
Steps in Differential Geometry, Proceedings of the Colloquium
on Differential Geometry, 25–30 July, 2000, Debrecen, Hungary

APPLICATIONS OF BOTT CONNECTION TO FINSLER
GEOMETRY

TADASHI AIKOU

1. Introduction

In the present paper, we shall investigate connections theory in complex Finsler
geometry. The basic tool in this paper is the so-called Bott connection which is
a partial connection defined by a splitting on the fundamental sequence of vector
bundles (see the definition below).

Let π : E → M be a holomorphic vector bundle over a complex manifold. We
denote by TE and TM the holomorphic tangent bundles of E and M respectively.
Moreover we denote by TE/M the relative tangent bundle of the holomorphic pro-
jection π. Then we get the fundamental sequence of vector bundles:

O → TE/M
i−→ TE

dπ−→ π∗TM → O.(1.1)

We also denote by Ω1
• the corresponding holomorphic cotangent bundle.

We take an open covering U = {U, V, · · · } of M with a local frame field sU =
(s1, · · · , sr) of E on each U . The covering {(U, sU )}U∈U induces a complex coor-
dinate system (zU , ξU ) on each π−1(U), where zU = (z1

U , · · · , zn
U ) is a coordinate

on U and ξU = (ξ1
U , · · · , ξr

U ) is the fibre coordinate on π−1(z) = Ez (z ∈ U). If we
denote by

gUV =
(
gUV

i
j

)
: U ∩ V → GL(r, C)

the transition functions relative to the covering {(U, sU )}U∈U , the coordinate trans-
formation law is given by the form{

zα
U = zα

U (zV )
ξi
U =

∑
gUV

i
j(zV )ξj

V .

We define a local section {σUV } of π∗Ω1
M ⊗ TE/M over π−1(U ∩ V ) by

σUV =
∑
i,α

∑
j

∂gUV
i
j

∂zα
V

ξj
V

 dzα
V ⊗ ∂

∂ξi
U

.
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Then we can easily verify that the family {σUV } satisfies σUV + σV W + σWU = 0
on U ∩V ∩W 6= φ. A splitting h of the sequence (1.1) is defined by a local sections
{NU} of π∗Ω1

M ⊗ TE/M over π−1(U) satisfying

NV −NU = σUV .(1.2)

If a splitting h : π∗TM → TE is given in this sequence, we have a natural
connection ∇ : Γ (TE/M ) → Γ (TE/M ⊗ Ω1

E) on the bundle $ : TE/M → E from
the given splitting h. In Finsler geometry, such a connection ∇ plays an important
role.

2. Bott connections

2.1. Ehresmann connections. Let π : E → M be a holomorphic vector bundle
over a complex manifold M . An Ehresmann connection H for π is a smooth
distribution H ⊂ TE for which the morphism dπ in the sequence (1.1) induces an
isomorphism H ∼= π∗TM . If an Ehresmann connection H is given for π, we get a
smooth splitting

TE = H ⊕ TE/M .(2.1)

For a fixed Ehresmann connection H, the smooth splitting (2.1) induces the dual
splitting Ω1

X = H∗ ⊕ π∗Ω1
M , and thus the differential operators d : OE → Ω1

E is
decomposed as d = dv + dh by the differential dh : OX → π∗Ω1

M along H and
the differential dv : OE → Ω1

E/M along vertical direction. We also decompose the
operators ∂ and ∂̄ as ∂ = ∂v + ∂h and ∂̄ = ∂̄v + ∂̄h respectively.

We denote by S the sheaf of germs of linear functionals along the fibres of π. A
splitting h is defined by the action of ∂h on S. If we put ∂hξi = −

∑
N i

α(z, ξ)dzα

on each π−1(U), the functions {N i
α} satisfy the homogeneity

N i
α(z, λξ) = λN i

α(z, ξ)(2.2)

for all λ ∈ C. For such functions {N i
α}, we define a local section NU of π∗Ω1

M⊗TE/M

by NU =
∑

N i
αdzα ⊗ (∂/∂ξi), then we can easily verify that {NU} satisfies (1.2).

The splitting h : π∗TM → TE/M is defined by the lift Xα of natural frame fields
{∂/∂zα}:

Xα =
∂

∂zα
−
∑

i

N i
α(z, ξ)

∂

∂ξi
.(2.3)

A splitting h is said to be linear if ∂hS ⊂ S⊗H∗. In this case, since the functions
N i

α(z, ξ) is linear in (ξi) along the fibre Ez, there exist functions γi
jα(z) satisfying

N i
α =

∑
γi

jα(z)ξj . Then we see that the (1, 0)-form θi
j(z) =

∑
γi

jα(z)dzα defines a
connection ∇ : Γ (E) → Γ (E ⊗ T ∗M ) of E. In the present paper, we shall consider
the case where h is a non-linear case.

An Ehresmann connection H of π is said to be integrable if it the distribution H
is closed under the Lie bracket operator: [Γ (H), Γ (H)] ⊂ Γ (H). The obstruction
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for H to be integrable is given by the torsion form T = (T i) defined by

T i = −1
2

∑
α,β

Ri
αβdzα ∧ dzβ −

∑
α,β

Ri
αβ̄dzα ∧ dz̄β ,

where the inetgrability tensors Ri
αβ and Ri

αβ̄
are defined by

Ri
αβ = XβN i

α −XαN i
β , Ri

αβ̄ = Xβ̄N i
α

respectively with the conjugate Xᾱ of Xα. Moreover, we define Φ = (Φi
j̄
) by

Φi
j̄ =

∑
α

∂N i
α

∂ξ̄j
dzα.(2.4)

It is easily seen that, if T = 0 and Φ = 0, then H is integrable and holomorphic.

Remark 2.1. If the bundle π : E → M admits a holomorphically integrable
Ehresmann connection H, we have the holomorphic splitting TE = π∗TM ⊕ TE/M .
Furthermore the fundamental group π1(M) acts on the canonical fibre X by com-
plex automorphism, and so π : E → M is the fibre bundle associated with the
universal covering M̃ , that is, E = (M̃ ×X)/π1(M).

2.2. Bott connections. A morphism D : Γ (TE/M ) → Γ (TE/M ⊗ Ω1
E) is called a

partial connection on the relative tangent bundle $ : TE/M → E if it satisfies the
Leibniz condition D(fs) = dhf ⊗ s+ fDs for ∀s ∈ Γ (TE/M ) and ∀f ∈ C∞(E). An
Ehresmann connection H for π induces a partial connection D on TE/M as follows.

Definition 2.1. ([Ai5]) A partial connection D of (1, 0)-type on TE/M defined by

DXY = P ([X, Y ])

for ∀X ∈ Γ (H) and ∀Y ∈ Γ (TE/M ) is called a complex Bott connection, where
P : TE → TE/M is the natural projection.

The connection form ω = (ωi
j) of D is given by the (1, 0)-form ωi

j =
∑

Γ i
jαdzα

with

Γ i
jα(z, ξ) =

∂N i
α

∂ξj
.(2.5)

By the homogeneity (2.2) of N i
α, we have∑

Γ i
jα(z, ξ)ξj = N i

α.(2.6)

The curvature form ΩD = D2 of D is given by ΩD = dhω + ω ∧ ω. Then we have
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Proposition 2.1. The curvature ΩD of the Bott connection D is given by

ΩD = Π − Φ ∧ Φ,(2.7)

where Π = (Πi
j) is defined by

Πi
j =

∂T i

∂ξj
= −1

2

∑
α,β

∂Ri
αβ

∂ξj
dzα ∧ dzβ −

∑
α,β

∂Ri
αβ̄

∂ξj
dzα ∧ dz̄β .

Proof. Since XβΓ i
jα = ∂(XβN i

α)/∂ξj +
∑
l

Γ i
lαΓ l

jβ , we have

∂hωi
j +

∑
l

ωi
l ∧ ωl

j = −1
2

∑
α,β

∂Ri
αβ

∂zj
dzα ∧ dzβ .(2.8)

Similarly we have

∂̄hωi
j = −

∑
α,β

∂Ri
αβ̄

∂ξj
dzα ∧ dz̄β −

∑
l

Φi
l̄ ∧ Φl

j̄
.(2.9)

Hence we have Ω = Π − Φ ∧ Φ̄.
Q.E.D.

If the curvature ΩD of D vanishes identically, then D is said to be flat.

3. Finsler geometry

3.1. Finsler metrics. Let π : E → M be a complex vector bundle with a complex
structure JE ∈ End(E) over a smooth manifold M .

Definition 3.1. A Finsler metric on E is a smooth assignment of a norm ‖ · ‖x

to each fibre Ex = π−1(x) (x ∈ M). A complex Finsler metric of a complex vector
bundle (E, JE) is a Finsler metric on E satisfying

‖(aIE(x) + bJE(x)) ξ‖x =
√

a2 + b2 ‖ξ‖x(3.1)

for ∀ξ ∈ Ex and ∀a, b ∈ R, where IE is the identity morphism of E. The triplet
(E, JE , ‖ · ‖) is called a complex Finsler vector bundle.

Let E ⊗ C be the complexfication of E, and let E ⊗ C = E1,0 ⊕ E1,0 be the
canonical decomposition. The condition (3.1) is equivalent to∥∥(a +

√
−1b)ξ

∥∥
x

=
√

a2 + b2 ‖ξ‖x ,(3.2)

where a, b ∈ R and ξ ∈ E1,0
x

∼= Cr.
In the sequel, we assume that E is a holomorphic vector bundle of rank(E) =

r (≥ 2) over a complex manifold M . For explicit expressions of Finsler met-
rics, we use the natural coordinate system on E induced from an open covering
{(U, sU )}U∈U .
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Let F : E → R be the fundamental function relative to the covering {(U, sU )}U∈U
of (E, ‖ · ‖) defined by ‖v‖2

z = F ◦ ϕU (v), where ϕU : π−1(U) → U × Cr the lo-
cal trivialization adapted to {(U, sU )}U∈U . The function F satisfies the following
conditions:

1. F (z, ξ) ≥ 0 and F (z, ξ) = 0 if and only if ϕ−1
U (z, ξ) = 0,

2. F (z, λξ) = |λ|2F (z, ξ) for ∀λ ∈ C,
3. F is smooth on E× = E − {0}.

Then ‖ · ‖ is said to be convex if the Hermitian matrix (Fij̄) defined by

Fij̄ =
∂2F

∂ξiξ̄j
(3.3)

is positive-definite. It is easily shown that the definition of convexity is independent
on the choice of the open cover {U , (sU )} of E. If ‖ · ‖ is convex, then (Fij̄) defines
a Hermitian metric 〈·, ·〉 on $ : TE/M → E by〈

∂

∂ξi
,

∂

∂ξj

〉
:= Fij̄ .(3.4)

Remark 3.1. The complex structure JE of E is naturally lifted to a complex
structure JẼ on the bundle TE/M

∼= π∗E = Ẽ by JẼ := π∗JE . If we denote
by g(X, Y ) the real part of 〈X, Y 〉, that is, 〈X, Y 〉 = g(X, Y ) +

√
−1g(JẼX, Y ),

the real metric g satisfies g(JẼX, JẼY ) = g(X, Y ), and thus the g is a so-called
generalized Finsler metric on E by a theorem due to Ichijyō[Ic3] and Fukui[Fu].

The Hermitian metric defined by (3.4) induces a Kähler metric on each fibre
Ez

∼= Cr. Hence the ∂∂̄-exact real (1, 1)-form ωE =
√
−1∂∂̄F defines a pseudo-

Kähler metric on the total space E whose restriction ωz to each fibre Ez is a Kähler
metric on Ez.

Example 3.1. Let h = (hij̄(z)) be an arbitrary Hermitian metric on E. The
function L : E → R defined by

F (z, ξ) =
∑

hij̄(z)ξiξ̄j(3.5)

defines a convex Finsler metric on E. �

Example 3.2. Let D be a strictly convex domain of Cn+1 with smooth boundary.
The Kobayashi-Royden metric KD is defined by KD(z, ξ) := inf {1/R}, where the
infimum is taken all holomorphic maps ϕ : ∆(R) → M satisfying ϕ(0) = z and
dϕ(d/dt)0 = ξ for ∀(z, ξ) ∈ TD. By the early work due to Lempert[Le], the function
F = K2

D defines a convex Finsler metric on the tangent bundle TD. �
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3.2. Bott connections of Finsler bundles. Let (E, ‖ · ‖) be a convex Finsler
vector bundle. We define a splitting h : π∗TM → TE of the sequence (1.1) so that
its Bott connection D is metrical with respect to the Hermitian metric 〈·, ·〉:

dh〈X, Y 〉 = 〈DX,Y 〉+ 〈X, DY 〉(3.6)

for all X, Y ∈ Γ (TE/M ). Since this condition can be written as ∂hFij̄ =
∑

Fmj̄ω
m
i ,

we have

ωi
j =

∑
m

F im̄∂hFjm̄.(3.7)

Then, from (2.6) we have

Proposition 3.1. For the fundamental function F , the functions

N i
α :=

∑
m

F m̄i ∂2F

∂zα∂ξ̄m
=
∑
j,m

F m̄i ∂Fjm̄

∂zα
ξj(3.8)

define an Ehresmann connection H for π, where (F m̄i) is the inverse of (Fij̄).

We define a splitting h of the sequence (1.1) by the coefficients N i
α in (3.8), from

which we get a canonical Bott connection D of {TE/M , 〈·, ·〉} by the formula (2.5).
If we define a section E of TE/M by

E =
∑

j

ξj ∂

∂ξj
,

the relations (2.6) is equivalent to

DE ≡ 0,(3.9)

and, since 〈E , E〉 = F (z, ξ) and D satisfies the metrical condition (3.6), we have

dhF = ∂hF + ∂̄hF ≡ 0.(3.10)

For the Bott connection D of (E, ‖ · ‖), we have proved the following proposition.

Proposition 3.2. ([Ai3]) Let D be the complex Bott connection of (E, ‖ · ‖) defined
by the connection H of (4.11). Then we have

1. Ri
αβ ≡ 0,

2. ∂hω + ω ∧ ω ≡ 0.

By this proposition, some quantities are simplified. By the identity ∂hω+ω∧ω ≡
0, the curvature ΩD of D is given by

ΩD = ∂̄hω,(3.11)
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and its components Ri
j are given in the form Ri

j =
∑

Ri
jαβ̄

dzα ∧ dz̄β , where

Ri
jαβ̄(z, ξ) = −Xβ̄Γ i

jα(3.12)

is the curvature tensor of ΩD. ¿From (2.5) and the homogeneity (2.2) of N i
α, we

have ∑
j

ξjRi
jαβ̄ ≡ Ri

αβ̄ .(3.13)

We consider a Finsler bundle (E, ‖ · ‖) whose Bott connection D is flat. By
definitions and the identity (3.13), we have Ri

αβ̄
= 0 and thus Π = 0. Then, by

(2.7), we have Φ = 0. Hence we get

∂N i
α

∂ξ̄j
= 0,

and
∂N i

α

∂z̄β
=

∂N i
α

∂z̄β
−
∑

l

N l
β

∂N i
α

∂ξ̄l
= Ri

αβ̄ = 0.

We see that, if ΩD = 0, then the coefficients N i
α are holomorphic. Hence we have

Proposition 3.3. If the Bott connection D of (E, ‖ · ‖) is flat, then the sequence
(1.1) splits holomorphically.

If D is flat, since Ri
αβ = Ri

αβ̄
= 0, the PDE

∂Ψ i

∂zα
= −N i

α(z, Ψ(z))(3.14)

is completely integrable and has a holomorphic solution ζi(z) = Ψ i(z, (z0, ξ0)) for
an arbitrary initial point (z0, ξ0) ∈ E. By the identity (2.6), this PDE is also
written as

∂ζi

∂zα
+
∑

j

Γ i
jα(z, ζ(z))ζj = 0.(3.15)

For a solution ζi(z) of (3.14), we define a holomorphic section ζ̃ of TE/M by

ζ̃ =
∑

ζi(z)
(

∂

∂ξj

)
(z,ζ(z))

.
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Then, by definition, we have ‖ζ(z)‖2 = 〈ζ̃, ζ̃〉 = F (z, ζ(z)) and

∂

∂zα
‖ζ(z)‖2 =

(
∂F

∂zα

)
(z,ζ(z))

+
∑ ∂ζl

∂zα

(
∂F

∂ξl

)
(z,ζ(z))

=

(
∂F

∂zα
−
∑

l

N l
α

∂F

∂ξl

)
(z,ζ(z))

= (XαF )(z,ζ(z))

= 0.

Hence the norm of ζ is constant, and so ζ is a non-vanishing holomorphic section
of E. On the other hand, since the condition (3.15) can be written as Dζ̃ = 0, we
see that the flatness of D implies the existence of parallel section of TE/M .

Theorem 3.1. If the Bott connection D of (E, ‖ · ‖) is flat, then there exists a
flat Hermitian metric on E.

Proof. For the solution ζ ∈ H0(M,O(E)) of (3.14), we define a holomorphic map
fζ : M → E by fζ(z) = (z, ζ(z)). We introduce a Hermitian metric g = (gij̄(z)) on
E by

gij̄(z) = Fij̄(z, ζ(z)).

The Hermitian connection θi
j of (E, g) is given by

θi
j =

∑
m

gim̄∂gjm̄ =
∑
m

(
F im̄∂hFjm̄

)
(z,ζ)

= f∗ζ ωi
j .

Hence the curvature Ωg = f∗ζ ΩD of (E, g) vanishes identically.

Q.E.D.

3.3. Complex Finsler connections and flat Finsler metrics. The complex
Bott connection D of (E, ‖ · ‖) is extended to an ordinary connection ∇ on TE/M .
In fact, since TE/M

∼= π∗E, the relative tangent bundle TE/M admits a canonical
relative flat connection ∇0 : Γ (TE/M ) → Γ (TE/M ⊗ Ω1

E) characterized by the
property ∇0(π−1s) = 0 for every s ∈ Γ (E). The connection ∇ : Γ (TE/M ) →
Γ (TE/M ⊗ Ω1

E) is given by

∇ = D ⊕∇0.

It is noted that ∇ is not compatible with the Hermitian metric 〈·, ·〉 on TE/M .

Definition 3.2. The connection ∇ is called the Finsler connection of (E, ‖ · ‖).
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Since ∂hω + ω ∧ ω ≡ 0, the curvature form Ω∇ = dω + ω ∧ ω of ∇ is given by

Ω∇ = ΩD + dvω.(3.16)

In the case of dvω ≡ 0, then we have Ω∇ ≡ ΩD. In this case, such a (E, ‖ · ‖) is
said to be modeled on a complex Minkowski space, and it is proved that there exists
a Hermitian metric hF on E such that the Finsler connection ∇ is given by pull-
back π∗∇hF of the Hermitian connection ∇hF of hF (cf. [Ai1]). If the curvature
Ω∇ of ∇ vanishes identically, then ∇ is said to be flat. In this case, (E, ‖ · ‖) is
modeled on a complex Minkowski space and its associated Hermitian metric hF is
flat.

A Hermitian bundle (E, h) is flat if and only if there exists an open cover
{(U, sU )}U∈U of E with a parallel orthonormal holomorphic frame sU . Then its
norm function Fh with respect to {(U, sU )}U∈U is independent on the base point
z ∈ M . In the case of Finsler metrics, the flatness of Finsler metrics is defined as
follows:

Definition 3.3. A complex Finsler vector bundle (E, ‖ · ‖) is said to be flat if
there exists an open cover {(U, sU )} of E such that the pseudo-Kähler potential F
of the Kähler morphism E → M relative to {(U, sU )}U∈U is independent on the
base point z ∈ M .

Unlike the case of Hermitian metrics, by Theorem 4.2, the flatness of D does not
implies the flatness of Finsler metrics. In [Ai3] and [Ai4], we have discussed the
flatness of the connection ∇ with relation to the flatness of Finsler metrics. The
following theorem is given in [Ai3]. The proof is essentially the same as the one in
[Ai3], however, we shall reproduce here for the convenience.

Theorem 3.2. A complex Finsler vector bundle (E, ‖ · ‖) is flat if and only if the
curvature R∇ of ∇ vanishes identically.

Proof. We denote by F the fundamental function of ‖ · ‖ relative to a fixed
covering {U , (sU )}. We suppose that (E, ‖ · ‖) is flat. The fundamental function F
relative to the adapted covering {(U, sU )}U∈U is independent on z ∈ M . Then, by
(3.8) the coefficients N i

α vanish identically, and so by (2.5) the connection forms
ω vanish on each U ∈ U . Hence, from (3.11) and (3.16) the curvature R∇ of ∇
vanishes identically.

Conversely we shall prove that the flatness of ∇ implies the flatness of (E, ‖ · ‖).
For this purpose, we shall fix an open covering {(U, sU )}U∈U . Then it defines a
local trivialization ϕU : π−1(U) → U×Cr by ϕU (v) = (zα, ξi) for ∀v =

∑
ξisi(z) ∈

π−1(U). Since ∇ is flat, (E, ‖ · ‖) is modeled on a complex Minkowski space and
its associated Hermitian metric hF is flat. Thus ∇ is the Hermitian connection of
this flat Hermitian metric hF . Hence we can introduce a holomorphic frame field
s̃U = (s̃1, · · · , s̃r) on each U ∈ U with respect to which the connection form ω̃ of
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∇ vanishes identically on each U ∈ U . Hence we have another local trivialization
ϕ̃U : π−1(U) → U × Cr by ϕ̃U (v) = (zα, ξ̃i) for ∀v =

∑
ξ̃is̃i(z) ∈ π−1(U). We

denote by AU =
(
Ai

j

)
the transition function between the frame fields sU and s̃U ,

that is, s̃j(z) =
∑

si(z)Ai
j(z). The coordinate transition ΨU = ϕU ◦ ϕ̃−1

U is given
by

ΨU (z, ξ̃) =

zα,
∑

j

Ai
j(z)ξ̃j

 .

We note that, since s̃U is a parallel frame filed on U , the functions Ai
j(z) satisfy

∂Ai
j

∂zα
+
∑

l

Γ i
lα(z)Al

j(z) = 0(3.17)

on each U ∈ U . The fundamental function F̃ of ‖ · ‖ relative to {(U, s̃U )} is given
by F̃ (z, ξ̃) = (Ψ∗UF )(z, ξ̃).

π−1(U)

U × Cr

U × Cr

R.

@
@

@@R

�
�

���

�
�

���

@
@

@@R
? F

F̃

ΨU

ϕU

ϕ̃U

Then, since Ai
j(z) satisfy (3.17) we have

ΨU∗

(
∂

∂zα

)
=

∂

∂zα
−
∑
j,l

Γ i
jα(z)Aj

l (z)ξ̃l ∂

∂ξi
=

∂

∂zα
−
∑

i

N i
α(z, ξ)

∂

∂ξi
= Xα

and XαF = 0 by (3.10), we have

∂F̃

∂zα
=
(

∂

∂zα

)
(Ψ∗UF ) = ΨU∗

(
∂

∂zα

)
F = XαF = 0,

which shows F̃ = F̃ (ξ̃). Hence (E, ‖ · ‖) is flat.

Q.E.D.

By the proof of Theorem 4.3, we have

Corollarly 3.1. A complex Finsler bundle (E, ‖ · ‖) is flat if and only if it is
modeled on a complex Minkowski space and its associated Hermitian bundle (E, hF )
is flat.
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4. Some remarks

Let πPE
: PE → M be the projective bundle associated with E. We denote by

πLE
: LE → PE the tautological line bundle, and we also denote by L×E the open

submanifold of LE consisting of the non-zero elements. The holomorphic map
τ : E× → PE × E defined by τ(v) = ([v], v) maps E× to L×E bi-holomorphically.
Then it is shown that any Finsler metric on E is naturally identified as a Hermitian
metric on LE as follows(cf. [Ko1]).

For the projective bundle PE associated with E, we introduce a standard open
covering {Uj ;U ∈ U , 1 ≤ j ≤ r} of PE from an open cover {(U, tsU )} of E by
putting Uj = π−1(U) ∩ {ξj 6= 0} = {(z, [ξ]) ∈ PE ; z ∈ U, ξi 6= 0}. On each open
set Uj , we define a holomorphic section tj : Uj → LE by

tj(z, [ξ]) =
(

(z, [ξ]),
(

ξ1

ξj
, · · · ,

ξr

ξj

))
.

Then {tj} defines a local trivialization ϕj : Uj × C → π−1
LE

(Uj) by ϕj((z, [ξ]), λ) =
λtj(z, [ξ]). Hence the bi-holomorphism τ can be written as

τ(z, ξ) = ((z, [ξ]), ξ) = ϕj

(
(z, [ξ]), ξj

) ∼= ((z, [ξ]), ξj
)
.

On the other hand, any Hermitian metric hLE
on LE is defined by the family of

positive functions {hLE ,j} on each Uj satisfying

hLE ,i =
∣∣∣∣ξj

ξi

∣∣∣∣2 hLE ,j(4.1)

on Ui ∩ Uj 6= φ. Hence, by using the map τ and identification

L2(z, ξ) = hLE
(τ(z, ξ)) = |ξj |2hLE ,j(z, [ξ]),(4.2)

any Finsler metric ‖ · ‖ on E is identified with a Hermitian metric hLE
on the

tautological line bundle LE .
Since E is generated by the action µλ and LE∂∂̄ log F = 0, the real (1, 1)-form

ωPE ,F =
√
−1∂∂̄ log F(4.3)

is invariant by the action µλ for ∀λ ∈ C, and so ωPE ,F may be considered as a real
(1, 1)-form on PE . We suppose that (E, ‖ · ‖) is convex. Since

√
−1∂∂̄Fz =

√
−1Fz(∂∂̄ log Fz + ∂ log Fz ∧ ∂̄ log Fz),(4.4)

the function log Fz is strictly subharmonic on each fibre P (Ez). Thus we have
obtained a Kähler morphism πPE

: PE → M with a pseudo-Kähler metric ωPE ,F

from an arbitrary (E, ‖ · ‖).

Proposition 4.1. Let (E, ‖ · ‖) be a convex Finsler vector bundle. Then the pro-
jective bundle πPE

: PE → M is a Kähler morphism with the pseudo-Kähler metric
ωPE ,F .
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Conversely, from an arbitrary pseudo-Kähler metric ωPE
of the projective bundle

PE , it induces a convex Finsler metric ‖ · ‖ on E, that is, we have

Theorem 4.1. A holomorphic vector bundle admits a convex Finsler metric if
and only if the projective bundle πPE

: PE → M associated with E is a Kähler
morphism.

Proof. We express locally ωPE
=
√
−1∂∂̄Gj on Uj for a C∞-function Gj on

Uj . Since Gj −Gi is pluri-harmonic, there exists a 1-cocycle Kij ∈ Z1(UPE
,OPE

)
satisfying Gj −Gi = Kij +Kij on Ui∩Uj 6= φ. Restricting to each fibre P (Ez), we
have ωz =

√
−1∂∂̄Gj,z and Gj,z −Gi,z = Kij,z +Kij,z. Then {Kij,z} is a 1-cocycle

on P (Ez) ∼= Pr−1, and since H1(Pr−1,O) = 0, we may put

Kij,z = (Kj,z − log ξj)− (Ki,z − log ξi)

for a 0-cochain {Kj,z} on P (Ez). Hence we have

Gj,z − (Kj,z + Kj,z) + log |ξj |2 = Gi,z − (Ki,z + Ki,z) + log |ξi|2

If we put Fj,z([ξ]) = exp{Gj,z − (Kj,z + Kj,z)} on Uj,z, we have |ξj |2Fj,z([ξ]) =
|ξi|2Fi,z([ξ]). Since each |ξj |2Fj,z([ξ]) := Fz(ξ) depends on z ∈ M smoothly, the
function Fz(ξ) defines a complex Finsler metric F (z, ξ) on E. Consequently we
have

F (z, ξ) = |ξj |2 exp{Gj − (Kj + Kj)}(4.5)

for a family of local functions {Kj} on Uj which are holomorphic in [ξ] and smooth
in z. Moreover, because of

√
−1∂∂̄ log Fz =

√
−1∂∂̄ log Fj,z =

√
−1∂∂̄Gj,z > 0 and

(4.4), F defines a convex Finsler metric on E.
Q.E.D.

The convex Finsler metric ‖ · ‖ determined from ωPE
should be satisfy the rela-

tion ωz =
√
−1∂∂̄ log Fz(ξ) on each fibre PEz

. Hence we have

Proposition 4.2. A pseudo-Kähler metric ωPE
on PE determines a unique convex

Finsler metric ‖ · ‖ on E up to a locally conformal equivalence.

We say that the pseudo-Kähler metric ΠPE
is flat if there exists an open cov-

ering {(U, sU )}U∈U of E such that the pseudo-Kähler potential {Gj} of ΠPE
is

independent on the base point z ∈ M . We also say the Finsler metric induced from
ΠPE

is projectively flat if ΠPE
is flat. The projective flatness of a Finsler metric

‖ · ‖ is characterized in terms of curvature of the Finsler connection ∇ of (E, ‖ · ‖)
(cf. [Ai5]), and it is easily shown that the projective flatness of ‖ · ‖ is equivalent
to the locally-conformal flatness of ‖ · ‖ in the sense of [Ai3].
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