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CHAPTER 8

WHY PRECISELY SEVENTEEN TYPES?

8.0   Classification of wallpaper patterns

8.0.1 The goal. Back in section 2.8 it was rather easy to explain 
why there exist precisely seven  types of border  patterns. But we 
have not so far attempted to similarly determine  the number of 
possible wallpaper patterns: we simply assumed  that there exist 
precisely seventeen  types of wallpaper  patterns in order to 
investigate their two-colorings in chapter 6. And there was a good 
reason for this: unlike border patterns, wallpaper patterns may only 
be classif ied  with considerable effort; in fact most known proofs 
would probably be too advanced  mathematically for many readers 
of this book. Luckily, we are at long last in a position to fulfill our 
promise at the end of 4.0.6 and justify  our assumptions on 
wallpaper patterns, classifying them in a purely geometrical  
manner: no tools beyond those already developed in earlier chapters 
will be needed.

Of course ‘half’ of our goal has already been achieved: chapter 4 
provides some rather convincing evidence on the existence  and 
structure  of the seventeen types, and the latter has also been 
indirectly examined in chapters 6 and, to some extent, 7. What we 
need to reach now is a negative  result: there cannot be any more 
types of wallpaper patterns other than the ones studied in chapter 4.

8.0.2 The tactics. The promised classification will be greatly 
facilitated by the Crystal lographic  Restr ict ion  of section 4.0, 
established in 4.0.6: the smallest rotation angle of a wallpaper 
pattern may only be 3600 (none), 1800, 1200, 900, or 600. This 
fundamental fact allows us to split  the entire classification 
process into five  cases. Moreover, we will view each 900 pattern as 



‘built’  on two 1800 patterns, each of which will in turn be viewed 
as a ‘product’  of two 3600 patterns; and something quite similar 
will happen among 3600, 1200, and 600 patterns. This approach 
allows us to reduce potentially ‘complicated’ types to simpler  ones.

As stated above, we will be looking for ‘negative’ results, trying 
to rule out  various geometrical situations and, to be more specific, 
interactions among isometries. Therefore various facts on 
composit ions  of  isometries  explored in chapter 7 are going to be 
crucial. Moreover, looking at an isometry’s image  under another 
isometry will often be useful: that operation is closely related to 
the Conjugacy Principle  of 6.4.4 (and 4.0.4 & 4.0.5), and needs to 
be further investigated before the classification begins.  

8.0.3 The Conjugacy Principle revisited. First formulated in 
6.4.4, the Conjugacy Principle essentially states that, given two 
isometries I and I1, I1’s image under I, denoted by I[I1 ], is still an 

isometry, equal in fact to I∗∗∗∗ I1∗∗∗∗ I −1 (and not  I∗∗∗∗ I1). In 6.4.4, figure 6.36, 

I was the glide reflection G , I1 was the reflection M 1, and I[I1] was 

the glide reflection M 2. In 4.0.4, figure 4.4, I was the translation T , 

I1 was the clockwise rotation R  = (K, φ), and I[I1] was the clockwise 

rotation (T(K), φ). And in 4.0.5, figure 4.6, I was the clockwise 
rotation R1 = (K1, φ1), I1 was the clockwise rotation R2 = (K2, φ2), and 

I [ I1] was the clockwise rotation (R1(K2), φ) .

One should be careful about what exactly I[I1] stands for! The 

following example, where I is the glide reflection G  and I1 is the 

counterclockwise  rotation R  = (K, φ) is rather illuminating:



          
Fig. 8.1     

As made clear by figure 8.1, I[I1] = I∗∗∗∗ I1 ∗∗∗∗ I −1 is the clockwise  

rotation (G (K), −φ): G  glide-reflected not only R ’s center, but also 
the arrow  indicating its orientation! This empir ical  ‘arrow rule’ 
works rather well: for example, it indicates -- by placing the arrows 
and the angles in a circular context, if needed -- that rotating  a 
rotation I1 by another rotation I should preserve  its orientation, 

regardless of whether I is clockwise or counterclockwise; you 
should be able to verify this claim by considering all possible 
combinations of clockwise and counterclockwise in figure 4.6. 

So far we have not said anything about proving  the various 
instances of the Conjugacy Principle. Well, congruent  triangles  
simply give everything away in figure 4.6, while the presence of 
three  paral lelograms  settles everything in figure 4.4. And in 
figure 8.1 above, where we are facing a seemingly more difficult 
situation, a seemingly cleverer but merely generalizing  approach 
works: the triangle {P, G(K), G ∗∗∗∗ R ∗∗∗∗ G−−−−1(P)} is the image  of the 
isosceles  triangle {G−−−−1(P), K, R ∗∗∗∗ G−−−−1(P)} under G , therefore 
congruent  to it; it follows that G ∗∗∗∗ R ∗∗∗∗ G −−−−1(P) = I∗∗∗∗ I1∗∗∗∗ I−1(P) is indeed 

the image of P under the clockwise  rotation (G (K), −φ) = I[I1], hence 

we may conclude that I[I1] = I∗∗∗∗ I1∗∗∗∗ I−1 holds. 

The method employed in figure 8.1 could also be employed back 
in figures 4.4 & 4.6: it requires no particular skill or ingenuity, just 



experience in arguing somewhat abstractly . But in figure 8.2 
below -- an ‘ inverse’  of figure 8.1, for now we rotate a glide 
reflection instead of glide-reflecting a rotation -- there seems  to 
be a complication: while K, P, and R ∗∗∗∗ G ∗∗∗∗ R−−−−1(P) are clearly the images 
under R  of K, R−−−−1(P), and G ∗∗∗∗ R−−−−1(P), respectively, it is not  obvious 
that P’s image under the rotated reflection line R[M]  is the same as 
M ∗∗∗∗ R−−−−1(P)’s image under R ; notice that we do need this fact in order 
to show that the segment {R[M] (P), R ∗∗∗∗ G ∗∗∗∗ R−−−−1(P)} is both  equal in 
length to the segment {M ∗∗∗∗ R−−−−1(P), G ∗∗∗∗ R−−−−1(P)} and parallel to R[M] , 
therefore equal to the vector R[T] , as figure 8.2 suggests. (Recall at 
this point that isometries, and rotations in particular, map parallel 
lines to parallel lines (1.0.9).) 

Fig. 8.2

So, how do we establish R(M ∗∗∗∗ R−−−−1(P)) = R[M] (P)? While a 
‘standard’ geometrical approach is possible, the following idea, 
extending the methods of this section and suggested by Phil  Tracy , 
is much more efficient: simply rotate  the axis M  along with the 
quadrangle {K, R−−−−1(P), M∗∗∗∗ R−−−−1(P), G∗∗∗∗ M∗∗∗∗ R−−−−1(P)} to R[M] and the 



congruent  quadrangle {K, P, R(M ∗∗∗∗ R−−−−1(P)), R∗∗∗∗ G∗∗∗∗ R−−−−1(P)}; the desired 
equality R(M ∗∗∗∗ R−−−−1(P)) = R[M] (P) follows now from the observation 
that isometries preserve perpendicular bisectors -- in particular R  
rotates the perpendicular bisector M  of {R−−−−1(P), M ∗∗∗∗ R−−−−1(P)} to the 
perpendicular bisector R[M ] of {P, R(M ∗∗∗∗ R−−−−1(P))}, so that R(M ∗∗∗∗ R−−−−1(P)) 
is indeed the mirror image of P about R [M ].

We have just derived the most difficult case of the Conjugacy 
Principle, showing that the rotation of a glide reflection by an angle 
φ is another glide reflection both  the axis and the vector of which 
have been rotated by φ: this will be useful in what follows, and so 
will be its ‘inverse’ on glide-reflected rotations (figure 8.1).

Here is a challenge for you concerning the image of a glide 
reflection under another  glide reflection not  paral lel  to it (a case 
that, unlike the previous ones, we do not need in the rest of this 
chapter): how would you ‘justify’ figure 8.3?     

Fig. 8.3



 Here is another useful instance of the Conjugacy Principle:

            

Fig. 8.4

A seasoned conjugacist by now, you should have no trouble 
understanding what happened in figure 8.4: you better do, it is 
destined to play a crucial role in what follows! (The few remaining 
cases and possibilities of the Conjugacy Principle are rather easier, 
and left to you to investigate; from here on we will assume it 
proven  in full rigor and generality, but we will be explicitly stating 
where and how we use it throughout our classification of wallpaper 
patterns (sections 8.1-8.4).)   

8.1  3600  patterns

8.1.1 The basic question. The first question we will be asking in 
each of the coming sections is: does the pattern in question have 
(glide) reflection? In the case of a 3600 pattern, a negative answer 
to this question implies a pattern that has only  translation(s): 
that’s our familiar p1  pattern, and there is not much more to say 
about it than what we already discussed in sections 4.1 and 6.1.



8.1.2 How many (glide) reflections? An affirmative answer to 
the ‘basic question’ of 8.1.1 naturally raises the question: “how 
many kinds of (glide) reflection may coexist in a 3600 pattern?” 
What we can say at once is that there cannot  possibly be (glide) 
reflection in two  distinct directions; indeed that is ruled out by the 
basic result of section 7.10 (which generalizes sections 7.2 and 7.9): 
any two (glide) reflections intersecting at an angle φ/2 produce a 
rotation  by an angle φ (7.10.2). 

At the same time, the Conjugacy Principle yields infinitely many 
(glide) reflections derived out of the one that we started with. 
Indeed every wallpaper pattern has translation in at  least  two  
directions, in particular in a direction dist inct  from that of the 
given (glide) reflection; that translation T , as well as its inverse  
T−−−−1, simply translate the given (glide) reflection G  -- as suggested 
in figure 8.4 -- again and again in both directions, creating an 
in f in i tude  of paral le l  (glide) reflections of equa l  gliding 
vectors : T[G] , T2[G]  = T[T[G]] , ... , Tn[G]  = T[Tn−−−−1[G]] , ... and T−−−−1[G] , 
T−−−−2[G]  = T−−−−1[T−−−−1[G]] , ... , T−−−−n[G]  = T−−−−1[T−−−−n+1[G]] , ... (figure 8.5):     

Fig. 8.5

8.1.3 Another way to go. Let’s now employ composition of 
isometries (section 7.4) instead of the Conjugacy Principle, forming 
T∗∗∗∗ G, T2∗∗∗∗ G = T∗∗∗∗ (T∗∗∗∗ G), ... , Tn∗∗∗∗ G = T∗∗∗∗ (Tn−−−−1∗∗∗∗ G), ... and T−−−−1∗∗∗∗ G, T−−−−2∗∗∗∗ G = 
T−−−−1∗∗∗∗ (T−−−−1∗∗∗∗ G), T−−−−3∗∗∗∗ G = T−−−−1∗∗∗∗ (T−−−−2∗∗∗∗ G), ... , T−−−−n ∗∗∗∗ G = T−−−−1∗∗∗∗ (T−−−−n+1 ∗∗∗∗ G), ... :



Fig. 8.6

Figure 8.6 certainly looks  more complicated than figure 8.5, but 
it isn’t; indeed it essent ia l ly  consists, just like figure 8.5, of a 
single  glide reflection, G 0 = T−−−−1∗∗∗∗ G , with all others being 

translated  odd  powers  of it: G  = (T1/2)[G 0
 3], T ∗∗∗∗ G  = T1[G0

 5], T2∗∗∗∗ G  

= (3T1/2)[G 0
 7], ... and T−−−−2∗∗∗∗ G = (T1

 −−−−1 /2)[G 0
 −−−−1] = (−T1/2)[G 0

 −−−−1], T−−−−3∗∗∗∗ G = 

T 1
 −−−−1[G0

 −−−−3] = (−T1)[(G0
 −−−−1) 3], ... , where T1 and T1

 −−−−1 =  −−−−T1 are T ’s and 

T−−−−1’s perpendicular-to-G  components, respectively (figure 8.6). (In 

general, Tm ∗∗∗∗ G = ((
m+1

2
)T1)[G 0

 2m+3], for all  integers m; of course 

this equation is valid only  for the particular  G  and T  in figure 8.6!) 

What we used above is the fact that every pattern having glide 
reflection based on axis M  and minimal  gliding vector T  is bound to 
also  have glide reflections (M , kT), where k is an odd  integer 
(positive or negative); no  even multiples of T  are there because, as 
we saw as far back as 5.4.1 and 2.4.2 (p1a1  border patterns), the 
square  (and therefore every even  power ) of a glide reflection is a 
translation  by a vector twice as long as the glide reflection 
vector. Conversely, every ‘non-minimal’ glide reflection combined 
with T  and its powers brings us back to the minimal one, (M , T): in 
the context of figure 8.6, G 0

 2m+3 = Tm+1 ∗∗∗∗ G 0 for all  integers m.

One last remark before we go on: the compositions G ∗∗∗∗ Tm  would 



not bring any additional glide reflections into figure 8.6. You may 
verify that using again the techniques of section 7.4; in algebraic 
terms, notice some curious identities such as G ∗∗∗∗ T = (T−−−−1∗∗∗∗ G ))))3!    

8.1.4 Can they coexist? In view of our remarks in 8.1.2 and 
8.1.3, figures 8.5 and 8.6 may be merged into one as follows:  

Fig. 8.7 

In other words, we simply represent each one of infinitely many, 
parallel to each other glide reflections by its axis and minimal  
downward gliding vector T0, remembering that all odd  multiples  

of T0 (positive/downward or negative/upward) produce valid glide 

reflections based on the same axis. And what we obtained after all 
these deliberations is the rather familiar symmetry plan of a pg  
pattern! (Note at this point that T ’s components, T2 = G0

 2 = 2×T0 and 

T1 = G0∗∗∗∗ G0′′′′  = G0″″″″ ∗∗∗∗ G 0, are valid translations of this pg  pattern, too.)

It seems that there is no problem at all here, but ... there is a 
catch! Indeed each glide reflection in figure 8.7 is a translate (copy ) 
of G0 = T−−−−1∗∗∗∗ G  obtained in 8.1.3, but ... that’s not  the glide reflection 

G  that we started with in 8.1.2! To wit: had we assumed G  to be a 
glide reflection of minimal  gliding vector in figure 8.5, we would 
be in trouble; for ‘playing by the rules’ led to a glide reflection G 0 of 

gliding vector strictly smaller than that of G  -- to be precise, one  
third  the length of G ’s gliding vector! And we have every right, in 
fact obligation, to assume  the existence of a minimal gliding 



vector: if that is not the case, then, squaring  glide reflections of 
arbitrarily small gliding vectors would imply the existence of a 
pattern with arbitrarily small translations, violating Loeb’s 
Postulate  of  Closest  Approach  (4.0.4).

Looking back at 8.1.3 and figure 8.6, it becomes clear that what 
‘created’ G 0 and its ‘smaller than minimal’ gliding vector was T2

 −−−−1, 

the component of T−−−−1 that is parallel to G . At this point, you may 
ask: aren’t we bound to always run into trouble, with T2

 −−−−1 always 

creating a glide reflection having a gliding vector shorter  than T0?        

Perhaps the best way to answer this question is to have a closer 
look at figure 8.7 and its ‘apparently legal’ pg  pattern: what happens 
when we compose its minimal glide reflection G 0 with T? In simpler 

terms, what happens when T2
 −−−−1 is added to G0’s minimal vector T0? 

Since T2
 −−−−1 = −2×T0 (figure 8.7), the result is T0 + T2

 −−−−1 = T0 + (−2×T0) 

= -T0, which is G 0
 −−−−1 ’s gliding vector: we ‘jumped’ from T0 to -T0 (as 

opposed to a still downward vector shorter than T0) only because T2 

wasn’t any shorter -- because T 2  itself is minimal  as the vert ical  

component  of any  valid translation of the pg  pattern in figure 8.7!  

[More generally, T0 + m×T2 = (2m+1)×T0 for all  integers m: the 

resulting gliding vector is, according to our discussion in 8.1.3, still 
‘legal’, corresponding to a valid  glide reflection. Even more 
generally, notice that T0 + t  is an odd  (‘legal’) multiple of T0 if and 

only if the ‘vertical’ translation t  is an even  multiple of T0 (hence 

an arbitrary multiple of T2). Conversely, the composition of two 

vertical glide reflections of the form (M , k1×T0) and (M , k2×T0), 

where k1 and k2 are odd  integers, is a translation , with k1+k2 

even , of vertical component (k1+k2)×T0: we can therefore say that 

all valid translations have a parallel-to-axis component of the form 
k×T0, where k is an even  integer.]  

Putting everything together, and with our remarks in 8.1.7 
further below also in mind, we get a condit ion  of  existence for 
pg , the pattern first studied in sections 4.3 and 6.2:



             
Fig. 8.8

In English: in a pg  pattern, its translation’s minimal parallel-to-
the-gliding-axis component (T2) must be the double of its glide 

reflection’s minimal gliding vector (T0). 

8.1.5 Two gliding vectors? Unpleasant as that may sound, we 
are not completely through with our derivation of the pg  pattern! 
Indeed, while we have fully justified and understood figure 8.7’s 
infinitely many, parallel and ‘equal’ glide reflections, running at 
equal distances from each other, we never ruled out the existence of 
another  glide reflection half  way  (Conjugacy Principle) between 
the axes of figure 8.7! 

 Luckily, that is not difficult to do: if t 1 , t 2  are minimal gliding 

vectors for the glide reflection axes M 1, M 2, respectively (and with 

M 1, M 2 parallel to each other by necessity), then their squares  2×t 1 

and 2×t 2 are translations  parallel to (M 1, t 1) and (M 2, t 2); so, by 

7.4.1, (M 1, t 1−2×t 2) and (M 2, t 2−2×t 1) are valid  glide reflections. 

The minimality assumptions on (M 1, t 1) and (M 2, t 2) lead then -- 

after switching from the two col l inear  vectors to their lengths -- 
to the inequalities |t1−2t2| ≥  t1 and |t2−2t1| ≥  t2, which seem  to hold 

concurrently if  and  only if  t1 = t2 (i.e., t 1 = ± t 2, making the two 

glide reflections ‘equal’ to each other). Our argument is illustrated 
in figure 8.9, where t1 ≠  t2 leads to a violation of the minimality 



assumption about t 1 being the minimal vector for M 1:

Fig. 8.9

Well, didn’t we go a bit too  fast  with the algebra in the 
preceding paragraph? Let’s see: squaring both inequalities we end up 
with −4t1t2  + 4t2

 2 ≥ 0 and −4t1t2 + 4t1
 2 ≥  0, that is t2

 2 ≥  t1t2 and      

t 1
 2 ≥  t1t2 or, equivalently, t2(t2−t1) ≥  0 and t1(t1−t2) ≥  0; now if  t2 > 0 

and t1 > 0, we may safely conclude t2−t1 ≥ 0 and t1−t2 ≥ 0, therefore      

t1 = t2 as above. Observe however that it is possible  to have t2 = 0 

and t1 > 0 or  t1 = 0 and t2 > 0! (Or  t1 = t2 = 0, of course.)

What is the geometric relevance of our algebraic observations? 
What corresponds to a glide reflection of minimal gliding vector of 
length zero ? Luckily we are well prepared for this question, and the 
answer is: reflection ! To be precise, a glide reflection employing a 
reflection axis, what we already know as a ‘hidden glide reflection’.  

8.1.6 A closer look at reflection. We have certainly seen as far 
back as in 1.4.8 that a reflection M  may be viewed as a glide 
reflection of gliding vector zero. A natural question to ask would be 
the following: what is M ’s next  shortest  gliding vector? This 
question makes a lot of sense in view of what we have already 
discussed in this section: if T  is the minimal gliding vector of a 



glide reflection G , then the next shortest vector is 3×T  (8.1.4).

Alternatively, we may look at T0, the shortest non-zero  gliding 

vector of a (glide) reflection. In the case of a genuine glide 
reflection and a pg  pattern, we have seen in figure 8.8 and 8.1.4 that 
T 0  = T 2 /2, where T 2  is always the translation’s minimal  vertical 

component. When it comes to reflection, we observed in 6.3.4 (figure 
6.23), while studying two-colored pm  patterns, how the existence of 
a vertical reflection M  does indeed guarantee  2×T2 as a valid 

vertical translation. That means that 2×T2 must  be a gliding vector 

for the hidden glide reflection associated with M , albeit not  
necessarily  the shortest non-zero one (T0). Indeed a review of our 

examples in chapters 4 and 6 would certainly show that T0 = 2×T2 

holds for cm  patterns only; in pm  patterns it gives way to T0 = T2! 

Leaving the cm  aside for now, we could derive the symmetry 
plan for the pm  (almost a ‘special  case’  of pg , studied in sections 
4.2 and 6.3), arguing as in 8.1.2 through 8.1.4; we prefer to simply 
record the pm ’s ‘condition of existence’: 

                  
Fig. 8.10

In English: in a p m  pattern, its translation’s minimal parallel-
to-the-gliding-axis component (T2) must be equal to the shortest 

non-zero gliding vector associated with its reflection (T0) .



The next natural question: is T0 = k×T2 possible for 1 < k < 2 in 

the presence of reflection? (Notice that k > 2 is impossible by 6.3.4, 
while k < 1 would contradict the minimality of T2 at once: a gliding 

vector for a vertical reflection must  in addition be a vertical 
translation vector -- and  vice versa, of course, as noted above.) The 
answer is negative: with both  2×T2 (6.3.4) and k×T2 being vertical 

translations, their dif ference  (2−k)×T2 must also  be a vertical 

translation, violating the minimality of k×T2 = T 0 via 0 < 2−−−−k < k . 

We illustrate our argument for k = 5/4 in figure 8.11 below:

              
Fig. 8.11

8.1.7 Back to glide reflection. We have already seen in 8.1.4 and 
figure 8.8 that the pg  pattern satisfies the relation T0 = (1/2)×T2; 

at the same time, looking at the cm  examples of chapters 4 and 6 we 
see that the vertical glide reflection’s minimal gliding vector is 
equal  to the translation’s minimal vertical component: T0 = T2! Now 

we rule out all other possibilities (for a gl ide  reflection G ) in      
T0 = k×T2, namely k < 1/2, 1/2 < k < 1, 1 < k < 2, and k ≥ 2.

Ruling out k < 1/2 is the easiest of the four: indeed 2×T0 = 2k×T2 

is a vertical translation, therefore minimality of T 2  yields 2k ≥  1. 

We illustrate the case 1/2 < k < 1 for k = 3/4 in figure 8.12: 



assuming T0 = k×T2 with 1/2 < k < 1, we notice that T2′  = 2×T0 − T2 

= (2k−1)×T2 is also  the vertical component of a valid  translation, 

namely T ′′′′  = (−T)∗∗∗∗ (2×T0) = (−T1)∗∗∗∗ (−T2)∗∗∗∗ (2k×T2) = (−T1)∗∗∗∗ ((2k−1)×T2); 

but this contradicts the minimality of T 2  via 0 < 2k−−−−1 < 1.

                  
Fig. 8.12 

As in the case of reflection (8.1.6, figure 8.11), the case 1 < k < 2 
is ruled out by appeal to the minimality of T0. Thanks to 7.4.1 the 

argument remains intact, except that 6.3.4 must be extended to glide 
reflection; in figure 8.13 we employ the Conjugacy Principle in order 
to show that 2×T2 = T ∗∗∗∗ (G[T] ) is still  a valid vertical translation: 

Fig. 8.13 

Here is a ‘direct’  approach to the matter (and in the spirit of 



figure 6.23), corresponding to 8.1.6 and figure 8.11 (and k = 5/4), 
that you should ponder on your own:

Fig. 8.14

Finally, we need to rule out the case k ≥ 2. Since 2×T2 is a valid 

translation (figure 8.13), T0′  = T0−2×T2 = (k−2)×T2 is also  a gliding 

vector, corresponding (7.4.1) to the glide reflection G ∗∗∗∗ (−2×T2); this 

contradicts the minimality of T0 via 0 ≤≤≤≤  k−−−−2 < k. (To be more 

precise, k = 2 yields a contradiction by turning the glide reflection 
into a ref lect ion . )

So, while glide reflection is more ‘complicated’ than reflection, 
we have obtained a result similar  to the one in 8.1.6: the glide 
reflection’s minimal gliding vector T 0  is either half  of or equal  to 

the translation’s minimal vertical component T2. (We stress again in 

passing a major difference between reflection and glide reflection: 
the former may employ all  multiples  of T0 as gliding vectors, the 

latter only the odd  mult ip les  of T 0 . )

8.1.8 The last case. Summarizing, we point to a few useful facts 
already established: 



-- two parallel glide reflections of distinct minimal gliding 
vectors may coexist if and only if one of them is a reflection (8.1.5)

-- the smallest non-zero gliding vector (T0) of a reflection M  

may only be either equal or double the translation’s minimal        
parallel-to-M  component (T2) (8.1.6)

-- the smallest gliding vector (T0) of a glide reflection G  may 

only be either equal or half the translation’s minimal parallel-to-G  
component (T2) (8.1.7)

In addition, we derived the pg  (glide reflection only, T0 = T2/2) 

and pm  (reflection only, T0 = T2) patterns (figures 8.8 & 8.10), 

corresponding to the equalities t1 = t2 > 0 and t1 = t2 = 0 of 8.1.5, 

respectively. Two natural questions would then be whether or not 
there exists a ref lect ion-only  pattern satisfying T0 = 2×T 2 and 

whether or not there exists a gl ide-ref lect ion-only  pattern 
satisfying T0 = T2.

The first possibility is ruled out as follows:

Fig. 8.15

Treating M ∗∗∗∗ T0 as a glide reflection and applying 7.4.1, we see 

that its composition with T−−−−1 = −−−−T  produces a glide  reflection 
based on an axis at a distance of |T1|/2 to the right of M  and of 

gliding vector T0−T2 = T2 (figure 8.15): this violates either T0 ’s 



minimality (in case (M ∗∗∗∗ T0)∗ T-1 is indeed a reflection) or our 

assumption that all  axes are reflection  axes.

The second possibility is ruled out as follows:

Fig. 8.16

Employing ideas from section 7.4 as in figure 8.15, we see that 
G ∗∗∗∗ T−−−−1 is a reflection  based on an axis at a distance of |T1|/2 to the 

right of G  (figure 8.16), again contradicting our starting assumption.

So, the only possibilities that remain are the ones corresponding 
to the case t1 > 0, t2 = 0 (or vice versa) of 8.1.5: reflection and  glide 

reflection in one and the same pattern, at long last! Let T0
 G be the 

minimal gliding vector of the glide reflection G , and let T0
 M be the 

minimal non-zero  gliding vector associated with the reflection M . 
With T2 being always the translation’s minimal parallel-to-M -and-G  

component, there exist, in theory, four possibilities:

(I) T 0
 G = T 2 /2, T 0

 M = T2 

(II) T 0
 G = T 2 /2, T 0

 M = 2×T2

(III) T 0
 G = T2, T0

 M = T2

(IV) T 0
 G = T2, T0

 M = 2×T2



It is easy to rule out (I) through (III). In (I) the composition of 
the reflection and the glide reflection yields a valid translation of 
‘vertical’ component T0

 G = T 2/2, contradicting T 2 ’s minimality. In 

(II) the square of the glide reflection produces a valid translation T2 

that contradicts the minimality of T 0
 M = 2×T2. And in (III) the axis 

of G  ends up being a reflection  axis for G ∗ T
2
 −−−−1  -- recall that any 

gliding vector associated with a reflection axis is in fact a valid 
t ranslat ion  vector.

So the only  remaining possibility is (IV), which is more or less 
already known to correspond to the only 3600 pattern not ‘formally’ 
derived so far (good old cm  of sections 4.4 and 6.4) and whose 
‘condition of existence’ is given below:

               

 

Fig. 8.17

Indeed we may verify figure 8.17 by reviewing old cm  examples 
from chapters 4 and 6. No contradictions are to be found, glide 
reflection axes will never be good for reflection, whatever is 
supposed to be minimal will indeed remain minimal, etc. Of course 
T ∗∗∗∗ M  = G , while T1 and T2 are not  valid translations.



8.1.9 Brief overview. We have finally demonstrated why, in the 
presence of (glide) reflection and in the absence of rotation, only 
three types of wallpaper patterns are possible (pg , pm , cm ); those 
are ‘defined’  in figures 8.8, 8.10, and 8.17, respectively, and are 
character ized  by the relations T 0

 G = T2/2 (pg ), T0
 M = T2 (pm ), and 

T 0
 G = T2 & T0

 M = 2×T2 (cm ). (The fact that these relations are indeed 

characterizations of the patterns in question follows from a closer 
look at our work in this section.) Together with the p1  type (8.1.1), 
there exist therefore precisely four  3600 wallpaper patterns.

In view of the characterizations and ‘definitions’ cited above for 
the three non-trivial 3600 patterns, we need to question  somewhat 
our discussion of the cm  type in 6.4.5, where we viewed it as a 
‘merge’  of pg  and pm : cm  has definitely its own structure, and it’s 
more than a pg  and a pm  ‘under the same roof’!  Please have a look at 
the two-colored cm examples of figure 6.37 and notice how the 
removal of every other row  yields a pm  pattern, while the removal 
of every other column  yields a pg  pattern; in both cases the 
removal of half of the pattern doubles  the vectors T  and T2 but 

leaves T0
 G and T0

 M unchanged, altering T0
 G = T2 & T0

 M = 2×T2 to    

T 0
 M = T2 (row removal, pm ) or T0

 G = T2/2 (column removal, pg ).

One important  fact to keep in mind: T2 (and hence T1 = T−T2 as 

well) is a valid translation in both the pg  and pm  patterns, but not  
in the cm  pattern; differently said, a translation’s projection onto 
the (glide) reflection direction (and its perpendicular) may not  be a 
valid translation if  and  only  if  the 3600 pattern is a c m . 

The “if” part above is established through figure 8.17 and 
related comments. The “only if” follows from the observation that, 
in any  pattern, the vertical component of any  translation T ′′′′  must be 
an integral  multiple of T2; but in both the pm  and the pg  the T2 is 

a valid translation, and so would be any integral multiple of it! (If 
the vertical component of T ′′′′  equals k×T2 with k non-integer then the 

vertical component of the valid translation T ′′′′  − m×T , where m is the 
closest integer to k, would violate the minimality of T2.)  



8.2  1800  patterns

8.2.1 The p2  lattice. In the absence of (glide) reflection, a 1800 
pattern is fully determined by an infinitude of half turn centers 
propagated by two non-parallel, ‘shortest possible’  translations 
T1, T2. This is demonstrated in figure 8.18, echoing figure 7.26 and 

related discussion in 7.6.4: please refer there for details.    

Fig. 8.18

The rows and columns of half turn centers of the p2  pattern in 
figure 8.18 would be orthogonal  to each other in case there was 
some (glide) reflection (as in 8.2.3-8.2.6 below): indeed in such a 
case T1 and T2 would be perpendicular  and parallel , respectively, 

to the (glide) reflection axis (as in figures 8.8, 8.10, and 8.17). Of 
course we do not  need any (glide) reflection in order to make T1 and 

T2 perpendicular to each other and ‘rule’ the 1800 centers: see for 

example figures 4.28, 4.30, 6.39, and 6.40 in sections 4.5 and 6.5!

8.2.2 Ruling the centers. In the case you are not convinced by our 
argument above concerning the ‘alignment’  of half turn centers by 
(glide) reflection, figure 8.19 offers another approach to the matter: 



                
Fig. 8.19

Miraculously, G  not only glide-reflects K into a new center G (K) 
(Conjugacy Principle), but it also ends up mirroring  it into another 
working center right across its axis: how did that happen? Well, as 
figure 8.19 suggests, the inverse of G ’s square is a ‘backward’  
translation T ; composing T  with the half turn R  centered at G (K), 
and with T going second  (7.3.1, 7.6.4), creates a new rotation center 
half  way  between G (K) and T(G (K)), which is K’s mirror image! 

Such observations are going to be crucial in what follows: 
assuming some (glide) reflection from here on, we will see how the 
‘ruled’, orthogonalized lattice(s) of half turn centers are built, 
classifying 1800 patterns at the same time. A solid departing point 
is to assume (glide) reflection in the pattern’s ‘vertical’ direction: 
that forces  (glide) reflection in the ‘horizontal’ direction as well, 
and in ways dictated by the laws that govern isometry composition; 
what is clear, in view of our results in section 8.1, is that there are 
precisely three  possibilities for the vertical ‘factor’ (p m , pg , c m ). 

8.2.3 Starting with a pm  and an on-axis center. We begin by 
assuming a pm  vertical factor and  the existence of one 1800 
center  K on  one of the reflection axes. By the Conjugacy Principle, 
that center is translated all over that axis by multiples of T2; and 

then all the centers on that axis are translated across to every  
other  reflection axis by multiples of T 1 : 



Fig. 8.20

Next come the compositions of the ‘already existing’ half turns 
with T1 and T2, creating ‘new’ centers at distances of |T1|/2, |T2|/2 

from the ‘old’ ones (7.6.4), inevitably lying on the reflection axes 
(which may be viewed as having been created by the same 
compositions):

Fig. 8.21

Finally, the compositions of 1800 rotations and reflections 
create ‘new’ reflection axes perpendicular to the existing ones and 
passing through the half turn centers (7.7.1): 

 



Fig. 8.22

What you see in figure 8.22 is the familiar pmm  = pm  × pm   
pattern of sections 4.6 and 6.8: no new isometry compositions are 
possible, everything is ‘complete’  and ‘settled’ . Assuming 
minimality of T1 and T2, T  is the pattern’s shortest  ‘diagonal’ 

translation; in particular, no translation (or any other isometry) may 
swap any two of the centers located at the corners of any given 
smal lest  rectangle  in figure 8.22: this justifies our reference to 
‘ four  kinds’  of half turn centers in 4.6.1. 

8.2.4 Starting with a pm  and an off-axis center. Let’s now 
assume a vertical pm  factor and a 1800 center K that does not  lie on 
any of the vertical reflection axes. By the Conjugacy Principle, K 
must lie half  way  between two adjacent axes, rotating  them onto 
each other; arguing then as in 8.2.3, we see that K is ‘multiplied’ by 
T1 and T2 into the group of centers shown in figure 8.23: 

Fig. 8.23



Next, each composition of a 1800 rotation and a reflection 
creates a glide reflection perpendicular to the reflection and 
passing through the rotation center (7.7.4), and of gliding vector of 
length 2x(|T1|/4)×sin(1800/2) = |T1|/2 (7.7.3). We end up with the 

‘complete’ pattern of figure 8.24, which is the pmg  = pm  × pg  of 
sections 4.7 and 6.7:   

  

Fig. 8.24

Indeed the pattern’s horizontal factor is a pg , with its minimal 
gliding vector being half of T ’s horizontal component (8.1.4).

8.2.5 Starting with a pg  and an on-axis center. Let’s now 
assume the existence of a pg  in the vertical direction and  the 
existence of a 1800 center K on  a glide reflection axis. Exactly as in 
8.2.3, the standard translations T1 and T2 ‘multiply’ the half turn 

centers (still lying on  the glide reflection axes); and, reversing the 
process of 8.2.4, each composition of a 1800 rotation and a glide 
reflection of gliding vector T2/2 produces a reflection perpendicular 

to the glide reflection and at a distance of (|T2/2|)/2 = |T2 |/4 from 

the rotation center (7.8.2). We end up with a horizontal pm  factor 
and, again , a pmg  pattern:  



Fig. 8.25

Most certainly, the pmg  patterns shown in figures 8.24 & 8.25 
are mathematically indistinguishable. Looking at any ‘smallest 
rectangle  of rotation centers’ (as we did in 8.2.3), we see the four 
corners split into two  pairs (4.11.2) of centers (lying on opposite 
sides) that may be swapped by both  the pattern’s reflection and the 
pattern’s glide reflection.

8.2.6 Starting with a pg  and an off-axis center. Assuming this 
time a vertical pg  factor and a 1800 rotation center K that does not  
lie on any glide reflection axis, we follow previous considerations in 
order to once more arrive at an ‘aligned’ p2  lattice ‘coexisting’ with 
the pg  pattern. As in 8.2.4, the Conjugacy Principle shows that K, 
and therefore all other centers created out of it via T1 and T2, must 

lie half way between two adjacent glide reflection axes. Next, we 
appeal to 7.8.1 and 7.8.2 in order to see that each composition of a 
1800 rotation with a vert ical  glide reflection of gliding vector 
T 2/2 lying at a distance |T 1 |/4 from its center creates a horizontal  

glide reflection of gliding vector of length 2×(|T1 |/4)×sin(1800/2) = 

|T1 |/2 at a distance of (|T2/2|)/2 = |T2 |/4 from the rotation center 

(figure 8.26). The outcome is a horizontal pg  factor and the familiar 
pgg  = pg  × pg  pattern of sections 4.8 and 6.6.     



Fig. 8.26
 
Notice how the half turn centers in figure 8.26 are mirrored 

across glide reflection axes, precisely as shown in 8.2.2. Of course 
we did not directly appeal to glide reflection in order to get the pgg  
lattice; but notice that the pgg ’s glide reflections allow ‘ travel’  
along the diagonals  of that smallest rectangle of half turn centers: 
this confirms our remark about two  kinds of pgg  centers in 4.11.2!   

8.2.7 Starting with a cm  and a ‘reflection’ center. We have just 
verified in 8.2.3-8.2.6 that we may start with a p m  vertical factor 
and end up with either a pm  or pg  horizontal factor, or that we may 
start with a pg  vertical factor and end up with either a pg  or pm  
horizontal factor. It seems that there is no way we can get a cm  
horizontal factor starting with either a p m  or a pg  in the vertical 
direction: for one thing, you may verify that there is no way  we can 
insert a horizontal in-between  (glide) reflection in figures 8.22 
and 8.24-8.26 without creating, by way of isometry composition, 
non-exist ing  (glide) reflection in the vertical direction. 

In fact the coexistence of the cm  with either the pm  or the pg  
may be ruled out by our crucial  remark at the end of 8.1.9: the cm  
requires  a translation the vertical and horizontal components of 
which are not translations, which is impossible  in either pm  or pg !

So, let’s start  with a vertical cm  and see what we get in the 
horizontal direction. (By symmetry between the two directions, we 
may only  anticipate a horizontal cm ; but we still have to verify 
that this is  possible, after all, and also see in how many  ways it is 
possible.) By the Conjugacy Principle, a 1800 center K may only lie 



on  either a reflection or a glide reflection axis. Leaving the latter 
case for 8.2.8, we begin with K on a reflection  axis, paralleling the 
‘center creation’ process of 8.2.3 and figure 8.20:

Fig. 8.27

The 1800 centers featured in figure 8.27 are precisely those 
created out of K by way of translation  and the Conjugacy Principle: 
recall at this point that the c m ’s minimal  vertical and minimal  
horizontal translations are 2×T2 and 2×T1, respectively (8.1.8).

Next we compose  the ‘already existing’ centers with the 
translations 2×T2 and 2×T1 (in the spirit of 7.6.4 and figure 8.21) in 

order to get ‘new’ centers, still on reflection axes only  (figure 
8.28); alternatively, we could get the same centers by employing the 
glide reflections and 8.2.2: 

          



Fig. 8.28

Now the vertical reflections ‘ turn’  into horizontal reflections, 
exactly as in figure 8.22:

Fig. 8.29



Next come the horizontal glide reflections, ‘created’, as in 8.2.6 
and figure 8.26, by compositions of vertical glide reflections with 
1800 rotations the centers of which do not lie on the glide reflection 
axes. To be more specific, the composition of every vertical glide 
reflection of gliding vector T2 with a half turn center at a distance 

of |T1|/2 from it (figure 8.29) produces a horizontal glide reflection 

of gliding vector of length 2×(|T1|/2)×sin(1800/2) = |T1| at a 

distance of |T2|/2 from the rotation center (7.8.1):

Fig. 8.30
             
Finally, every composition of a vertical glide reflection (of 

gliding vector T2) with a horizontal reflection produces a 1800 

center lying at the intersection of two glide reflection axes, and so 
does every composition of a vertical reflection with a horizontal 
glide reflection (of gliding vector T1). We demonstrate this in figure 

8.31 below, relying either on section 7.9 or on figure 6.6.2: the 
shown half turn center and 1800 rotation equals both M1∗∗∗∗ G2 and 

M 2∗∗∗∗ G 1, lying on G 2 and at a distance |T2|/2 from its intersection 

with M 1, as well as on G 1 and at a distance |T1|/2 from its 

intersection with M 2. 



                
Fig. 8.31

Alternatively, we could at long last have used the diagonal  
translation T  and its composi t ions  with ‘existing’ centers at the 
intersections of reflection axes (figure 8.30) to get the ‘new’ 
centers at the intersections of glide reflection axes. One way or 
another, we have finally arrived at the ‘standard’ cmm  = cm  × cm  
pattern of sections 4.9 and 6.9, as no more centers or axes can be 
created: 

Fig. 8.32

Comparing the lattice of half centers in figure 8.32 (cmm ) to 
the ones in figures 8.22 (pmm ), 8.24 & 8.25 (pmg ), and 8.26 (pgg ), 
we can certainly say that this new lattice ‘has been cut in half’; or, 



if you prefer, while the minimal translation T  remained the same, 
we moved from the ‘minimal rectangle’ of centers of the pmm , pmg , 
and pgg  patterns to the cmm ’s ‘minimal  rhombus’  of centers, 
which is twice  as large in area as that rectangle (figure 8.32).  

8.2.8 Starting with a cm  and a ‘glide reflection’ center. What  
happens in case the ‘creating center’ K lies on a vertical glide  
reflection axis? The answer may disappoint, but hopefully not 
astonish, you: we end up with exactly the same  cmm  pattern of  
figure 8.32, completing in fact the classification of 1800 patterns! 
We leave it to you to check the details, providing just one possible  
‘intermediate stage’ in figure 8.33: horizontal reflections have just 
been ‘created’ as compositions of vertical glide reflections and 1800 
rotations lying on them (as in 8.2.5); in the next stage, intersecting 
reflection axes will create all ‘missing’ half turn centers, etc.  

Fig. 8.33

Of course there was no way we were going to get anything but a 
cm  in the horizontal direction (as already pointed out in 8.2.7). Still, 
we had to check that the horizontal cm  factor would be the same  in 
the two possible cases examined (half turn center on reflection axis 
or half turn center on glide reflection axis) in terms of translations, 
gliding vectors, etc; and figure 8.33 certainly makes that clear.



8.3  900  patterns

8.3.1 The lattice and the possibilities. It took us some time to 
‘build’ the lattice of rotation centers for 1800 patterns, be it with 
the help of translations only (p2 , 7.6.4) or with the added assistance 
of (glide) reflection (pgg , pmg , pmm , cmm  -- section 8.2). On the 
other hand, as we have seen in section 7.6, just one  minimal 
translation suffices to build that lattice in the cases of 900, 1200, 
and 600 patterns (starting from a single  rotation center, always). 
This difference has dramatic consequences: unlike 1800 lattices, all 
other lattices are uniquely  determined and are independent  of the 
(glide) reflection possibilities; in fact, as we will see below, it is 
now the lattice of rotation centers that determines  the possible 
(glide) reflection interactions rather than the other way around!

To begin, observe that the lattice of rotation centers determines 
the possible  directions  of (glide) reflection in the case of a 900 
pattern. Indeed the image of any segment AB, where A and B are two 
closest  possible  900 centers, under any  isometry could only run in  
two  directions (figure 8.34); by 3.2.4, those yield at most four  
possible directions of (glide) reflection: images of AB under any two 
(glide) reflections are parallel if and only if their axes are either 
parallel or perpendicular to each other!

                 
Fig. 8.34



Before we proceed into investigating the (glide) reflection 
structure of any given 900 pattern, we must of course ask: is there 
any  (glide) reflection in the given pattern? If not, then the pattern 
only has 900 (and 1800) rotation and translation, and it’s no other 
than the familiar p4  pattern of sections 4.12 and 6.10. Its structure 
has been discussed in 7.6.3 and it is also going to be further 
investigated in 8.3.2 below ... precisely because it is destined to play 
a very important role even  in the presence of (glide) reflection! 

8.3.2 Two fateful translations. Assuming from now on that our 
900 pattern has (glide) reflection, let us notice first that sections 
7.8 and 7.10 imply precisely  four  directions of (glide) reflection 
(indicated in fact in figures 8.34 and 8.35): at  least  four because 
the composition of a glide reflection with a 900 rotation generates 
another glide reflection making an angle of 450 with the original 
(section 7.8); and at  most  four because any two glide reflections 
intersecting each other at an angle smaller than 450 would generate 
a rotation by an angle smaller than 900 (section 7.10). 

Further, the Conjugacy Principle implies that we must have the 
same  type of 3600 subpattern  in the ‘vertical’ and ‘horizontal’ 
directions (mapped to each other by the 900 rotation), and likewise 
for the two ‘diagonal’ directions; in particular, this rules  out  the 
p m g  as a 1800  subpat tern . Still, we are left, in theory , with 
nine  combinations among pmm , pgg , and cmm  ‘factors’.

The way to eliminate most of these nine possibilities with very 
little work relies on the characterization of the c m  pattern at the 
end of 8.1.9 and  on the structure of the p4  lattice investigated in 
7.6.3 (and figure 7.23). Blending everything into figure 8.35 below, 
we examine whether or not the valid translations t  and T  may be 
analysed into valid translations in the diagonal and vertical-
horizontal pair of directions, respectively:                                            



Fig. 8.35

On the right, the minimal vertical translation t  may certainly  
be written as t 1+ t 2, where t 1 and t 2 are not  valid diagonal  

translations. On the left, we see that valid translations such as T  
may be analysed into sums of two valid vertical  and horizontal  
translations (like the minimal  translations T1 and T2), while ‘non-

analysable’ translations such as T ′′′′  are not  valid to begin with 
(otherwise T ′′′′  −−−−  T  would be a valid  translation violating the 
minimality of T1 or T2); in fact some further analysis would easily 

show that every  valid translation may only have valid  vertical and 
horizontal components. (Here is a way to confirm that: observe that 
we may introduce a coordinate system so that all rotation centers 
have integer  coordinates, the twofold centers one even and one odd, 
the fourfold centers either two even coordinates (‘even’  centers) or 
two odd coordinates (‘odd’  centers); a translation would then be 
valid if and only if it ‘connects’ two odd centers or, equivalently , 
two even centers -- that is if and only if it is of the form <2k, 2l> = 
k × T1 − l × T2, where T1 = <2, 0> and T2 = <0, −2>.) 

In view of our crucial remark in 8.1.9, two conclusions follow at 
once: one , in the pattern’s vertical-horizontal directions we may 
only have a pmm  (two perpendicular pm s) or pgg  (two perpendicular 
pg s) subpattern; two , in the pattern’s diagonal directions we may 
only have a cmm  subpattern (two perpendicular cm s). 

Focusing first on the diagonal (cmm ) directions, we notice that 
the Conjugacy Principle allows for two  possibilities: reflections 
passing either through the fourfold  centers (figure 8.36, left) or 



through the twofold  centers (figure 8.36, right).

Fig. 8.36

Before examining the vertical-horizontal possibilities (pmm  and 
pgg ), let’s have another look at the lattice of rotation centers in 
figure 8.36: while every two twofold centers may be mapped to each 
other by either a fourfold rotation (applied twice if necessary) or a 
translation, and every two fourfold centers on the right may be 
mapped to each other by some isometry (including a reflection or 
glide reflection), there exist fourfold centers on the left that may 
not  be mapped to each other by any isometries; this is destined not  
to change (by the addition of vertical-horizontal isometries in 
figure 8.36), so the distinct notation for ‘even’ and ‘odd’ fourfold 
centers employed as early as in figure 4.5 is justified after all!      

In theory, each  of the two emerging 900 patterns of figure 8.36 
should allow for two  possibilities, cmm  × pmm  and cmm  × pgg , 
bringing the maximum number of possible 900 patterns (with (glide) 
reflection) to four . But the actual situation is even simpler: by 
7.7.1, we can only have either none  or four  reflections passing 
through a fourfold  center; and this fact eliminates at once the pgg  
possibility on the left side and the p m m  possibility on the right side 
of figure 8.36! So we are finally limited to cmm  × pmm  on the left 
and cmm  × pgg  on the right:



Fig. 8.37

But these patterns are the familiar p4m  of sections 4.10 and 
6.12 (left) and, after rotation by 450, p4g  of sections 4.11 and 6.11 
(right): the classification of the 900 patterns is now complete. 

8.4  1200 and 60 0 patterns

8.4.1 Two families, one lattice. The reason we are studying 
1200 patterns and 600 patterns in the same section is that, to a 
large extent, these two types share the same lattice of rotation 
centers. Let’s have a look at the two lattices in figure 7.24 (p3 , 
smallest rotation 1200) and figure 7.25 (p6 , smallest rotation 600): 
if we ignore the 1800 centers of the latter and view its 600 centers 
as 1200 centers, then it would indeed be identical to the former!

8.4.2 Six possible directions. Let’s now look at the p3  lattice 
and the possibilities for (glide) reflection, observing that a valid 
(glide) reflection direction in the p6  lattice must  provide a valid 
(glide) reflection direction in the p3  lattice, and, although not 
obvious, vice versa (8.4.4). We argue as in 8.3.1 and figure 8.34, 



showing the underlying hexagons  for clarity (figure 8.38); this time 
there are three  possible directions for the image of AB, associated 
(via 3.2.4 again) with six  possible directions of (glide) reflection:

      
Fig. 8.38

Employing the methods of chapter 3 or otherwise, you should be 
able to see that the six possible directions are determined by pairs 
of either opposite vertices or opposite sides of any fixed hexagon 
(see figure 8.38). Assuming there is (glide) reflection, we need to 
decide, as we did in 8.3.2 for 900 patterns, which  type  among pg , 
pm , and cm  we could get in each of the six directions; and, by the 
Conjugacy Principle (which rotates  (glide) reflection axes by 1200), 
we actually need to check only two  directions (one perpendicular to 
AB and one parallel to AB), and in just one  stroke at that:

                                 
Fig. 8.39



What figure 8.39 offers is an analysis of the pattern’s minimal  
(by 7.6.3) translation T  into two components parallel  to the two 
glide reflection directions, none  of which is a valid translation: by 
8.1.9, we can only have a cm  ‘factor’ in each  of those directions!

8.4.3 Threefold types. In the absence of any (glide) reflection, a 
1200 pattern may only be the familiar p3  pattern of sections 4.15 
and 6.13, also investigated (in fact derived ) in 7.6.3. If there is 
(glide) reflection, then it has to exist through a cm  subpattern in 
precisely three  of the six directions derived in 8.4.2. Specifically, 
and referring to figures 8.39 & 8.17, there exist two possibilities: 
one , a cm  subpattern in the direction of T2 (plus that rotated  by 

1200 both ways), with reflection axes at a distance of |T1| from each 

other and in-between glide reflection of gliding vector T2 (figure 

8.40, right); two , reversing the roles of T1 and T2 in figure 8.17, a 

cm  subpattern in the direction of T1 (plus that rotated by 1200 both 

ways), with reflection axes at a distance of |T2| from each other and 

in-between glide reflection of gliding vector T1 (figure 8.40, left). 

Fig. 8.40
      
A comparison between figure 8.36 (900 pattern generation) and 

figure 8.40 (1200 pattern generation) is now appropriate: in figure 



8.36, the direction of the two cm  subpatterns was uniquely  
determined by the lattice, but there were two  possible locations of 
the axes with respect to the centers; in figure 8.40, there are two  
possible directions  of the three cm  subpatterns, but the location 
of the axes with respect to the centers is uniquely  determined 
within each of the two possible directions.

The cm  subpatterns of figure 8.40 may now generate the two 
familiar 1200 patterns shown in figure 8.41 (without the underlying 
hexagons or the gliding vectors): p3m1  on the left (studied in 
sections 4.17 and 6.15) and p31m  on the right (studied in sections 
4.16 and 6.14); the classification of 1200 patterns is now complete. 

Fig. 8.41

Looking at figure 8.41 (or 8.40 for more clarity), we see that, 
remarkably, every two off-axis centers of the p31m  may be mapped 
to each other by one of the pattern’s isometries (notably (glide ) 
ref lect ion ), while there exist indeed ‘ three  kinds’  of centers in 
the p3m1  (with no isometry swapping centers of different kind), 
and likewise in the p3  (7.6.3): this confirms old observations from 
chapter 4! (Similar stories for 900 patterns: every two fourfold 
centers of a p4g  are ‘conjugate’  of each other (thanks to (glide) 
reflection again), which is not  true in either the p4m  or the p4 .)  



8.4.4  Sixfold types. The last step of the classification is the 
easiest! Indeed, in the absence of any (glide) reflection there can 
only be the p6  pattern of sections 4.14 and 6.16, also investigated 
(and derived ) in 7.6.3. And in the presence of (glide) reflection, we 
need all  six  directions of 8.4.2, and it is still possible to show that 
we must  have a cm  subpattern in all  six  directions: all we need to 
do is make B and D sixfold  centers in figure 8.39; and all other 
arguments and facts of 8.4.3 may also be extended, leading to the 
p6m  pattern of sections 4.13 and 6.17 as the ‘merge’  of p3m1  and 
p31m  featured in figures 6.132 & 6.133 (and figure 8.41 as well)! 
Here it is in its full glory, with T1 and T 2 playing the same  roles  

as in 8.4.2 & 8.4.3 (and figure 8.40) -- and all ‘old’  glide reflections 
mapping sixfold  centers to sixfold  centers):

Fig. 8.42
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