-zero elements. The holomorphic map
7: E* — Pg x E defined by 7(v) = ([v],v) maps E* to L} bi-holomorphically.
Then it is shown that any Finsler metric on F is naturally identified as a Hermitian
metric on L as follows(cf. [Kol]).

For the projective bundle Pg associated with E, we introduce a standard open
covering {U;;U € U,1 < j < r} of Pg from an open cover {(U,tsy)} of E by
putting U; = 7= 1 (U) N {& # 0} = {(2,[¢]) € Pg;z € U, & # 0}. On each open
set Uj, we define a holomorphic section ¢; : U; — Lg by

el = (6D, (g £).

Then {t;} defines a local trivialization ¢; : U; x C — WE;(U]‘) by ©;((z,[£]), ) =
At;(z, [£]). Hence the bi-holomorphism 7 can be written as

T(Zag) = ((Z’ [g])ag) = ¥y ((Z, [ﬂ)vfj) = ((Z’ [g]),é‘j) .

On the other hand, any Hermitian metric hy, on Lg is defined by the family of
positive functions {h, ;} on each U; satisfying
2

J
(4.1) higi= & hip.i
on U; NU; # ¢. Hence, by using the map 7 and identification
(4'2) Lz(zag) = hig (T(Z,f)) = |§j|2hLE,j<Z’ [5])’
any Finsler metric || - || on E is identified with a Hermitian metric hr, on the

tautological line bundle L. B
Since € is generated by the action py and L£90log F' = 0, the real (1,1)-form

(43) Wpg,F =V —185 10gF

is invariant by the action uy for Y\ € C, and so wpg,, F may be considered as a real
(1,1)-form on Pg. We suppose that (E, || - ||) is convex. Since

(4.4) V—100F, = \/—1F,(001og F, + 0log F, A dlog F,),

the function log F, is strictly subharmonic on each fibre P(E.). Thus we have
obtained a Kéhler morphism 7p, : P — M with a pseudo-Kahler metric wp,
from an arbitrary (E, || - ||).

Proposition 4.1. Let (E,|| - ||) be a convex Finsler vector bundle. Then the pro-
jective bundle mp, : Pg — M is a Kdahler morphism with the pseudo-Kdhler metric
Wpg F-
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Conversely, from an arbitrary pseudo-Kéahler metric wp, of the projective bundle
Pg, it induces a convex Finsler metric || - || on E, that is, we have

Theorem 4.1. A holomorphic vector bundle admits a convex Finsler metric if
and only if the projective bundle mp, : Pr — M associated with E is a Kdhler
morphism.

Proof. We express locally wp, = leaéGj on U; for a C*°-function G; on
U;. Since G; — G; is pluri-harmonic, there exists a 1-cocycle K;; € Z'(Up,,Op,)
satisfying G; — G; = K;; + K;; on U;NU; # ¢. Restricting to each fibre P(E,), we
have w, = \/—71856’]-’2 and G, — G, = Kyj » +m Then {K;; .} is a 1-cocycle
on P(E,) =2 Pr~! and since H'(P"~%, O) = 0, we may put

Kij. = (Kj. —log€’) — (Ki. — log¢")
for a O-cochain {K; .} on P(E.). Hence we have
Gz = (Kjz + Kj2) +1og|€7]* = Gio — (Kiz + Ki2) +log [€']?
If we put Fj.([¢]) = exp{G;. — (Kj. + Kj:)} on Uj ., we have [¢/]*F;.(¢]) =
|12 F; . ([€]). Since each |&7]2F; .([¢]) := F.(£) depends on z € M smoothly, the

function F,(&) defines a complex Finsler metric F(z,£) on E. Consequently we
have

(4.5) F(z,€) = €] exp{G; — (K; + K})}

for a family of local functions {K;} on U; which are holomorphic in [{] and smooth
in z. Moreover, because of V=199 log F, = V=199 log Fj ., = \/—18{_9Gj7z > 0 and
(4.4), F defines a convex Finsler metric on F.

Q.ED.

The convex Finsler metric || - || determined from wp,, should be satisfy the rela-
tion w, = v/—1901og F,(§) on each fibre Pg_. Hence we have

Proposition 4.2. A pseudo-Kdhler metric wp, on Pg determines a unique convex
Finsler metric || - || on E up to a locally conformal equivalence.

We say that the pseudo-Kéahler metric I1p,, is flat if there exists an open cov-
ering {(U, su)}ueu of E such that the pseudo-Kéhler potential {G;} of IIp, is
independent on the base point z € M. We also say the Finsler metric induced from
IIp, is projectively flat if IIp, is flat. The projective flatness of a Finsler metric
I - || is characterized in terms of curvature of the Finsler connection V of (E, || - ||)
(cf. [Ai5]), and it is easily shown that the projective flatness of || - || is equivalent
to the locally-conformal flatness of || - || in the sense of [Ai3].
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