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CHAPTER 7

COMPOSITIONS OF ISOMETRIES

7.0  Isometry ‘hunting’

7.0.1 Nothing totally new. Already in 4.0.4 we saw that the 
composition (combined effect) of a rotation followed by a 
translation is another rotation, by the same angle but about a 
different center. And we employed this fact (in the special case of 
1800 rotation) in 6.5.3 (‘visual  proof’  in figure 6.44) in our study 
of two-colored p2  patterns. In fact we did run into several 
compositions of isometries in chapter 6: for example, figure 6.54 
demonstrated that the composition of two perpendicular glide 
reflections is a 1800 rotation; and we encountered instances of  
composition of two rotations in figures 6.44, 6.99, and 6.128. 

Speaking of glide reflection, recall that its definition (1.4.2) 
involves the commuting  composition of a reflection and a 
translation parallel to it. Moreover, we also pointed out in 1.4.2 that, 
in the composition of a reflection and a translation non-parallel to 
each other, whatever isometry that might be, the order  of the two 
isometries does matter (figure 1.32). And we did indicate in figure 
6.13 that the composition of a glide reflection (hence reflection as 
well) followed by a translation is a new glide reflection (about an 
axis parallel to the original and by a vector of different length).

7.0.2 ‘No way out’. Of course the most important point made in 
1.4.2, if not in the entire book, is that the composition I2∗∗∗∗ I1 of every 

two isometries I1, I2 must  again be an isometry: indeed the distance 

between every two points P, Q is equal, because I1 is an isometry, to 

the distance between I1(P) and I1(Q); which is in turn equal, because 

I2 is an isometry, to the distance between I2(I1(P)) = I2∗∗∗∗ I1(P) and 



I2 (I1(Q)) = I2∗∗∗∗ I1(Q). In particular, the composition of every two 

isometries of a wallpaper pattern must be an isometry of it: this 
turns its set of isometries into a group . (More on this in chapter 8!)   

So we do know that the composition I2∗∗∗∗ I1 of any two given 

isometries I1, I2 is again an isometry. Since (section 1.5) there exist 

only  four  possibilities for planar isometries (translation, rotation, 
reflection, glide reflection), determining I2∗∗∗∗ I1 should in principle be 

relatively simple. On the other hand, our remarks in 7.0.1 and overall 
experience so far indicate that there may after all be certain 
practical difficulties: formulas like the ones employed in chapter 1 
may be too complicated for the mathematically naive (and not only!), 
while visual ‘proofs’ like the ones you saw throughout chapter 6 are 
not rigorous enough for the mathematician at heart. Therefore we 
prefer to base our conclusions in this chapter (and study of the ten  
possible combinations of isometries) on solid geometrical  proofs : 
those are going to be as precise as algebraic proofs are, relying on 
the directness of pictures at the same time.

7.0.3 A ‘painted’ bathroom wall. Before we provide a detailed 
study of all possible combinations of isometries (sections 7.1-7.10), 
we present below a more ‘empirical’  approach. Employing a  
‘standard’ coloring of the familiar bathroom wall we seek to 
‘guess’ -- ‘hunt’  for, if you like -- the composition T ∗∗∗∗ R 0 (clockwise 

900 rotation followed by diagonal SW-NE translation, see figure 7.1) 
already determined in 4.0.4, dealing with other issues on the way. 
(The coordinate system of figure 4.3 is absent from figure 7.1, and 
the lettering/numbering of the tiles has given way to coloring.) 

So, why the colors? First of all they help us, thanks to the 
maplike  coloring, distinguish between neighboring tiles and keep 
track of where each tile is mapped under the various isometries of 
the tiling (and their compositions). Moreover, since the coloring is 
consistent , if the composition in question sends, say, one  red tile 
to a green tile, then we know that it must send every  red tile to 
some green tile: that helps us ‘remember’ (and even decide) where 
specific tiles are mapped by the ‘unknown’ isometry-composition (of 
the two isometries that we need to determine) without having to 



‘keep notes’ on them. (All this assumes that you will take the time 
to color the tiles as suggested in figure 7.1, of course; but you do 
not have to, as long as you can keep track of where your tiles go!) 

Most important, the colored tiles will help you rule out many 
possibilities. To elaborate, let’s first look at T ∗∗∗∗ R 0 ’s color  effect : 

  R0   T   T ∗ R0 

B →→→→  R R →→→→ G B →→→→ G
Y →→→→ G G →→→→ R Y →→→→  R
R →→→→  Y Y →→→→  B R →→→→  B
G →→→→ B B →→→→  Y G →→→→  Y 

In other words, all we did was to rewrite T ∗∗∗∗ R0 (in the language 

of color permutations ) as (RG)(BY) ∗∗∗∗ (BRYG)  = (BGYR) . Now there 
exist many isometries whose effect on color is (BGYR) , such as the 
four 900 rotations around the red (R ) square -- two of them (R1, R2) 

counterclockwise and two of them clockwise -- and the four 
diagonal glide reflections in figure 7.1: which one of these  
isometries, if any , is T ∗∗∗∗ R 0?   

           

   
Fig. 7.1



Well, before we decide what T ∗∗∗∗ R0 is, let’s quickly observe what 

it cannot  possibly be: since all translations, reflections, vertical or 
horizontal glide reflections, 1800 rotations, and 900 rotations of 
first kind (i.e., centered in the middle of a tile) produce a color 
effect equal to either a product of two 2-cycles or a 2-cycle or the 
identity P  (instead of a 4-cycle like (BGYR) ), none of these 
isometries could possibly be T ∗∗∗∗ R0. (For some examples, notice that 

the vertical reflection passing through R 0 is (BG)(YR) , the left-to-

right glide reflections passing through R0 are either (BY)(GR)  or 

(BR)(GY) , minimal vertical translation is (BR)(GY) , 900 rotation 
about the center of any red or green square is (BY) , vertical or 
horizontal reflections passing through such centers are P , etc.) So, 
the only possibilities left are the ones that figure 7.1 ‘suggests’.

Now many students would naturally look at the outcome that we 
ruled out in 4.0.4, that is R1. To be more precise, at 4.0.4 we looked 

at clockwise  900 rotation at R 1 (the translation of clockwise 900 

R0 by T), which we can now rule out at once: its color effect is 

(BRYG) , not T ∗∗∗∗ R0’s (BGYR) . But how about counterclockwise  900 

rotation at R 1, whose color effect is (BGYR) , after all? Well, 

looking (figure 7.1) at the yellow tile labeled #1, we see that R 0 

takes it to the green tile directly south of it, which is in turn 
mapped by T  to the red tile labeled #1′  (figure 7.1); that’s exactly 
where counterclockwise R 1 moves tile #1, so it is tempting  to 

guess that it equals T ∗∗∗∗ R 0: after all, the two isometries seem  to 

agree not only in terms of color, but position , too! Well, the 
temptation should be resisted: for example, T ∗∗∗∗ R0 moves the red tile 

#2 (formerly #1′ ) to the blue tile #2′  (by way of the yellow tile at 
the bottom center of figure 7.1), but counterclockwise R1 maps #2 

to the blue tile directly north of it: if two isometries disagree on a 
single tile they simply cannot be one and the same.

So, are there any other ‘good candidates’ out there? Notice that 
counterclockwise R2 agrees with T ∗∗∗∗ R0 on #2, but not #1, while G2 

agrees with T ∗∗∗∗ R0 on #1, but not #2. More promising is G1, which 

agrees with T ∗∗∗∗ R0 on both  #1 and #2: shouldn’t the agreement on 



two  tiles allow us to conclude that these two isometries are equal? 
Well, at this point you need to go back to 3.3.4, where we discussed 
how and why “every isometry on the plane is uniquely determined by 
its effect on any  three  non-col l inear  points ”: replace points by 
tiles , and surely you will begin to suspect that G1 may not be the 

right answer after all; indeed this is demonstrated in figure 7.2, 
where we see that the blue tile #3 is mapped to a green tile #3′  by 
T ∗∗∗∗ R0 but to a green tile #3″  by G1.  

   

Fig. 7.2

Now a closer look at figure 7.2 reveals that G1, and, more 

generally, any glide reflection, had no chance at all: indeed, looking 
at the tile trio 123  and its image 1 ′′′′2 ′′′′3 ′′′′ , we see that they are 
homostrophic , hence only a rotation could possibly work! But we 
have already tried a couple of rotations and none of them worked! 
Well, if you are about to give up on trial-and-error, if you feel lost 
in this forest of tiles and possibilities, chapter 3 comes to your 
rescue again: simply determine the center of a rotation that maps 
the centers  of tiles #1, #2, #3 to the centers of the tiles #1′ , #2′ , 
#3 ′ ; this is in fact done in figure 7.3, where the rotation center is 
determined as the intersection of the three perpendicular  
bisectors  11′ , 22′ , and 33′ . (Of course just  two  perpendicular 
bisectors would suffice, as we have seen in 3.3.5). 



          
Fig. 7.3

So, it becomes clear after all that a clockwise 900 rotation 
maps the tile trio 123  (NW-SE shading) to the tile trio 1 ′′′′2 ′′′′3 ′′′′  (NE-
SW shading); that rotation has  to be T ∗∗∗∗ R0, and its center is located 

‘between’ the three centers R0, R1, and R2 (all indicated by a black 

square in figure 7.3). We could very well have made the right guess 
earlier, but the chapter 3 method illustrated in figure 7.3 can 
always  be applied after the first few guesses have failed! (An extra 
advantage is the replacement of D4 sets (squares) by D1 sets (trios 

of non-collinear squares), which facilitates isometry recovery.)

7.0.4 Additional examples. In figure 7.4 we demonstrate the 
determination of R0∗∗∗∗ G1 and G1∗∗∗∗ R0, where R0 is again a 900 

clockwise rotation. In the case of R 0 ∗∗∗∗ G 1, the color effect is just the 

identity P = (BRYG) ∗∗∗∗ (BGYR) : the details are as in 7.0.3 above. That 
immediately rules out all the rotations (save for one type of 1800 
rotation revealed towards the end of this section) and ‘off-t i le-
center’  reflections: none of those isometries, in the case of the 



particular tiling and coloring, always, may preserve all the colors; 
less obviously, the same is true of diagonal  glide reflections. What 
could it be, then? Working again with individual tiles #1, #2, and #3 
(figure 7.4), we see them mapped by R0∗∗∗∗ G1 to the tiles #1′ , #2′ , and 

#3 ′ : the two tile trios 123  and 1 ′′′′2 ′′′′3 ′′′′  are heterostrophic , hence 
the outcome must be a ‘hidden’   glide reflection -- one of those 
glide reflections, first mentioned in 6.3.1, employing one of the 
tiling’s ref lect ion  axes  and one of the tiling’s t ranslat ion  
vectors . Either by applying the procedures of chapter 3 -- as in 
figure 7.3, but using midpoints instead of bisectors -- or by simple 
inspection, we find out that R0∗∗∗∗ G 1 is indeed the hidden vertical  

glide reflection denoted in figure 7.4 by MG ′′′′ : the importance of 
hidden glide reflections warrants the use of a separate notation!

Fig. 7.4

A similar analysis, employing the tile trios 123  and 1 ″″″″ 2″″″″ 3″″″″ , 
shows G1∗∗∗∗ R0 to be MG ″″″″ , a horizontal  hidden glide reflection (figure 

7.4): rather predictably, R0∗∗∗∗ G1 and G1∗∗∗∗ R0 are differently positioned 

isometries of exactly the same kind. Notice the importance, in each 
case, of having used three non-collinear tiles: had we used only tiles 
#1 and #2 for R0∗∗∗∗ G1, or #2 and #3 for G1∗∗∗∗ R0, we would have 

‘concluded’ that those glide reflections were mere translations!

Having seen the importance of order (of the two isometries) in 



combining isometries, we turn now to the relevance of angle  
orientation : we investigate, in figure 7.5, the compositions R 3

 +∗∗∗∗ G1 

and R3
 −−−−∗∗∗∗ G1, where R3

 −−−− and R3
 + are counterclockwise and clockwise 

900 rotations about the shown center R3, respectively.  

   
Fig. 7.5

Bypassing color considerations, but still using our ‘tile trios’ 
(1 ′′′′ 2 ′′′′ 3 ′′′′  for R 3

 +∗∗∗∗ G 1, 1″″″″ 2″″″″ 3″″″″  for R3
 −−−−∗∗∗∗ G1), let’s look at the outcomes in 

figure 7.5. R3
 +∗∗∗∗ G1 is a hidden glide reflection (MG1) sharing the 

same axis with MG ′′′′  = R0∗∗∗∗ G1 (figure 7.4), but of smaller (half) gliding 

vector: yes, the distance  from the rotation center to the glide 
reflection axis does play a crucial role! And R3

 −−−−∗∗∗∗ G1 is a horizontal 

ref lection  (M 1): as R 3
 −−−− ‘ turns  opposi te’  of G 1 ’s gliding vector, it 

ends up annihilating it -- while R 3
 +, ‘turning the same way’ as G1’s 

gliding vector, increases its length to that of M G 1 ’s gliding vector!

How about compositions of glide reflections? Viewing, once 
again, a reflection as a glide reflection of zero gliding vector 
(1.4.8), we may first think of compositions like M1∗∗∗∗ MG1 and MG1∗∗∗∗ M1: 

those are rather easy in view of the discussion on perpendicular 
glide reflections in 6.6.2. For example, adjusting figure 6.54 to the 



present circumstances, we see that M 1∗∗∗∗ MG 1 is the 1800 rotation 

centered at the green tile right above R3, and this is corroborated by 

color permutations: (BR)(GY) ∗∗∗∗ (BR)(GY)  = P . (Recall (4.0.3) that 
every fourfold center may also act as a twofold center, in this case 
preserving all colors!) Turning now to M 1∗∗∗∗ G1 (figure 7.6), probably  

a rotation in view of 6.6.2, we see that its color effect is 
(BR)(GY) ∗∗∗∗ (BGYR)  = (BY) . The only rotations  producing this color 
effect are 900 rotations centered inside  a green  or  red  tile 
(rather than at the common corner of four neighboring tiles); but 
there exist many  such rotations, so it is best to once again resort 
to position  considerations and numbered tiles!

 

   
Fig. 7.6

Using three non-collinear tiles #1, #2, #3 (figure 7.6), we see 
that M 1 ∗∗∗∗ G 1 maps the tile trio 123  to 1 ′′′′2 ′′′′3 ′′′′ : these two trios are 

homostrophic , corroborating our guess that M1∗∗∗∗ G1 is a rotation. 

And since we already know, through our color  considerations above, 
that the composition in question must be a 900 rotation centered 
inside a green or red tile, the answer becomes obvious: M1∗∗∗∗ G1 is the 

shown 900 counterclockwise  rotation centered at R4. Work along 

similar lines will allow you to show that G 1 ∗∗∗∗ M 1 is the clockwise  

9 00 rotation R5 (of color effect (GR) = (BGYR) ∗∗∗∗ (BR)(GY) ).      



We could go on, looking not only at more combinations but at 
different colorings and types of tilings as well, but we would rather 
start looking at composition of isometries in a more systematic  
manner, just as promised in 7.0.2.

7.1  Translation ∗∗∗∗  Translation

7.1.1 Just the parallelogram rule. Composing two translations 
T1, T2, each of them represented by a vector, is like computing the 

combined effect of two forces (vectors) in high school Physics: all 
we need is the parallelogram rule  as shown in figure 7.7 (and 
applied to a particular point P, where each of the two vectors has 
been applied).

Fig 7.7

The composition is simply represented by the ‘diagonal’  vector, 
and the equality T1∗∗∗∗ T2 = T2∗∗∗∗ T1 is another way of saying that there 

are two ways  of ‘walking’ (across the parallelogram’s edges) from 
P to the diagonal’s other end (figure 7.7). So, every two translations 
commute  with each other, something that happens only in a few 
cases of other isometries (such as the composition of reflection and 
translation parallel to each other discussed in 1.4.2 and 7.0.1).

7.1.2 Collinear translations. When the translation vectors are 
collinear (parallel) to each other (as in the border  patterns  of 
chapters 2 and 5, for example), then the Physics becomes easier and 



the parallelogram of figure 7.7 is f lattened . In fact, every two 
parallel vectors T1, T2 of lengths l1, l2 may be written as ± l1×T , 

± l2×T , where T  is a vector of length 1; the choice between + or − 

depends on whether or not T and the vector in question (T1 or T2) 

are of the same or opposite orientation (sense ), respectively. The 
composition of the two translations is then reduced to addition of 
real numbers by way of T2∗∗∗∗ T1 = (±l1±l2)×T. Conversely, given any 

vector T , not necessarily of length 1, all vectors parallel to it are of 
the form l×T , where l may be any positive or negative real number. 

Combining 7.1.1 and 7.1.2, we may now talk about linear  
combinations  of non-collinear translations T1, T2: those are sums 

of the form l1×T1+l2×T2, where l1, l2 are any real numbers ... and 

have already been employed in figures 4.10 & 4.11 (where we had in 
fact indicated, without saying so, that every translation in a 
wallpaper pattern may be written as a linear combination (with l1, 

l2 in tegers ) of two particular translations). 

7.2  Reflection ∗∗∗∗  Reflection

7.2.1 Parallel axes (translation). Back in 2.2.3, we did observe 
that the distance between every two adjacent  mirrors in a pm11  
pattern is equal to half  the length of the pattern’s minimal  
translation vector. This makes full sense in view of the following 
‘proof without words’:

     

Fig. 7.8



Well, we can add a few words after all: with d(X,  Y) standing for 
distance  between points X and Y, we see that d(P, M2∗∗∗∗ M1(P)) =        

d(P, M1(P)) + d(M1(P), M2∗∗∗∗ M1(P)) = 2 × d(A, M1(P)) + 2 × d(M1(P), B) =       

2 × d(A, B) = twice the distance between the parallel lines M1 and 

M2; likewise, d(Q, M2∗∗∗∗ M1(Q)) = d(Q, M1(Q)) − d(M1(Q), M2∗∗∗∗ M1(Q)) =           

2 × d(C, M1(Q)) − 2 × d(M1(Q), D) = 2 × d(C, D) = twice the distance 

between the parallel lines M1 and M2. So, both P and Q moved in the 

same direction (perpendicular  to M 1 and M2, and ‘from  M1 

toward  M 2’) and by the same length (twice  the distance between 

M1 and M2). We leave it to you to verify that the same will happen to 

any other point, regardless of its location (between the two 
reflection lines, ‘north’ of M 2, ‘way south’ of M 1, etc): always, the 

combined effect of M 1 and M 2 (in that order ) is the translation  

vector M2∗∗∗∗ M1 shown in figure 7.8!  

7.2.2 Non-parallel axes. We have not kept it a secret that the 
composition -- in this case intersect ion  -- of two perpendicular 
reflections yields a half turn: we have seen this in 2.7.1 (pmm2 ), 
4.6.1 (pmm ), 4.9.1 (cmm ), etc. Moreover, we have seen 1200 centers 
(p3m1 , p31m ) at the intersections of three reflection axes (making 
angles of 600), 900 centers (p4m ) at the intersections of four 
reflection axes (making angles of 450), and 600 centers (p6m ) at 
the intersections of six reflection axes (making angles of 300). It is 
therefore reasonable to conjecture that every two reflection axes 
intersecting each other at an angle φ/2 generate a rotation about 
their intersection point by an angle φ; this is corroborated right 
below: 



Fig. 7.9

To turn figure 7.9 into a proof, we must show, with a(X, Y) 
denoting the angle  between lines KX and KY, that a(P, M2∗∗∗∗ M1(P)) =   

2 × a(A, B), a(Q, M2∗∗∗∗ M1(Q)) = 2 × a(C, D), and so on. These equalities 

are derived exactly  as the corresponding ones in 7.2.1, simply 
replacing d  (distances) by a (angles). We leave it to you to verify 
that, no matter where P or Q is, the composition M 2∗∗∗∗ M 1 is a rotation 

by the angle shown in figure 7.9: twice  the size of the acute  angle 
between M1 and M2, and going ‘from  M1 toward  M2’  (which happens 

to be clockwise in this case). 

7.2.3  The crucial role of reflections. Unlike translations, 
reflections do not  commute with each other: it is easy to see that 
M1∗∗∗∗ M2 is a vector opposite of M2∗∗∗∗ M1 in 7.2.1, while M1∗∗∗∗ M2 is an 

angle opposite (counterclockwise) of M2∗∗∗∗ M1 in 7.2.2. A crucial 

exception  occurs when M1 and M2 are perpendicular to each other: 

there is no difference between a clockwise 1800 rotation and a 
counterclockwise 1800 rotation sharing the same center (1.3.10)!

All the techniques and observations of this section, including 
that of the preceding paragraph, stress the closeness between 



translation  and rotation : each of them may be represented as the 
composition of two  reflections, and the outcome depends only on 
whether the angle between them is zero (translation) or non-zero 
(reflection). It follows at once that every gl ide  ref lect ion  may be 
written as the composition of three  reflections. So we may safely 
say, knowing that there exist no other planar isometries (section 
1.5), that every isometry of the plane is the composition of at  most 
th ree  re f lec t ions . 

Conversely, the tradit ional  way  of proving that there exist 
only four types of planar isometries is to show first  that every 
isometry of the plane must  be the composition of at most three 
reflections: see for example Washburn & Crowe , Appendix I. We 
certainly provided a classification of planar isometries not relying 
on this fact in section 1.5; but we will be analysing a translation or 
rotation into two reflections throughout chapter 7.               

As a concluding remark, let us point out another difference 
between translation and rotation (and the way each of them may be 
written as a composition M 2∗∗∗∗ M 1 of reflections): in the case of a 

translation, we may vary the position of the parallel mirrors M 1, M 2 

but not their distance or common direction; in the case of a rotation, 
we may vary the directions of M 1, M 2, but not their angle or 

intersection point. 

7.3  Translation ∗∗∗∗  Reflection 

7.3.1 Perpendicular instead of parallel. Of course we have 
already seen a most important special case of this combination in 
1.4.2: when the translation and the reflection are parallel to each 
other, their commuting  composition is useful and powerful enough 
to be viewed as an isometry of its own (glide reflection). Another 
important special case is the one that involves a translation and a 
reflection that are perpendicular to each other. We have encountered 
many such cases, the last one provided by 7.2.1: just think of the 
reflection M 1 followed by the translation M 2∗∗∗∗ M 1, yielding the 

equality (M2∗∗∗∗ M1)∗∗∗∗ M1 = M2∗∗∗∗ (M1∗∗∗∗ M1) = M2∗∗∗∗ I = M2; or of the translation 



M 2∗∗∗∗ M 1 followed by the reflection M 2, leading to the equality 

M2∗∗∗∗ (M2∗∗∗∗ M1) = (M2∗∗∗∗ M2)∗∗∗∗ M1 = I∗∗∗∗ M1 = M1.  

Our ‘algebraic experimentation’ (and appeal to 7.2.1) above 
suggests that the composition of a reflection M  and a translation T   
perpendicular to each other is another reflection parallel  to the 
original one; this is established below, via another appeal to 7.2.1:

Fig. 7.10

What went on in figure 7.10? We computed both  compositions 
M ∗∗∗∗ T  (left) and T ∗∗∗∗ M  (right), writing T  as a composition of two 
reflections perpendicular to it (therefore parallel  to M ) and at a 
distance from each other equal to half the length of T  (7.2.1): in the 
first case, with T ’s second  reflection L 2 being M , M ∗∗∗∗ T  equals 

L 2∗∗∗∗ (L 2∗∗∗∗ L 1) = L 1; and in the second case, with T ’s first  reflection N1 

being M , T ∗∗∗∗ M  equals (N2∗∗∗∗ N1)∗∗∗∗ N1 = N2. (As above, it is crucial that 

the square of a reflection is the identity isometry I. )

So, we see that a reflection M  and a translation T  perpendicular 
to each other do not commute: when T comes first it moves M  
‘backward’  by |T |/2 (figure 7.10, left), and when T  follows M  it 
moves it ‘ forward’  by |T |/2 (figure 7.10, right); that is, M ∗∗∗∗ T  and 
T ∗∗∗∗ M  are mirror  images  of each other about M . You should try to 
verify these results, following the method, rather than the outcome, 
of 7.2.1 and figure 7.8.

7.3.2 Physics again! We come now to the general case of the 



composition of a reflection M  and a translation T, assuming M  and T 
to be neither parallel nor perpendicular to each other: it looks 
complicated, but an old trick from high school Physics is all that is 
needed! Indeed, analysing  T into two components, T1 (perpendicular 

to M ) and T2 (parallel to M ), we reduce the problem to known special 

cases; in figure 7.11 you see how M ∗∗∗∗ T = M ∗∗∗∗ (T1∗∗∗∗ T2) = (M ∗∗∗∗ T1)∗∗∗∗ T2 = 

M ′′′′ ∗∗∗∗ T2 turns into a glide  reflection  (of axis M ∗∗∗∗ T1 (at a distance of 

|T1|/2 from M ) and vector T2) :

   

Fig. 7.11

Likewise, T∗∗∗∗ M  = (T2∗∗∗∗ T1)∗∗∗∗ M  = T2∗∗∗∗ (T1∗∗∗∗ M) = T2∗∗∗∗ M″″″″  is a glide 

reflection (not shown in figure 7.11) of vector T2 (no change here) 

and axis M″″″″  (mirror image of M ′′′′  about M , as in 7.3.1). So, in general, 
the composition of a reflection M  and a translation T  is a glide 
reflection; and a closer look at this section’s work shows that it is 
a reflection if and only if M  and T  are perpendicular to each other 
(that is, precisely when T2 = 0).

7.4  Translation ∗∗∗∗  Glide  Ref lec t ion   

7.4.1 Just an extra translation. This case is so close to the 
previous one that it hardly deserves its own visual justification. 
Indeed, let G = M∗∗∗∗ T0 = T0∗∗∗∗ M  be the glide reflection, and let T  be the 

translation. Then G ∗∗∗∗ T = (M ∗∗∗∗ T0)∗∗∗∗ T = M ∗∗∗∗ (T0∗∗∗∗ T) and T∗∗∗∗ G = T∗∗∗∗ (T0∗∗∗∗ M)  = 



(T ∗∗∗∗ T0)∗∗∗∗ M. Since T0∗∗∗∗ T = T∗∗∗∗ T0 is again a translation T ′′′′ , we have 

reduced this section to the previous one; and we may safely say that 
the composition of a translation and a glide reflection is another 
glide reflection, with their axes parallel to each other (and 
ident ical  if and only if the translation is paral le l  to the glide 
ref lect ion).

7.4.2 Could it be a reflection? We have run into compositions of 
non-parallel translations and glide reflections as far back as 6.2.5 
and figure 6.13, while studying two-colored pg  types: we could even 
say that the pg ’s diagonal  translations are ‘responsible’ for the 
perpetual repetition of the vertical  glide reflection axes! And the 
interaction between the pg ’s glide reflection and translation is also 

reflected in the fact that the only pg  type (p b
′′′′ 1g ) with both color-

reversing and color-preserving glide reflection is the only pg  type 
that has color-reversing translation (figures 6.4, 6.9, and 6.11). 

But a similar observation is possible about two-colored cm  
types: the two types that have color-preserving reflection and 

color-reversing glide reflection (p c
′′′′ m ) or vice versa (p c

′′′′ g ) are 

precisely those that do have color-reversing translation (figures 
6.25-6.28). Could it be that, the same way the pg ’s ‘diagonal’ 
translation takes us from one ‘vertical’ glide reflection to another, 
the cm ’s ‘diagonal’ translation takes us from ‘vertical’ reflection to 
‘vertical’ glide reflection (which is to be expected in view of 7.3.2) 
and  from ‘vertical’ glide reflection to ‘vertical’ reflection? In 
broader terms, could the composition of a glide reflection and a 
translation be ‘exact ly’  a reflection?

The answer is “yes” : a translation and a glide reflection may 
after all create a reflection! And this may be verified not only in the 
cm  examples mentioned above, but also though a visit to our newly 
painted bathroom wall: for example, the composition MG1∗∗∗∗ T  in figure 

7.5 is the vertical reflection passing through R0. How does that 

happen? A closer look at the interaction between T and the hidden 
glide reflection M G 1 ’s gliding vector T0 is rather revealing:



                             
Fig. 7.12

A bit of ‘square geometry’ in figure 7.12 makes it clear that the 
composition T ′′′′  = T0∗∗∗∗ T is perpendicular to T0 (and MG1 as well). But 

we have already seen (combining 7.3.2 and 7.4.1) that G ∗∗∗∗ T is a 
reflection if and only if T ′′′′  is perpendicular to G : this is certainly the 
case in figures 7.12 & 7.5 (with G  = MG1).

In general, what relation between the glide reflection G ’s vector  
T0 and the translation vector T  is equivalent to G ∗∗∗∗ T  (and therefore, 

by 7.3.2, T ∗∗∗∗ G  as well) being a reflection? A bit of simple 
trigonometry (figure 7.13) shows that it all has to do with the 
lengths  |T0| and |T | of T0 and T , as well as the angle  φ between T0 

and T. Indeed, all we need is that for the angle a(T0, T ′′′′ ) between T0 

and T ′′′′  = T0∗∗∗∗ T to be π/2 (900). But in that case we end up with a 

right  triangle of side lengths |T|, |T0|, and |T ′′′′ | and angles π−φ and 

φ−π/2 (figure 7.13); it follows that |T0| = |T |×cos(π−φ) = 

|T|×sin(φ−π/2), so that |T0| = −|T|×cosφ or |T| = −|T0|/cosφ, where, 

inevitably , π/2 < φ ≤  π.   



Fig. 7.13

So, to ‘annul’ the vector T0 of a glide reflection G  = M ∗∗∗∗ T0, all we 

need is to ‘multiply’ G  by a translation T  of length |T | that makes an 
angle φ with T0 such that |T0| = −−−−|T|cos φφφφ. Observe that cosφ < 0, 

hence φ has to be an obtuse angle (forcing T to go ‘somewhat  
opposite’  of T0); also, in view of |T | = −|T0|/cosφ, the closer φ is to 

π/2 the longer T  is: π/2 < φ ≤ π yields |T0| ≤ |T | < ∞ , with |T | = |T0| 

corresponding to φ = π (T = T0
 −−−−1 and G ∗∗∗∗ T = T∗∗∗∗ G  = M  -- the rather 

obvious ‘parallel case’).

In figures 7.12 & 7.5, φ = 1350 and |T| = −|T0|/cos(1350) = |T0| 2 . 

7.5  Rotation ∗∗∗∗  Rotation 

7.5.1  Just like two reflections? Counterintuitive as it might 
seem as first, it turns out that determining the composition of two 
rotations is about as easy as determining the composition of two 
reflections. And you will be even more surprised to see that the key 
to the puzzle lies inside figure 7.10 (that does not seem to have 
anything to do with rotations)! On the other hand, a figure that is 



certainly related to rotations is 7.9: we demonstrated there how 
the composition of two intersecting reflections is a rotation; in this 
section we will play the game backwards, breaking  rotations into 
two intersecting reflections.

So, let’s first consider two clockwise rotations RA  = (A, φ1) and 

RB = (B, φ2). To compute RB ∗∗∗∗ RA we set RA = M∗∗∗∗ L  and RB = N∗∗∗∗ M, where 

L , M  are reflection lines intersecting each other at A at an angle 
φ1/2 and M , N  are reflection lines intersecting each other at B at an 

angle φ2/2; in particular, M  is the line defined by A and B (figure 

7.14), the common  reflection  destined to play the same 
‘vanishing’  role as in 7.3.1 (and figure 7.10). It is easy now to 
determine RB ∗∗∗∗ RA  = (N∗∗∗∗ M)∗∗∗∗ (M ∗∗∗∗ L ) = N∗∗∗∗ L  as a rotation  centered at C 

(composition of two reflections intersecting each other at C).

    
Fig. 7.14 

So, it was quite easy to determine RB ∗∗∗∗ RA ’s center, and there is 

nothing ‘special’ about it. But there is another potential surprise 
when it comes to RB ∗∗∗∗ RA ’s angle: although both RA  and RB  are taken 

clockwise, RB ∗∗∗∗ RA  = N ∗∗∗∗ L  ends up being counterclockwise (going from 

L  toward N)! How about RA ∗∗∗∗ RB  then, with each of RA  and RB  taken 

counterclockwise this time? Or RB ∗∗∗∗ RA  with one rotation taken 

clockwise and the other counterclockwise, and so on? Taking both  
order and orientation into account, there exist eight possible cases 



(all based on M ’s ‘elimination’), shown in figure 7.15 (arguably the 
most important one in the entire chapter or even book):  

Fig. 7.15 

As in 7.0.4, clockwise rotations are marked by a +  superscript 
and counterclockwise rotations are marked by a - superscript, while 
the arrows  pointing to each composition angle indicate its 
orientation. The example shown in figure 7.14 is therefore RB

 +∗∗∗∗ RA
 +; 

notice how each of the four centers C, D, E, F is shared  by two 
compositions. Notice that the four rotations centered at C and D have 
angles equal to 2×∠ ACB = 2×(1800−(φ1+φ2)/2) = 3600−φ1−φ2, which is 

equivalent  to φφφφ1+φφφφ2 (with reversed  orientation, via φ1 < 1800 and 

φ2 < 1800); and the four compositions centered at E and F have angles 

equal to 2×∠ CFA = 2×(1800−∠ CAF−∠ ACF) = 2×(1800−∠ CAD−∠ ACB) = 



2×(1800−φ1−(1800−(φ1+φ2)/2)) = 2×(−(φ1/2)+(φ2/2)) = φφφφ2−−−−φφφφ1 (which 

would have been φφφφ1−−−−φφφφ2 in case φ1 was bigger than φ2).   

7.5.2 When the angles are equal. When φφφφ1 = φφφφ2, our preceding 

analysis suggests that the angle between AE and BE (or AF and BF) in 
figure 7.15 is zero; but AE and BE are certainly distinct , passing 
through two distinct points A and B: indeed the two lines, making 
equal angles with M , should be parallel  to each other, with E and F 
‘pushed’ all the way to infinity ! In simpler terms, when two 
rotations RA , RB  have equal  angles of opposite  orientation (one 

clockwise, one counterclockwise) their composition is a 
translation  (composition of parallel reflections, see 7.2.1). [Notice 
(figure 7.15) that E and F act as centers precisely for those product 
rotations where one factor is counterclockwise and the other one is 
clockwise.]

Of course we do not need something as complicated and thorough 
as figure 7.15 to conclude that the composition of two rotations of 
equal, opposite angles is a translation: a simple modification of 
figure 7.14 suffices!

Fig. 7.16

With RA
 + = (A, φ) = M∗∗∗∗ L  and RB

  −−−− = (B, φ) = N∗∗∗∗ M, L  and N become 

parallel to each other (figure 7.16), therefore RB
  −−−−∗∗∗∗ RA

 + = N ∗∗∗∗ L  is a 

translation perpendicular to them (7.2.1). And since the distance 
between L  and N  is |AB|sin(φ/2) = dsin(φ/2) (figure 7.16), the length 
of the translation vector is 2dsin(φ/2).



Once again, viewing a translation as a rotation the center of 
which is that mysterious ‘point at infinity’ (3.2.5) turns out to make 
a lot of sense!

7.5.3 The case of half turn. There is another way of destroying 
the quadrangle  of figure 7.15: reduce it to a triangle  by forcing 
the lines DE and CF to be one and the same, which would happen if 
and only if they are both perpendicular to M  at B, that is if and only 
if φφφφ2 = 1800. Other than reducing the number of product rotations 

from eight to four, and the number of intersection points (rotation 
centers) from four to two, making one of the two rotations a half 
turn would not have any other consequences. But if both  rotations 
are 1800 then there are no  intersections  at all, and the number of 
compositions is further reduced from four to two: with angle 
orientation no longer an issue, both RA ∗∗∗∗ RB  and RB ∗∗∗∗ RA  are now 

translations  of vector length 2d (figure 7.16 with φ = 1800).   

7.5.4 An important example. How about the ‘surviving’ rotations 
of figure 7.15 when φ1 = φ2? Let’s look at the case φ1 = φ2 = 600, 

where two sixfold centers at A and B generate counterclockwise and 
clockwise rotations of φ1+φ2 = 1200 at C and D (figure 7.17), as well 

as four translations that we will not be concerned with. With M , N , 
and L  as in figure 7.14, and N ′′′′ , L ′′′′  being the mirror images of N , L  
about M , the four 1200 rotations may be written as N ∗∗∗∗ L , L ′′′′ ∗∗∗∗ N ′′′′  
(clockwise) and L ∗∗∗∗ N , N ′′′′ ∗∗∗∗ L ′′′′  (counterclockwise). Everything is shown 
in figure 7.17, and it is clear that the four centers A, B (600) and C, 
D (1200) form a rhombus .



Fig. 7.17

So, any two sixfold centers A, B are bound to create two 
threefold centers C, D -- but  not  vice  versa ! What is the location 
of C (or D) with respect to A and B? With |AB| = d and P the midpoint 
of AB, simple trigonometry in PAC establishes |PC| = |AP|tan300 = 

d / ( 2 3 ). It follows that |CD| = d/ 3  and |AD| = |AC| = |PA|2 + |PC|2  

= d2/4 + d2/12  = d/ 3 : the triangle ACD is equilateral ! (Notice 
that ACBD will be a rhombus whenever φ1 = φ2, but ACD (and BCD) 

will be equilateral if  and  only  if  φ1 = φ2 = 600.) 

All this begins to look rather familiar: didn’t we talk about that 
rhombus of sixfold centers when we classified two-colored p6m  
types (6.17.3 & 6.17.4, figures 6.134-6.138)? The two rhombuses are 
similar , except that the one in 6.17.3 consists of four  sixfold 
centers, while the one we just produced involves two  sixfold and 
two  threefold centers: where does the 6.17.3 rhombus come from? 
To answer this question, we simply adapt the quadrangle of figure 
7.15 with φφφφ1 = 600 and φφφφ2 = 1200; that is, we determine the ‘total 

combined effect’ of a sixfold center (A) and a threefold center (B), 
shown (figure 7.18) in the context of the beehive :       



                            
Fig. 7.18

Starting with centers A and B as above we produced two 1800 
(φ1+φ2) centers (C and D) and two 600 (φ2−φ1) centers (E and F). So, 

now we have three sixfold centers: where is the fourth  one? Well, 
the answer lies in a combination of figures 7.17 and 7.18: sixfold 
centers E and F are bound (figure 7.17) to produce another threefold 
center B′ , mirror image of B about EF; and then E (or F) and B′  will 
have to create the ‘missing’ sixfold center A′ , A’s mirror image 
about EF -- in the same way A and B produce E (and F) in figure 7.18!

Let’s summarize the situation a bit: we may ‘start’ with two 
sixfold centers that create two threefold centers (figure 7.17), 
hence two additional sixfold centers (figure 7.18 plus discussion); 
or ‘start’ with one sixfold center and one threefold center that 
create two additional sixfold centers (figure 7.18), hence another 
threefold center (figure 7.17), and then a fourth sixfold center 
(figure 7.18 again). It seems rather clear that the first approach, 
summarized in figure 7.19 below, makes more sense: 

Fig. 7.19

Notice that we have removed not only the labels of the various 
centers, but the beehive as well: indeed, since we have created its 



lattice using only  sixfold rotations, the lattice created in figure 
7.19 is also  the rotation center lattice of a p6 ; after all, the p6  and 
the p6m  are no different when it comes to their lattices of rotation 
centers (6.16.1).

The process of figure 7.19 can go on to create the full lattice 
shown in figure 4.5 (right); the next step involves compositions of 
‘peripheral’  sixfold and twofold centers, generating new threefold 
centers. The only question that remains is: could we have ‘started’ 
with only  one  sixfold center instead of two? The answer is “yes”, 
provided that we seek some help from translation : as figure 7.18 
shows, F is E’s image under the pattern’s minimal  vertical 
translation (T); and, following 4.0.4 (Conjugacy Principle), T(E) = F 
has to be a sixfold center! [Attention: as in 4.0.4 again, T(E) is not 
the same as T ∗∗∗∗ E  or E ∗∗∗∗ T , where E  stands for the sixfold rotation(s) 
centered at E; we do not  need compositions  of translation and 
rotation (studied in the next section) to ‘create’ the beehive’s 
lattice -- but we do  need them to ‘create’ the bathroom wall’s 
lattice (7.6.3)!]        

7.6  Translation ∗∗∗∗  Rotation

7.6.1 A trip to infinity. What happens as A moves further and 
further westward in figure 7.14? Clearly L  becomes ‘nearly parallel’ 
to M  and the rotation angle φ1 approaches zero; ‘at the limit’, when A 

has ‘reached infinity’, L  and M  are parallel  to each other and the 
clockwise rotation RA  = M ∗∗∗∗ L  becomes a translation  T = M ∗∗∗∗ L :



Fig. 7.20

Just as in figure 7.14, and with RB  = N ∗∗∗∗ M  still a clockwise φ2 

rotation, the composition RB ∗∗∗∗ T  = N ∗∗∗∗ L  is now a clockwise  rotation, 

centered at C, the point of intersection of N  and L . Since L  and M  are 
parallel to each other, the angle between L  and N  is still φ2/2, 

therefore RB ∗∗∗∗ T ’s angle remains equal to φ2. As for the location of 

RB ∗∗∗∗ T ’s center, that is fully determined via |BC| = |T |/(2sin(φ2/2)), a 

relation that has in essence been derived in figure 7.16.

7.6.2 Our old example. How does 7.6.1 apply to the composition 
T ∗∗∗∗ R0 of 7.0.3? We demonstrate this below, in the context of figure 

7.1, blending into it figure 7.20:

Fig. 7.21

With clockwise R0 = M ∗∗∗∗ N and T = L ∗∗∗∗ M, T∗∗∗∗ R0 is equal to L ∗∗∗∗ N, a 



clockwise 900 rotation centered at C, intersection point of L  and N .

7.6.3 An important pentagon. So, we have established that the 
composition of a translation T  and a rotation R  = (K, φ) is again a 
rotation by φ about another center. But, just as we did in 7.5.1, we 
observe here that the final outcome of the composition depends on 
the order in the operation (R ∗∗∗∗ T  versus T ∗∗∗∗ R ), the rotation’s  
orientation (R  clockwise versus R  counterclockwise), and the 
translation’s sense (T  versus T−−−−1). Again, there exist eight  possible 
combinations sharing four  rotation centers (C, D, E, F), all featured 
in figure 7.22 (that parallels figure 7.15, with R A  replaced by T ) :

Fig. 7.22

As in figure 7.15, each angle’s orientation is indicated by arrows 
pointing to it; all rotation angles are equal to φ, a fact that may be 
derived from our findings in 7.5.1 (with φ1 = 0 and φ2 = φ), of course.

The five rotation centers (K, C, D, E, F) in figure 7.22 form a very 
symmetrical, non-convex ‘pentagon’  -- a more ‘scientific’ term is 
quincunx  -- that may remind you of the number 5 ’s standard 
representation on dice ! We have already seen it, certainly without 
noticing, in figure 7.19 (right): over there it stands for a ‘formation’ 
of twofold centers in a p6  lattice, all of them obtained as 



compositions of ‘higher’  rotations. Should that lattice have been 
allowed to grow further, we would have certainly seen similar 
pentagons formed by sixfold centers, as well as rectangles formed 
by threefold centers; see also figure 4.2, and figure 7.25 further 
below. All those p6  centers had been obtained by way of composition 
of rotat ions , starting from two sixfold centers -- or, if you prefer, 
one  sixfold center and an image of it under translation. Now we 
derive the p4  and the p3  lattices of rotation centers start ing  from 
a ‘pentagon’: that is, we start with one  fourfold or threefold 
rotation and compose  it with the pattern’s minimal  ‘vert ical’  
translation, in the spirit of figure 7.22.

First, the p4  lattice, shown initially in its ‘B ig  Bang ’  
(pentagonal) stage, then with some twofold centers created by the 
fourfold centers, and, finally, with additional fourfold centers 
created by one fourfold and one twofold center: 

  

 
Fig. 7.23

Next comes the p3  lattice, where threefold centers keep 
creating nothing but threefold centers:

Fig. 7.24   



How do these lattices relate to the ones shown in figures 4.59 
(p4 ) and 4.68 (p3 )? Looking at their ‘fundamental pentagon’ KCDEF 
(figure 7.22) in the context of those figures, as well as figures 7.23 
& 7.24, we observe the following: the p4  pattern has no translation 
taking K to any of the other four vertices, but it certainly has 
translations interchanging any two vertices among C, D, E, F (‘two  
kinds’  of fourfold centers, as indicated in figure 4.59); and the p3  
pattern has no translation interchanging any vertices from the ‘first 
column’ (C, D) with any vertices from either the ‘third column’ (E, F) 
or K (‘ three  kinds’  of threefold centers, as indicated in figure 
4.68). Notice that these observations are fully justified by the 
pentagon’s very ‘creation’: vector CD is by definition the pattern’s 
minimal  translation, and this rules out vector KF (but certainly not  
vector CF) in the case of p4  (figure 7.23, left); CD’s minimality also 
rules out vector CE (hence  vector CF as well, for CE = CF−CD) in the 
case of p3  (figure 7.24, left)!

Let’s now look at the p6 ’s ‘first three stages of creation’, 
composing the ‘first’ rotation with a translation (as in the cases of 
p4  and p3 , figures 7.23 and 7.24, respectively) rather than another 
rotation (as in figure 7.19):   

              
Fig. 7.25  



This is of course an alternative  way of looking at p6 ’s lattice: 
you can’t miss the four  copies of the rhombus in figure 7.19 packed 
inside the big rhombus of figure 7.25! But more illuminating is 
figure 7.25’s pentagon, showing that there exists only ‘one  kind’  of 
sixfold centers: observe how any two of its vertices (labeled as in 
figure 7.22 always) are interchangeable via one of the p6 ’s 
translations -- indeed all edges but CE (and DF) are ‘equivalent’  to 
either CD or 2×CD, while the above noticed CE = CF−CD allows CE 
(and DF) as well.    

7.6.4 When the pentagon collapses. Exactly as in 7.5.3 and figure 
7.15, a 1800 rotation would make lines DE and CF one and the same in 
figure 7.22, allowing for only one  intersection (and half turn center) 
with each of L  and L ′′′′ . So, φ = 1800 makes a trio of collinear  points 
(C ≡ E, K, D ≡ F, with |KC| = |KD| = |T|/2) out of the pentagon of figure 
7.22. And yet there exists a ‘starting pentagon’ in every p2  pattern, 
created by one  half turn R  and two  non-parallel translations T1, T2: 

Fig. 7.26

We leave it to you to check the details in figure 7.26 and extend 
its ‘obl ique’  pentagon into the full p2  lattice of half turn centers; 
keep in mind that many new  half turn centers may only  be created 
with the help of t ranslat ions : after all the composition of any two 
half turns is a translation, not a half turn (7.5.3)! 

Notice the importance of having two non-parallel, ‘minimal’  
translations available in the case of the p2  pattern: assuming 
existence of translation in one  direction only, plus 1800 rotation, 
we are only guaranteed a p112  (border) pattern -- half turn centers 



endlessly multiplied by the translation along a single line! On the 
other hand, the pentagon of rotation centers created by one threefold 
(p3 ) or fourfold (p4 ) or sixfold (p6 ) rotation and one minimal 
translation is bound (7.5.2) to produce translations in three  (and 
eventually infinitely many) additional directions.  

7.7  Rotation ∗∗∗∗  Reflection

7.7.1 When the center lies on the mirror. A comparison between 
the previous two sections shows that rotation and translation are of 
rather similar mathematical behavior. This is of course due to the 
fact that each of them is the composition of two reflections, a fact 
that also lies behind the proximity of this section and section 7.3; in 
particular, figure 7.27 below may be seen as a ‘copy’  of figure 7.10:

Fig. 7.27  

On the left is the composition M ∗∗∗∗ R  of a clockwise  rotation R  = 
(K, φ) followed by a reflection M , while on the right is R ∗∗∗∗ M ; as figure 
7.27 makes it clear, R ’s center K lies on M . As in section 7.3 and 
figure 7.10, we analysed R  as L 2∗∗∗∗ L 1 with L 2 = M  in the first case, 

and as N2∗∗∗∗ N1 with N1 = M  in the second case; in both cases M  cancels 

out, exactly as in figure 7.10.  

Adopting (as in previous sections) the notations R+ and R−−−− for R  



taken clockwise and counterclockwise, respectively, we observe (in 
the context of figure 7.27 always) that M ∗∗∗∗ R+ = R−−−−∗∗∗∗ M  = L1 and M ∗∗∗∗ R−−−− = 

R+∗∗∗∗ M  = N2. So, the composition of a rotation and a reflection passing 

through the rotation center is always another reflection ‘t i lted’  by 
half the rotation angle, and still passing through the rotation center. 

7.7.2 The general case. What happens when the rotation center 
does not lie on the reflection axis? This one looks a bit complicated! 
Perhaps some initial experimentation, in the context of a four-
colored beehive this time, might help:

Fig. 7.28

Employing the methods of 7.0.3-7.0.4 if necessary, you may 
derive all four  possible combinations between the reflection M  and 
the sixfold rotation R 0  in figure 7.28: they are gl ide  ref lect ions  of 

gliding vectors of equal length, their two  axes being mirror images 
of each other about M ; at a more subtle level, observe how, in all 
four cases, the vector’s sense  is such that the glide reflection and 
the rotation ‘ turn  the  same  way’ .

Let’s now justify  the outcome of the compositions in figure 
7.28 through a specific example of the type R+∗∗∗∗ M , where R+ = (K, φ+) 
and K not  on M  (figure 7.29). We write R+ = L 2∗∗∗∗ L 1, where L 1 is now 



parallel  to M , so that R+∗∗∗∗ M  = (L 2∗∗∗∗ L 1)∗∗∗∗ M  = L 2∗∗∗∗ (L 1∗∗∗∗ M ) = L 2∗∗∗∗ T, where 

T  is a translation perpendicular  to M , going from M  toward L 1 and 

of length twice  the distance d between K and M  (7.2.1). 

Fig. 7.29

From here on, we appeal to section 7.3: we write T  = T1∗∗∗∗ T2 with 

T1 perpendicular  to L 2 and T2 parallel  to L 2 (7.3.2), so that 

L 2 ∗∗∗∗ T1 is a reflection L 2′′′′  parallel to L 2 and at a distance |T1|/2 from 

it and ‘backward’ with respect to T1 (7.3.1); it follows at long last 

that R+∗∗∗∗ M  = L2∗∗∗∗ T = L2′′′′ ∗∗∗∗ T2 is indeed a glide reflection (of axis L 2′′′′  and 

vector T2). Since a(T , T1) = a(L 1, L 2) = φ/2 (because T , T1 are 

perpendicular to L 1, L 2, respectively), T2 ’s length is |T | × sin(φ/2) = 

2d × sin(φ/2): you may verify this in the case of figure 7.28, with φ = 
600 and |T2| = d = r 3 /2, where r is the regular hexagon’s side 

length.   

7.7.3 A sticking intersection point. Figure 7.29 makes it 
visually clear that the intersection point of M  and L 2′′′′  is K’s 

projection on M . And figure 7.28 provides further evidence: the two 
glide reflection axes’ common  point is none other than R0’s 

projection on M ! But how do we prove  this fact? The proof is a bit 
indirect : starting from the four lines of figure 7.29, we let B be the 
point where the perpendicular  to M  at A (intersection  point  of M  
and L2′′′′ ) intersects L 2 (figure 7.30); and then we prove that B has  to 

be the same  as K (intersection point of L 1 and L 2) by showing |AB| to 



be equal to d (and implying  that B lies on L 1, too)!  

Fig. 7.30

To do this, we need two more lines: a line perpendicular  to M  

at C (M ’s intersection point with L 2), intersecting L 2
′′′′  at D; and a line 

perpendicular  to L 2
′′′′  at D that intersects L 2 at E. Perpendicularities 

show then the angle CDE to be equal to ∠ CAD = φ/2 and the two right 
triangles EDC and E′D ′C ′  to be similar  (figure 7.30). It follows that 

|DE|

|DC|
 = 

|D′E′|

|D′C′|
, so that |DC| = 

|DE| × |D′C′|

|D′E′|
 = 

(|T1|/2) × (2d)

|T1|
 = d. Now ABCD 

is by assumption  (L 2
′′′′  is parallel to L 2, hence AD is parallel to BC) 

and construction  (both AB and CD are perpendicular to M , hence 
parallel to each other) a parallelogram , therefore |AB| = |CD| = d. 

We can finally state that the composition of a rotation R  = (K, φ) 
and a reflection M  at a distance d from K is a glide reflection G  of 
axis passing through K’s projection on M  and gliding vector of length 
2d × sin(φ/2), intersecting M  at an angle φ/2.

7.7.4 Could it pass through the center? Figures 7.28 & 7.29 may 
for a moment give you the impression that the glide reflections 
produced by the combination of a rotation and a reflection cannot 
possibly pass through the rotation center: once again the case of 
half  turn  comes as a surprise! Not as a complete surprise though, as 
this situation (where the two glide reflection axes of figure 7.28 
become one and the same) is characteristic of the pma2  and pmg    



patterns, where ‘vertical’ reflections ‘multiplied’ by half turns  
produce ‘horizontal’ glide reflection(s) passing through their 
centers: at long last, our ‘ two  as  good  as  three’  observations in 
2.6.3 begin to make full sense!

Notice, along these lines, that the relations M ∗∗∗∗ R = G  and R ∗∗∗∗ M  = 
G −−−−1, where R  is a half  turn , yield (by way of ‘multiplication’ of 
each side by R  and M , respectively, and R2 = M2 = I) the relations 
G∗∗∗∗ R = M = R∗∗∗∗ G−−−−1 and M∗∗∗∗ G = R = G−−−−1∗∗∗∗ M: these represent special cases 
of the next two sections and also illuminate further, if not 
completely, the structure of the pma2  and pmg  patterns! 

7.8  Rotation ∗∗∗∗  Glide  Reflection 

7.8.1  Just a bit of extra gliding. First a rather familiar example: 

Fig. 7.31

What went on? There has been some slight ‘disturbance’  of 
figure 7.28, hasn’t it? All we did was to replace the reflection M  by 
the hidden glide reflection MG , and then ... the glide reflection axes 
got scattered away from the safety of R0’s projection onto M  ... into 

the four points of the horizon -- in fact two of them ended up 



passing through R0 itself, despite the rotation being 600 rather than 

1800 (7.7.4)!

To get a better understanding of the situation, it would be 
helpful to see what happens when MG  is replaced by its inverse: 

Fig. 7.32

In case that was not already clear through the comparison of 
figures 7.28 and 7.31, figure 7.32 certainly proves that the glide 
reflection vector has ‘ the  last  word’ : that should be intuitively 
obvious, and we go on to articulate it right below.

Let R  be the rotation, and G  = M ∗∗∗∗ T = T ∗∗∗∗ M  the glide reflection. 
Then R∗∗∗∗ G = (R∗∗∗∗ M)∗∗∗∗ T and G∗∗∗∗ R = T∗∗∗∗ (M∗∗∗∗ R), where R∗∗∗∗ M and M∗∗∗∗ R are glide 
reflections: this section is just a blending of sections 7.4 and 7.7!

As an example, let us illustrate how we went from the M ∗∗∗∗ R0
 + of 

figure 7.28 (section 7.7) to the MG ∗∗∗∗ R0
 + = T∗∗∗∗ (M ∗∗∗∗ R0

 +) of figure 7.31:



Fig. 7.33

All  we had to do was to apply the idea of figure 7.11 and analyse 
MG ’s gliding vector T  into two vectors: one perpendicular to M ∗∗∗∗ R0

 + 

(T1) that pulls M ∗∗∗∗ R0
 +’s axis ‘ forward’  by |T1|/2 (7.3.1), and one 

parallel to M ∗∗∗∗ R0
 + (T2) that is easily added  to M ∗∗∗∗ R 0

 +’s vector (of 

opposite  to T2’s sense in this case); the outcome is the glide 

reflection of figure 7.33, which is no other than figure 7.31’s 
MG∗∗∗∗ R0

 +, of course.

Figure 7.33 illustrates clearly why the glide reflection axes of 
figures 7.31 & 7.32 are still paral lel  to the glide reflection axes of 
figure 7.28, still making angles of 300 with M . Moreover, figure 7.33 
determines exactly where  they cross M : |AC| = |AB|/(sin(φ/2)) = 
(|T 1 |/2)/(sin(φ/2)) = ((|T |sin(φ/2))/2)/(sin(φ/2)) = |T |/2. (That’s why 

the distance between the two ‘crossing  points’  in figures 7.31 & 
7.32 is equal  to |T | and, may we add, independent  of  φφφφ!) Finally, 
figure 7.33 explains why there are vectors of two distinct  lengths, 
|T | × cos(φ/2) + 2d × sin(φ/2) and ||T | × cos(φ/2) − 2d × sin(φ/2)|, in 
figures 7.31 & 7.32: M ∗∗∗∗ R0

 + and M∗∗∗∗ R0
 −−−− have gliding vectors of equal  

length  2d × sin(φ/2) (7.7.2) but distinct  direct ion , and the latter 
forces distinct lengths for the gliding vectors of T ∗∗∗∗ (M ∗∗∗∗ R 0

 +) and 

T∗∗∗∗ (M∗∗∗∗ R0
 −−−−); to recall our ‘cryptic’ expression from 7.7.2 (as well as 



7.0.4), the longer vector is produced when the glide reflection and 
the rotation ‘ turn  the  same  way’ .

7.8.2 Could it be a reflection? In the important special case 
where the glide reflection axis passes through the rotation center,  
d = 0 implies gliding vectors of length |T | × cos(φ/2) for all  four  
resulting glide reflections; their intersecting axes will still form a 
rhombus  (as in figures 7.31 & 7.32), but the rotation center (R0) 

will now be in the middle  of that rhombus (like fourfold center D  
combined with glide reflection G 4 in figure 6.106 (p4g ), for 

example). But the rhombus disappears when φ = 1800! In partial 
‘compensation’, |T | × cos(1800/2) = 0 turns the glide reflections into 
two  reflections crossing the original glide reflection at a distance 
of |T |/2 from the half turn center: in case you didn’t realize, that’s 
the pmg ’s story!   

In general, when does a rotation turn a glide reflection into a 
reflection? Recall that we asked a similar question in 7.4.2: the 
answer remains the same here, and so does the way to get it. Indeed, 
with R ∗∗∗∗ G = (R∗∗∗∗ (M ∗∗∗∗ T1))∗∗∗∗ T2 and G ∗∗∗∗ R = T2∗∗∗∗ ((T1∗∗∗∗ M)∗∗∗∗ R), all we need is 

for T2 to be of sense  opposite  of R ∗∗∗∗ (M ∗∗∗∗ T1)’s (or (T1∗∗∗∗ M )∗∗∗∗ R ’s) 

gliding vector (which is bound  to happen for either G  or G−−−−1) and  of 
equal  length  to it. Focusing on the latter condition, and referring 
to figure 7.33 and 7.7.2, we see that all we need is the equality     
|T|  ××××  cos( φφφφ/2) = 2d ××××  s in( φφφφ/2)  -- trivially valid in the case of p m g  
(with d = 0 and φ = 1800) and equivalent to |T| = 2d  ×××× tan( φφφφ/2) when 
φφφφ ≠≠≠≠  1800. 

Of course we have already seen an example of R∗∗∗∗ G = M in 7.0.4 
and figure 7.5, where R3

 −−−−∗∗∗∗ G1 = M1: assuming that each tile has side 

length 1, |T | = 2d × tan(φ/2) holds with |T | = 2 /2, d = 2 /4 and 
tan(φ/2) = tan450 = 1. So, it is possible for the composition of a 900 
rotation and a ‘diagonal’  glide reflection to produce a reflection in 
the case of a p4m  pattern; this also happens in the p4g  pattern, as 
you should be able to verify (in figure 4.55 for example).



7.9  Reflection ∗∗∗∗  Glide  Ref lec t ion

7.9.1 Only two centers. In the pmg  pattern, the combination of a 
reflection M  and a glide reflection G  perpendicular to each other 
produces two  half turns the centers of which lie on G ’s axis and are 
mirror  images  of each other about M : this may either be checked 
directly (and by appeal to the discussions in 7.7.4 and 7.8.2 if 
necessary) or be derived as a special case of figure 6.6.2 (by making 
one  of the glide reflection vectors zero). Could this be due to the 
r ight  angle ’s ‘special privileges’? After all, there exist four  
possibilities altogether (M ∗∗∗∗ G , G ∗∗∗∗ M , M ∗∗∗∗ G-1, G−−−−1∗∗∗∗ M ) that could create 
four distinct centers. Well, a look at 7.0.4 and figure 7.6 is not that 
promising for center diversity: over there we established M 1∗∗∗∗ G1 = 

R4
 - and indicated that G1∗∗∗∗ M1 = R5

 +, with M 1  a ‘horizontal’ reflection 

and G1 a ‘diagonal’ glide reflection in a p4m  pattern (bathroom 

wall); and a bit more work would show that M1∗∗∗∗ G1
−−−−1 = R5

 −−−− and G1
−−−−1∗∗∗∗ M1 

= R4
 + -- only two  centers altogether!

Evidence for two rather than four centers is strengthened by a 
more ‘exotic’ (p31m ) example:

Fig. 7.34

You should be able to verify N∗∗∗∗ G = R2
 +, G∗∗∗∗ N = R1

 −−−−, N∗∗∗∗ G−−−−1 = R1
 +, and 



G−−−−1∗∗∗∗ N = R2
 −−−−: again, four  compositions sharing two  centers. (Notice 

here that R1 and R2 are among the p31m ’s ‘off-axis’  1200 centers 

(4.16.1), derived through the compositions above rather than as 
obvious compositions of intersecting reflections.)   

     
 
7.9.2 The way to the two centers. Having ‘only’ two centers 

would make sense not only in view of the examples presented, but 
also in view of what we saw in 7.7.2: the combination of a reflection 
and a rotation produced two, not four, glide reflection axes. 
Moreover, having two rather than four centers will make perfect 
sense after the ‘whole  story’  is revealed in section 7.10!

So, having resigned to living with just two centers, how do we 
find them? How would we justify figure 7.34? Using M 1 instead of N  

and setting G  = M2∗∗∗∗ T = T∗∗∗∗ M2, G−−−−1 = M2∗∗∗∗ T−−−−1 = T−−−−1∗∗∗∗ M2, we notice that 

the four compositions of figure 7.34 may be written as (M 1∗∗∗∗ M 2)∗∗∗∗ T , 

T∗∗∗∗ (M2∗∗∗∗ M1), (M1∗∗∗∗ M2)∗∗∗∗ T−−−−1, and T−−−−1∗∗∗∗ (M2∗∗∗∗ M1); now M1∗∗∗∗ M2 and M2∗∗∗∗ M1 are 

rotations R+, R−−−− of same center K and angle φ (1200 in this case) but 
opposite orientation, so we may ‘blend’  figures 7.34 and 7.22:

  

 
Fig. 7.35



So, with N1 = DE, N2 = CF, M  perpendicular to T (therefore M2 as 

well), L  and L ′′′′  parallel to M  with d(M , L ) = d(M , L ′′′′ ) = |T |/2, and     
a(M , N1) = a(M , N2) = a(M1, M2) = 600 (φ/2), the ‘blending’ of figures 

7.22 and 7.34 is complete: center R1 (figure 7.34) corresponds to F 

(figure 7.22) and the rotations R+∗∗∗∗ T−−−−1 = (M1∗∗∗∗ M2)∗∗∗∗ T−−−−1 = N ∗∗∗∗ G−−−−1 and 

T∗∗∗∗ R−−−− = T∗∗∗∗ (M2∗∗∗∗ M1) = G ∗∗∗∗ N; and center R2 (figure 7.34) corresponds to C 

(figure 7.22) and the rotations R+∗∗∗∗ T = (M1∗∗∗∗ M2)∗∗∗∗ T = N ∗∗∗∗ G and T−−−−1∗∗∗∗ R−−−− = 

T−−−−1∗∗∗∗ (M2∗∗∗∗ M1) = G−−−−1∗∗∗∗ N. And there is a bonus  as well: observe, focusing 

on acute  angles always, that a(M1, N2) = a(M1, M2) + a(M2, N2) = 

a(M , N2) + a(M2, N2) = a(M , M2) = 900! In other words, M1 and N2 are 

perpendicular  to each other: this is going to be important both in 
7.9.3 below and in section 7.10. 

Our analysis above has certainly explained how the composition 
centers are born, but there is one more question to answer: what do 
‘unused centers’  D (intersection of L ′′′′  and N1) and E (intersection 

of L  and N1) of figure 7.35 stand for? The answer is: they represent 

rotations unrelated  to the given pair of reflection and glide 
reflection (and not  ‘belonging’ to the p31m  pattern of figure 7.34)! 
For example, one of the two rotations based on E is R−−−−∗∗∗∗ T = (M2∗∗∗∗ M1)∗∗∗∗ T 

= M 2∗∗∗∗ (M 1∗∗∗∗ T), which is the composition of another pair  of 

reflection (M 2) and, by 7.3.2, glide reflection (M 1∗∗∗∗ T ); it is of course 

crucial that we cannot replace M2∗∗∗∗ M1 by M1∗∗∗∗ M2 (7.2.3). 

7.9.3 A ‘practical guide’. The detailed discussion in 7.9.2 is 
certainly enlightening, but how would you describe to someone not 
terribly interested in mathematical rigor the general  procedure for 
determining the composition of a reflection and a glide reflection? 
To be more precise, how would you lead that person to the center of 
the resulting rotation? That’s really the only crucial question: for it 
is clear from the preceding discussion that the rotation angle is 
twice  the intersect ion  angle  of the reflection and the glide 
reflection; and, once the center is known, the angle’s orientation is 
easy to determine (by checking what happens at the intersection  
point  of the reflection and the glide reflection, for example).



Removing all ‘redundant information’ from figure 7.35, we arrive 
at an easy answer to our question. Indeed, since N2 is perpendicular 

to M1 (7.9.2) and L , L ′′′′  are perpendicular to M2 with the intersection 

point K half way from L  to L ′′′′  (figure 7.35), the procedure for 
determining the rotation centers R1, R2 for the four possible 

compositions of 7.9.1 is simple: pick points K1, K2 on M2 so that |KK1| 

= |KK2| = |T|/2, and then draw lines L ′′′′ , L  perpendicular to M2 at K1, K2 

respectively, and line N2 perpendicular to M1 at K; R1 and R2 are 

now determined as the intersections of N2 by L  and L ′′′′  (figure 7.36).

         

Fig. 7.36

Of course figure 7.36 alone  does not tell us which center 
(between R1, R2) to use for any given combination of reflection and 

glide reflection. Some rules can be derived by referring to the 
discussion following figure 7.35, or perhaps by looking at figure 
7.40 in section 7.10. But it is probably easier to follow the tip given 
above and determine the right center and angle orientation simply by 
checking where the intersection of the two axes is mapped. We 
illustrate all this in figure 7.37 below, where we verify the 
identities M 1∗∗∗∗ G1 = R4

 −−−− and G1∗∗∗∗ M1 = R5
 + of figure 7.6 (bathroom wall), 

which is reproduced in part, explicitly demonstrating the 
determination of centers R4 and R5: looking at the pair K, M1∗ G1(K), 

it becomes clear that the only rotation among R4
 +, R 4

 −−−−, R5
 +, R 5

 −−−−  that 



could map K to M1∗∗∗∗ G1(K) is R4
 −−−−, therefore M1∗∗∗∗ G1 = R4

 −−−− ; likewise, 

looking at the pair K, G1∗∗∗∗ M1(K), we conclude that G1∗∗∗∗ M1 = R5
 +.

        
Fig. 7.37

7.9.4 When the axes are parallel. Everything we discussed so far 
in this section collapses in case M1 and M2, that is N  and G  are 

parallel to each other. Luckily, the compositions N ∗∗∗∗ G  = (M1∗∗∗∗ M2)∗∗∗∗ T 

and G ∗∗∗∗ N = T∗∗∗∗ (M2∗∗∗∗ M1) are much easier to determine in this case; we 

derive these translations  below, leaving N ∗∗∗∗ G−−−−1 and G−−−−1∗∗∗∗ N  to you: 

Fig. 7.38



Of course all this is strongly reminiscent of sections 7.3 and 
7.4; and such compositions are prominent in cm  (and pm ) patterns, 
as well as all patterns containing them: more  on this in chapter 8!

7.10  Glide  reflection ∗∗∗∗  Glide  Ref lec t i on

7.10.1 Parallel axes. This ‘pg’  case is similar to the ‘cm’  case 
of 7.9.4. Indeed G1∗∗∗∗ G2 = T1∗∗∗∗ (M1∗∗∗∗ M2)∗∗∗∗ T2 = (T1∗∗∗∗ T2)∗∗∗∗ (M1∗∗∗∗ M2) and G2∗∗∗∗ G1 

= T2∗∗∗∗ (M2∗∗∗∗ M1)∗∗∗∗ T1 = (T2∗∗∗∗ T1)∗∗∗∗ (M2∗∗∗∗ M1) are ‘diagonal’  translations:

Fig. 7.39

Notice that the special case T1 = −−−−T2 (with T1∗∗∗∗ T2 = I) has been 

employed in 6.3.2 (figure 6.21) in our investigation of two-colored 
pm  patterns.

7.10.2 A good guess indeed! We now come to the much more 
involved case where G1 and G2 intersect each other at a point K. 

Luckily, most of the work has already  been done in section 7.9! 



Indeed, had you been asked to determine G1∗∗∗∗ G2 (etc) yourself, you 

would probably look at figure 7.36 and think like this: “were M 1 a 

glide reflection G 1 = M 1∗∗∗∗ T1 instead of a mere reflection, I would 

have treated it exactly as G 2 = M 2∗∗∗∗ T2; that is, I would draw lines N , 

N ′′′′  perpendicular to M 2 and at a distance of |T2|/2 to the left and 

right of K, and then I would look for the rotation center(s) at their 
intersection(s) with L ′′′′  and L "; and surely you would already know 
that the composition is a rotation  by an angle twice  the 
intersection angle of G1 and G2! And you would be right on the mark:

Fig. 7.40

Figure 7.40 offers an exhaustive  overview of the situation, 
covering all eight  possible combinations and four  rotation centers: 
it is possible to develop rules about ‘what  goes  where’ , but it is 
probably smarter  to do what we suggested in 7.9.3 (and figure 7.37) 
when it comes to determining rotation centers and angle orientation!

In simple terms, draw two perpendiculars at each of the two 
axes and at distances equal to half the length of the respective 
gliding vector on each side of their intersection point, then look for 
the four intersections of the resulting two pairs of parallel lines 



(figure 7.40): observe that this generalizes  figure 6.54, where the 
two axes are perpendicular  to each other!  

7.10.3 Where do they come from? Notice how we have upgraded  
from the two possible centers of figure 7.36 to the four possible 
centers of figure 7.40: this is hardly surprising if you notice that we 
did get an extra translation here (as the reflection turned into glide 
reflection) and if you recall how the addition of a translation 
increased the number of glide reflection axes from two (figure 7.28, 
R ∗∗∗∗ M) to four (figures 7.31 & 7.32, R ∗∗∗∗ G).

In 7.8.1, and figure 7.33 in particular, we explained how the 
additional translation leads to the two extra axes (when the 
reflection (figure 7.28) combined with the rotation is upgraded  to 
glide reflection (figures 7.31 & 7.32)). We do something similar in 
figure 7.41 below, showing how each  of the two rotation centers 
(R1, R2) generates two  new rotation centers (R4, R5 and R3, R6, 

respectively), the same  way  K generated R1 and R2 in figure 7.36:

Fig. 7.41



Basically, all we had to do was to combine each of R1 and R2 

with the ‘added’  translation T1, exactly as in figures 7.22 and  7.35; 

and, for the same reason that line N1 was ‘useless’  in figure 7.35, 

lines N11 and N21 play no role in figure 7.41: our rotation centers 

are created by the intersections of lines N12 and N22 with L  and L ′′′′ . 
(Notice however that R5 also  lies on N21, while R6 also  lies on N11: 

this is part of a ‘coincidence’  discussed right below.)    

Are you ready for a little surprise , at long last? Figure 7.41 is 
in fact an ‘abstract  detai l ’  of a famil iar  piece, namely figure 
7.34! Indeed M 2∗∗∗∗ T2 is figure 7.34’s glide reflection G , while M 1∗∗∗∗ T1 

is figure 7.34’s reflection N  upgraded to a hidden glide reflection 
MG ; everything is fully revealed in figure 7.42: 

MG∗ G = R3
 +, G∗ MG = R4

 −, MG∗ G−1 = R5
 +, G−1∗ MG = R6

 −, 

G−1∗ MG−1 = R3
 −, MG−1∗ G−1 = R4

 +, G∗ MG−1 = R5
 −, MG−1∗ G = R6

 +

Fig. 7.42

So, the ‘coincidence’ mentioned above reflects on the fact that 
R5 and R6 are ‘on-axis’  1200 centers in figure 7.34’s p31m  pattern: 

figure 7.42 indicates that those centers are generated whenever two 
‘somewhat  opposite’  glide reflections are combined; but it is 



more crucial to find out ‘why’  those centers fall on the axes, and we 
do that next as a byproduct of a broader investigation.

7.10.4* Some coordinates, at long last! Our goal here is to 
determine the location  of the four rotation centers (A, B, C, D) 
corresponding to ‘all possible combinations’ of the two given glide 
reflections G 1 , G 2  analyt ical ly  -- that is, using car tes ian  

coordinates  (for the first time since chapter 1)! To do that, we 
‘rotate’  figure 7.40 so that G 1 is now our x-axis  (y = 0), while G 2 

is a line of unspecified slope  m  (y = mx), and the intersection point 
of G1, G2 is the origin  (0, 0); we also set |T1| = 2d1 and |T2| = 2d2, 

so that the perpendiculars to G1, N and N ′′′′ , are now represented by 

the equations x = d1 and x = −d1, respectively (figure 7.43).     

Fig. 7.43

The critical step is to determine the equations of the lines L  and 
L ′′′′ : being perpendicular to y = mx and symmetric  of each other about 
(0, 0), they may be written as y = (−1/m)x − k and y = (−1/m)x + k, 
respectively; k is a real number that we need to determine, and we 



do so by first determining the coordinates of K1 and K2, the 

intersection points of G 2 with L  and L ′′′′ , respectively (figure 7.43).

Solving the systems y = mx = ( −−−−1/m)x + k  and y = mx =  

(−−−−1/m)x −−−−  k, we obtain K1 = (
−km

m2+1
,
−km2

m2+1
) and K2 = (

km

m2+1
, 

km2

m2+1
). 

We know that |K1K2| = 2d2, so the distance  formula  leads to 

(
−km

m2+1
−

km

m2+1
)2 + (

−km2

m2+1
−

km2

m2+1
)2  = 2d2, which is equivalent to 

4k2m2

(m2+1)2
 + 

4k2m4

(m2+1)2
 = 4d2

 2, 
k2m2

m2+1
 = d2

 2 and, finally, k = ±±±±
d 2

m
m 2+ 1 . 

Knowing now the equations of L  (y = (−1/m)x − (d2/m) m2+1 ) 

and L ′′′′  (y = (−1/m)x + (d2/m) m2+1 ), it is t r iv ial  to determine the 

coordinates of their intersections with N  (x = d1) and N ′′′′  (x = −d1):  

  

A = (d 1, 
−−−−d 1−−−−d 2 m 2+ 1

m
),    B = (d 1, 

−−−−d 1+d 2 m 2+ 1

m
),          

C = (−−−−d 1, 
d 1+d 2 m 2+ 1

m
),    D = (−−−−d 1, 

d 1−−−−d 2 m 2+ 1

m
).

Now we can finally answer the question: when does the center of 
a rotation that is the composition of two glide reflections lie on one 
of the glide reflection axes? Working in the context of figure 7.43, 
always, we notice that there exist two  distinct possibilities: two 
centers lying on G 1 (if and only if their y-coordinate is 0), and two 

centers lying on G 2 (if and only if their coordinates x and y satisfy y 

= mx). Indeed the first possibility may only  occur for both  B and D 

at  the  same  t ime , and is equivalent to d 1 = d 2 m 2+ 1 ; and the 

second possibility may only  occur for both  B and D at  the  same  

t ime , and is equivalent to d 2 = d 1 m 2+ 1 . (The roles of B, D and A, 

C are switched  when we select −−−− instead of + in the above derived 
formula for k, with the formulas for L  and L ′′′′  swapped .) Observe 
that we may in fact set m = tan γγγγ, where γ = φ/2 is the acute  angle 



between the two glide reflection axes; with m2+1 = tan2γ+1 = 
1

cos2γ
, 

our condition becomes |T1| = |T2| × cosγ or  |T2| = |T1| × cosγ. [Notice 

that this condition is made all too obvious by figure 7.41, making all 
previous calculations above seem totally redundant ; but our main 
goal was the determination of the composition center’s 
coordinates  in the general  case  (i.e., when the resulting rotation 
center lies on no glide reflection axis).] 

In the case of the p31m  pattern of figures 7.34 & 7.42, we may 
set, after rotating the coordinate system as above, m = −−−− 3 ; a bit 

of Geometry shows then that |T2| = 2|T1|, hence d2 = d1 m2+1  and 

|T1| = |T2| × cosγ are valid: on-axis  rotations may therefore be seen 

as compositions of one genuine and one hidden glide reflection. 

In the case of perpendicular  glide reflections, l i m
m→∞

m2+1

m
 = 1 

(the fraction approaching 1 as m approaches infinity) and d1/m = 0 

yield the centers (±±±±d 1, ±±±±d 2), corroborating figure 6.54 and 

contributing to our understanding of pgg  and cmm  patterns. In the 
case of the latter, the off-axis centers are always produced by one 
reflection and one glide reflection perpendicular to each other; any 
pair of perpendicular glide reflections produces four centers lying, 
as we indicated in 6.9.3, on intersections of reflection  axes, hence 
not  on glide  reflection axes. 

In the case of the p4g  pattern of figure 7.44 (and 4.55), working 
with the shown horizontal and diagonal glide reflection axes and 
vectors, observe that m = tan450 = 1, d1 = a/2, and d2 = a/(2 2 ) = 

d1cos450, so that 
d1+d2 m2+1

m
 = a and 

d1−d2 m2+1

m
 = 0; here a 

stands for the length of the horizontal  glide reflection vector 
(figure 7.44). The four intersection points (and fourfold centers) are 
(a/2, 0), (−a/2, 0), (a/2, −a), and (−a/2, a); the first two centers do  
indeed lie on the horizontal glide reflection axis:



Fig. 7.44
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