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CHAPTER 1

 ISOMETRIES AS FUNCTIONS

1.0  Functions and isometries on the plane

1.0.1 Example. Consider a fixed  point O and the following 
‘operation’: given any other point P on the plane, we send (map ) it to 
a point P′  that lies on the ray going from O to P and also satisfies 
the equation |OP ′′′′ | = 3 ×××× |OP|  (figure 1.1). It is clear that for each 
point P there is precisely one point P′ , the image of P, that 
satisfies the two conditions stated above. Any such process that 
associates precisely one image point to every point on the plane is 
called a function (or mapping ) .

                    
Fig. 1.1

1.0.2 Coordinates. Let us now describe the ‘blowing out’ 
function discussed in 1.0.1 in a different way, using the cartesian  
coordinate  system  and positioning O at the origin , (0, 0). 
Consider a specific point P with coordinates  (2.5, 1.8). Looking at 

the similar  triangles  OPA and OP′B in figure 1.2, we see that 
|P′B|

|PA|
 

= 
|OB|

|OA|
 = 

|OP′|

|OP|
 = 3, hence |P′B| = 3 × |PA| = 3 × 1.8 = 5.4 and |OB| = 3 × |OA| 



= 3 × 2.5 = 7.5. That is, the coordinates of P′  are (7.5, 5.4). In exactly 
the same way we can show that an arbitrary point with coordinates 
(x, y) is mapped to a point with coordinates (3x, 3y). We may 
therefore represent our function by a formula: f(x, y) = (3x, 3y) .

          
Fig. 1.2

1.0.3 Images. Let us look at the rectangle ABCD, defined by the 
four points A = (2, 1), B = (2, 2), C = (5, 2), D = (5, 1). What happens 
to it under our function? Well, it is simply mapped to a ‘blown out’  
rectangle A′B ′C ′D ′  -- image  of ABCD under the ‘blow out’ function --
with vertices (6, 3), (6, 6), (15, 6), and (15, 3), respectively:

 

    
Fig. 1.3



1.0.4 More functions. One can have many more functions, 
formulas, and images. For example, g(x,y) = (2x −−−−y, x+3y)  maps 
ABCD to a parallelogram, while h(x, y) = (3x+y, x −−−−y 2+4) maps 
ABCD to a semi-curvilinear quadrilateral (figure 1.4). We compute 
the images of A under g and h, leaving the other three vertices to 
you: g(A) = g(2, 1) = (2×2−1, 2+3×1) = (3, 5); h(A) = h(2, 1) = (3×2+1, 
2−12+4) = (7, 5). (You may find more details in 1.0.8.) 

Fig. 1.4

1.0.5 Distortion and preservation. Looking at the three functions 
f, g, and h we have considered so far, we notice a progressive 
‘deterioration’: f simply failed to preserve distances (mapping ABCD 
to a bigger rectangle), g failed to preserve right angles (but at least 
sent parallel lines to parallel lines), while h did not even preserve 
straight lines (it mapped AB and CD to curvy lines). Now that we 
have seen how ‘bad’ some (in fact most) functions can be, we may as 
well ask how ‘good’ they can get: are there any functions that 
preserve distances (therefore  angles and shapes as well), 
satisfying |AB| = |A ′′′′B ′′′′ | for every two points A, B on the plane? 



The answer is “yes”. Distance-preserving functions on the plane 
do exist, and we can even tell exactly what they look like: they are 
defined by formulas like F(x, y) = (a ′′′′+b ′′′′x+c ′′′′y, d ′′′′+e ′′′′x+f ′′′′y) , where 
a ′ , d′  are arbitrary, b′2+e ′2 = c′2+f ′2 = 1, and either  f′  = b′ , e′  = −c ′  or  
f′  = −b ′ , e′  = c′ ! This is quite a strong claim, isn’t it? Well, we will 
spend the rest of the chapter proving it, placing at the same time 
considerable emphasis on a geometric  description of the involved 
functions. For the time being you may like to check what happens 
when b′  or c′  are equal to 0: what is the image of ABCD in these 
cases? (Look at specific examples involving situations like a′  = 3,   
b ′  = 0, c′  = 1, d′  = 2, e′  = -1, f′  = 0 or a′  = -2, b′  = -1, c′  = 0, d′  = 4,       
e ′ = 0, f′ = 1, and determine the images of A, B, C, D.)  

1.0.6 What’s in a name? You probably feel by now that such nice, 
distance and shape preserving functions like the ones mentioned 
above deserve to have a name of their own, don’t you? Well, that 
name does exist and is probably Greek to you: isometry , from ison  
= “equal” and metron  = “measure”. The second term also lies at the 
root of “symmetry” = “syn” + “metron” = “plus” + “measure” 
(perfect measure, total harmony). In fact ancient Greek isometria  
simply meant “symmetry” or “equality”, just like the older and more 
prevalent symmetr ia . The term “isometry” with the meaning 
“distance-preserving  funct ion”  entered English -- emulating 
somewhat earlier usage in French and German -- in 1941, with the 
publication of Birkhoff & Maclane’s Survey  of  Modern  Algebra .    

1.0.7 Isometries preserve straight lines! We claim that every 
isometry maps a straight line to a straight line. And, yes, one could 
prove this claim without even knowing (yet) what isometries look 
like, without having seen a single example of an isometry! In fact, 
one could prove that isometries preserve straight lines without even 
knowing for sure that isometries do exist!! This mathematical world 
can at times be a strange one, can’t it? But how do we prove such an 
‘abstract’ claim?

Well, a clever observation is crucial here: it suffices to show 
that every isometry maps three distinct coll inear  points to three 



distinct coll inear  points! Indeed, let’s assume this ‘subclaim’ for 
now, and let’s prove right below the following: every function (not  
necessarily an isometry!) that maps every three collinear points to 
three collinear points must also map every straight line L to (a 
subset  of) a straight line L′ . Once this is done, preservation of 
distances shows easily that the image of L actually ‘fills’  L′ . 

Start with a straight line L and pick any two distinct points P1, 

P2 on it. These two points are mapped by our function to distinct 

points P1′ , P2′  that certainly define  a new line, call it L′ . Now every 

other point P on L is collinear with P1, P2, therefore, by our subclaim 

above (still to be proven!), its image P′  is collinear with P1′ , P2′ , 

hence it lies on L′  (figure 1.5). That is, every point P on L is mapped 
to a point P′  on L′ , hence L itself is mapped ‘inside’  L′ .

       

Fig. 1.5

So, how do we prove our subclaim that an isometry must always 
map collinear points to collinear points? Well, let A, B, C be three 
collinear points that are mapped to not necessarily collinear points 
A ′ , B′ , C′ , respectively (figure 1.6). We are dealing with an isometry, 
therefore |A′C′| = |AC|, |A′B′| = |AB|, and |B′C′| = |BC|. Since A, B, C are 
collinear, |AC| = |AB| + |BC|. But then |A′C′| = |AC| = |AB| + |BC| =       
|A′B′| + |B′C ′|. We are forced to conclude that A′, B′, C′ must indeed be 
collinear: otherwise one side of the triangle A′B ′C ′  would be equal  to 
the sum of the other two sides, violating the familiar tr iangle  
inequal i ty .



        

Fig. 1.6

1.0.8 Practical (drawing) issues. As you will experience in the 
coming sections, the fact that isometries map straight lines to 
straight lines makes life a whole lot easier: to draw the image of a 
straight line segment, for example, all you have to do is determine 
the images of the two endpoints  and then connect  them with a 
straight line segment. On our part, we will be repeatedly applying 
this principle throughout this chapter without specifically 
mentioning it. 

On the other hand, determining the image of either a straight 
segment under a function that is not an isometry or a curvy segment 
under any function requires more work: one needs to determine the 
images of several points between the two endpoints and then 
connect them with a rough  sketch . This is, for example, how h(AB) 
has been determined in 1.0.4: h(2, 1) = (7, 5), h(2, 1.2) = (7.2, 4.56), 
h(2, 1.4) = (7.4, 4.04), h(2, 1.6) = (7.6, 3.44), h(2, 1.8) = (7.8, 2.76), 
h(2, 2) = (8, 2). This is indeed a lot of work, especially when not 
done on a computer! Luckily, most images in this book are 
determined geometrically rather than algebraically; more to the 
point, most shapes under consideration will be quite simple 
geometrically, defined by straight lines. 

1.0.9* How about parallel lines? Now that you have seen why 
isometries must map straight lines to straight lines, could you go 
one step further and prove that isometries must also map parallel 
lines to parallel lines? You can do this arguing by  contradiction : 
suppose that parallel lines L1, L2 are mapped by an isometry to non-

parallel lines L1′ , L2′  intersecting each other at point K; can you then 



notice something impossible that happened to those distinct  points 
K1, K2 (on L1, L2, respectively) that got mapped to K? 

And if you are truly adventurous, can you prove, perhaps by 
contradiction, that whenever a function (not necessarily an 
isometry!) maps straight lines to straight lines it must also map 
parallel lines to parallel lines?

1.1  Translation

1.1.1 Example. Consider the triangles ABC, A′B ′C ′ below:

                         
            
Fig. 1.7

Not only they are congruent to each other, but they also happen 
to be ‘parallel’  to each other: AB, BC, and CA are parallel to A′B ′ , 
B ′C ′ , and C′A ′ , respectively. This is a rather special situation, and 
what lies behind it is a vector . 

1.1.2 Vectors. Familiar as it might be from Physics, a vector is 
a hard-to-define entity. It basically stands for a uniform motion 
that takes place all over the plane: every single point moves in the 
same direction  (the vector’s direction -- but have a look at 1.1.5, 
too) and by the same distance  (the vector’s length). In figure 1.7, 
for example, it is easy to see that every point of the triangle ABC 
has moved in the same southwest to northeast (SW-NE) direction by 



the same distance. We represent this motion by the ‘arrow’ below 
and call it a translat ion  -- “transferring (ABC) to (A′B ′C ′ )”, in the 
same way a text  is transferred  from one language to  another --

defined by the vector v
→→→→

:  

                                    

Fig. 1.8

Comparing figures 1.7 and 1.8, we easily conclude that every 
vector uniquely defines a translation and vice-versa. Notice also 
that the triangle A′B ′C ′  moves back to the triangle ABC by a 
translation opposite  of the SW-NE one we already discussed, a 
translation defined by a NE-SW vector of equal  length:  

                                    

Fig. 1.9
 

1.1.3 It’s an isometry! While figure 1.7 makes it ‘obvious’ that 
every translation does preserve distances, it would be nice to 
actually have a proof of this claim. All we need to do is to show that 

if points A and B move by the same  vector v
→

 to image points A′ , B′  
then |A ′′′′B ′′′′ | = |AB| . But this is easy: as AA′  and BB′  are ‘by definition’ 
parallel  and equal  to each other, AB and A′B ′  are by necessity the 
opposite, therefore equal (and parallel), sides of a parallelogram : 



   
Fig. 1.10

1.1.4 Coordinates. Let us revisit 1.1.1, placing now figure 1.7 in 
a cartesian coordinate system, so that the coordinates of A, B, C and 
the approximate  coordinates of A′ , B′ , C′  are as shown below:

Fig. 1.11

It doesn’t take long to realize that our translation simply adds  
approximately 3.6 units to the x-coordinate of every point and 
approximately 2.5 units to the y-coordinate of every point; this is 
explicitly shown in figure 1.11 for C and C′ . We call these two 
numbers coordinates  of the translation vector, which we may now 

write as v
→→→→

 ≈≈≈≈  <3.6, 2.5>. By the Pythagorean  Theorem , the 



vector’s length is approximately 3.62 + 2.52  ≈  4.3. All this is 
further clarified in figure 1.12, which in particular shows how the 
translation vector’s coordinates are determined by the image O′  of 
(0, 0):

                            
Fig. 1.12

That is, we may represent this translation employing the 
formula T(x, y) = (3.6+x, 2.5+y) . More generally, every translation 
on the plane may be represented by a formula of the form T(x, y) = 
(a+x, b+y) . Conversely, each formula of the form T(x, y) = (a+x, b+y) 
represents a translation defined by the vector <a, b>; sometimes we 
may even denote the translation itself by <a, b>. Observe that the                            
opposite of the translation defined by the vector <a, b> is simply 
defined by the vector <−−−−a, −−−−b> . For example, the opposite translation 
of <3.6, 2.5> that we discussed in 1.1.2 is <−−−−3.6, −−−−2.5>.

1.1.5 ‘Determining’ a vector. While figure 1.12 provides 
sufficient illustration on the relation between a vector’s length, 
direction, and coordinates, just a bit of Trigonometry  makes 

everything so much clearer! Indeed, since the vector v
→

 of length 4.3 
makes a vector-angle  of about 360 with the posit ive  x-axis, its 
x-coordinate and y-coordinate are given by 4.3 × cos360 ≈ 4.3 × .81       
≈ 3.48 and 4.3 × sin360 ≈ 4.3 × .59 ≈ 2.53, respectively. While 
absolute precision has not been achieved, <3.48, 2.53> is indeed very 
close to <3.6, 2.5>. The quotient 2.53/3.48 ≈ .73 is the vector’s 
slope , which is another quantitative way of describing the vector’s 
direction. (Those who know a bit more know of course that this slope 
is equal to approximately tan360.)



Beware at this point of a simple, yet important, fact: while the 
two distinct vectors <3.6, 2.5> and <−3.6, −2.5> share the same 
direction, their slopes being equal (2.5/3.6 = (−2.5)/(−3.6)), they are 
of opposite sense , going opposite ways (as figures 1.8 & 1.9 
demonstrate). Moreover, as we shall see in 1.4.7, opposite  vectors 
have distinct  vector-angles, in this case 360 and 2160, 
respectively. So, it is important to remember that for every 
slope/direction there exist two distinct, and opposite of each other, 
senses. Notice at this point that any two vectors of equal length and 
same direction and  sense are one and the same, while any two 
vectors of equal length and same direction might be either one and 
the same or opposite of each other. 

1.2  Reflection

1.2.1 Mirrors create equals. Anyone who has ever successfully 
looked into a mirror is aware of this simple, as well as deep, natural 
phenomenon. Moreover, the closer you stand to a mirror, the closer 
you see your image in it -- another simple truth that even your cat 
is likely to be painfully aware of! In fact your mirror  image  lies 
precisely as far ‘inside’ the mirror as far away from it you stand: a 
fact used by many restaurants, bars, etc, to ‘double’ their perceived 
space. As mirrors or calm ponds cannot be included in books, we need 
a more abstract way of illustrating such natural observations, and 
we must indeed invent a ‘paper equivalent’ of a mirror!

 1.2.2 Reflection axes. In order to ‘touch’ your mirror image 
inside a mirror you need to extend your hand toward the mirror 
straight  ahead , so that it makes a r ight  angle  with the mirror, 
right? Well, this simple observation, together with the ones made in 
1.2.1, helps us come up with the needed representation of a mirror 
on paper. The image P′  of a point P under reflection  about the axis  
(mirror) L is found as figure 1.13 indicates:



               

Fig. 1.13

That is, we get the same effect on P as if an actual mirror had 
somehow been placed perpendicularly to this page along L: you may 
of course go through such an experiment and see what happens! 

1.2.3 Images. Let us return to triangle ABC of figure 1.7 and try 
to find its image under reflection by the straight line L in figure 
1.14. We do that simply by determining the images A′ , B′ , C′  of 
vertices A, B, C and then connecting them to obtain the image 
triangle A′B ′C ′:

             

Fig. 1.14



1.2.4 It’s an isometry! The two triangles in figure 1.14 certainly 
look congruent. This might not be as obvious as it was in the case of 
the two triangles of figure 1.7 -- we will elaborate on this in 
section 3.0 -- but, having three pairs of seemingly equal sides, ABC 
and A′B ′C ′ have to be congruent. How do we show that |BC| = |B ′′′′C ′′′′ |, 
for example?

               

Fig. 1.15    

 Well, all we need to do is draw segments CD, C′D ′  (both parallel  
to L and perpendicular to BB′ , CC′) and notice, with the help of the 
rectangles  FECD and FEC′D′ (figure 1.15), that |DF| = |CE| = |C′E| = 
|D′F|, therefore |DB| = |BF| − |DF| = |B′F| − |D′F| = |D′B′|, while |DC| = |FE| = 
|D ′C ′ |: it follows that the two right  triangles  DBC and D′B ′C ′  are 
congruent  (because |DB| = |D′B′| and |DC| = |D′C′|), hence |BC| = |B′C′|.

1.2.5 Coordinates. Let us now place triangles ABC, A′B ′C ′ and the 
axis L in a cartesian coordinate system (figure 1.16) and see what 
happens! You may use your straightedge to estimate the coordinates 
of A′ , B′ , and C′  and verify that (2, 1), (2, 3), and (6, 2) got mapped to 
approximately  (5.1, 7.7), (3.6, 6.4), and (6.9, 4), respectively. 



Fig. 1.16

Unlike in the case of translation, there is no obvious algebraic  
way of describing the transformation of coordinates observed above. 
This is of course no reason for giving up on determining the magic 
formula, if any, that lies behind this transformation of coordinates.

1.2.6 The reflection formula. Let L be a straight line with 
equation ax + by = c  and M(x, y) be the mirror image of an arbitrary                      
point (x, y) under reflection about L. Then (‘magic formula’) 

M(x, y) =  

= (
2 a c

a2+b 2
 + 

b 2−−−−a2

a2+b 2
x −−−−  

2 a b

a2+b 2
y,  

2 b c

a2+b 2
 −−−−  

2 a b

a2+b 2
x −−−−  

b 2−−−−a2

a2+b 2
y )

 
Proof*: Let (x ′′′′ , y ′′′′ ) be the coordinates of M(x, y) and (x 1, y1) be 

the coordinates of the midpoint  Q  of the segment connecting (x, y) 
and (x′ , y′); Q lies, of course, on  the mirror L (figure 1.17), while     

x1 = 
x+x′

2
 and y1 = 

y+y′

2
.



                  
Fig. 1.17

Since (x1, y1) = (
x+x′

2
, 

y+y′

2
) lies on the line ax + by = c, we 

obtain a(
x+x′

2
)+b(

y+y′

2
) = c, therefore a(x+x′)+b(y+y′) = 2c, 

ax+ax ′+by+by ′  = 2c, and, finally, ax ′′′′+by ′′′′  = 2c−−−−ax−−−−by  (I).

Next, observe that the line ax + by = c (or, in equivalent form, 

and assuming b ≠≠≠≠  0, y = −−−−
a

b
x + 

c

b
) and the segment connecting (x, y) 

and (x′ , y′) have slopes  that are negative  reciprocals  of each 
other: indeed the line and the segment are perpendicular  to each 

other. Since the line’s slope is −−−−
a

b
 and the segment’s slope is 

y ′′′′ −−−−y

x ′′′′ −−−−x
, 

we conclude that 
y′−y

x′−x
 = 

b

a
, hence a(y′−y) = b(x′−x), ay′−ay = bx′−bx 

and, finally, bx ′′′′ −−−−ay ′′′′  = bx−−−−ay  (II).

Multiplying now (I) by a and (II) by b  and adding the two products 
we get (a2x′+aby′)+(b2x′−aby′) = (2ac−a2x−aby)+(b2x−aby), therefore 

(a2+b2)x′ = 2ac+(b2−a2)x−2aby and x ′′′′  = 
2 a c

a2+b 2
 + 

b 2−−−−a2

a2+b 2
x  −−−− 

2 a b

a2+b 2
y  

(III). Very similarly (multiplying (I) by b  and (II) by −−−−a , etc) we see 

that y ′′′′  = 
2 b c

a2+b 2
 −−−−  

2 a b

a2+b 2
x −−−−  

b 2−−−−a2

a2+b 2
y  (IV). Observe now that (III) 

and (IV) together yield the reflection formula we wished to 
establish.



When b = 0, one can see directly  that the image of (x, y) under 

reflection about the vert ical  line x = 
c

a
 is  M(x, y) = (

2 c

a
 −−−−  x, y) ; 

this observation does prove the reflection formula in the special 
case b = 0. 

1.2.7 Let’s check it out! Does an application of the reflection 
formula obtained in 1.2.6 confirm our empirical observations and 
coordinate est imates  in 1.2.5? Well, it better, otherwise there is 
something wrong somewhere! Let’s see: in figure 1.16 the reflection 
axis L passes through (13, 0) (x-intercept) and (0, 6) (y-intercept), 

hence its equation is 
x

1 3
 + 

y

 6 
 = 1 or 6x + 13y = 78 ; this leads to 

a = 6, b = 13, and c = 78, so that a2+b2 = 62+132 = 36+169 = 205, 
b2−a2 = 132−62 = 169−36 = 133, 2ab = 2 × 13 × 6 = 156, 2ac =             
2 × 6 × 78 = 936 and 2bc = 2 × 13 × 78 = 2,028. The reflection formula 
tells us that the image of a point (x, y) is given by 

M(x, y) = (
2ac

a2+b2
 + 

b2−a2

a2+b2
x − 

2ab

a2+b2
y,  

2bc

a2+b2
 − 

2ab

a2+b2
x − 

b2−a2

a2+b2
y) = 

= (
936

205
 + 

133

205
x − 

156

205
y, 

2028

205
 − 

156

205
x − 

133

205
y) ≈

≈  (4.56 + .65x −−−−  .76y, 9.89 −−−−  .76x −−−−  .65y) . 

Therefore the image of, say, (6, 2) ‘predicted’ by our formula is 
(4.56 + .65 × 6 − .76 × 2, 9.89 − .76 × 6 − .65 × 2) = (4.56+3.9−1.52, 
9.89−4.56−1.3) = (6.94, 4.03), which is marvelously close to our 
estimates in figure 1.16! (This is the check applied to C and C′ ; make 
sure you verify the reflection formula for A, A′  and B, B′ , too.)

 

1.2.8 Crossing a mirror? One important aspect of reflection you 
will have to get used to is the fact that, unlike in the real world, a 
mirror can cross  through an object (set) reflected about it, and vice 
versa. To find the image of a set that does intersect a mirror, all you 
have to do is apply the ‘natural rules’ outlined in 1.2.1 and 1.2.2 
without worrying about ‘physical realities’. Here is an example: 

              



                    
Fig. 1.18

Beware of ‘mirror-crossing’ cases where the mirror image falls 
back on the original set point by point: in such cases, which will 
become important in the rest of this book, we say that the set in 
question has an internal  mirror  and mirror  symmetry . The 
following English letters have mirror symmetry: A, B, C, D, E, H, I, M, 
O, T, U, V, W, X, Y. 

    

1.3  Rotation

1.3.1 How about a ‘time game’? Suppose that it is 9:40 (PM or 
AM) now that you are reading this paragraph. Take your watch in your 

Fig. 1.19
                                                                                             

hands, stop the time at 9:40 and start to slowly turn  it around. You 



may do this on a piece of paper where you have already marked the 
positions of 12, 3, 6, and 9 as if on a compass (N, E, S, W); you may 
of course mark the other hours in between as well. There are 
positions where, as figure 1.19 demonstrates, your turning watch’s 
hands will approximately show 2:00 or 4:10, right? Could you tell 
how much you should turn your watch in order to ‘attain’ these 
times? Well, while a precise answer would require (just like the 
determination of the exact attainable times) some serious 
mathematical thinking, you should be able to handle the question as 
posed: a clockwise  (‘screwing’) turn by 1300 will make the watch 
show a time close to 2:00 (2:01′ :49″  to be precise!), while a 
clockwise turn by 1950 will ‘change the time’ from 9:40 to 
approximately 4:10 (in fact 4:12′ :44″ , but you don’t have to worry 
about that right now).  

1.3.2 What happened to the watch? While the ‘time game’ 
described in 1.3.1 can indeed get quite complicated, especially if 
played with precision, some simple facts about the stopped watch’s 
‘condition’ during its turning around are simple and indisputable: its 
center remained fixed, the angle  between the two hands remained 
the same (500), and, last but not least, the distance  between the 
tips of the two hands never changed. It seems that our watch-
turning game preserves distances: could in fact be some kind of 
isometry, then?

                                 

Fig. 1.20

Figure 1.20 describes the change of time from 9:40 to 
approximately 2:00 during our game: S and L represent the position 
of the tips of the watch’s short and long hand, respectively, at 9:40, 



while S′  and L′  represent the position of those tips at about 2:00. One 
thing that cannot be missed is the fact that both  angles LOL′  and 
SOS ′ are equal to about 1300. What really happened to the tips, and 
hands, and the entire watch in fact, is a clockwise rotation  by an 
angle of approximately 1300 about the point O (the watch’s center).     

1.3.3 How does rotation work? Even though figure 1.20 says it 
all, it would be useful to offer another example here, this time of a 
counterclockwise  (‘unscrewing’) rotation by  700 about  the center 
K shown in figure 1.21. How do we find the image P′  of any given 
point P under this rotation? We simply draw KP, measure it either 
with a ruler or with a compass, then ‘build’ a 700 angle ‘to the left 
hand’ of KP with the help of a protractor, and finally pick a point P′  
on the angle’s ‘new’ leg so that |KP ′′′′ | = |KP| . That’s all!                                       

                        

Fig. 1.21

1.3.4 It’s an isometry! Let us now verify our conjecture in 1.3.2 
and prove that every rotation is indeed an isometry. We return to our 
watch example and prove that |LS| = |L ′′′′S ′′′′ |, which says that the 
distance between the two images L′ , S′  is equal to the distance 
between the two original points L, S; the general case is proven in 
exactly the same way. 



                                 
Fig. 1.22

Let us look at the two triangles OLS, OL′S ′  (figure 1.22): they 
have two pairs of equal sides as |OS| = |OS ′′′′ | (short hands) and |OL| = 
|OL ′′′′ | (long hands). If we show the in-between angles ∠ LOS and ∠ L′OS ′ 
to be equal, then the two triangles are congruent and, of course, |LS| 
= |L′S ′ |. But the equality of the two angles follows easily: ∠ LOS = 
∠ LOL′−∠ SOL′ = ∠ SOS′ − ∠ SOL′ = ∠ L′OS′. (Note: ∠∠∠∠ LOL ′′′′  = ∠∠∠∠ SOS′′′′  ≈≈≈≈ 1300.)

1.3.5 Images. Now that we know how rotation works, let us find 
the image of triangle ABC from 1.1.1 under rotation about the center 
K in figure 1.23 and by the counterclockwise 700 angle of 1.3.3. We 
do this by finding the images A′ , B′ , C′  of A, B, C (figure 1.23): 

                      
Fig. 1.23



1.3.6 Coordinates. Let us now place the triangles ABC, A′B ′C ′  of 
1.3.5 in a cartesian coordinate system as shown in figure 1.24, so 
that the coordinates of A, B, C will again be (2, 1), (2, 3), (6, 2),                              
respectively, those of the rotation center will be (8, −2). Estimating 
the coordinates of A′ , B′ , and C′  as in 1.2.5, we find them to be 
approximately  (3.2, −6.8), (1.4, −6), and (3.6, −2.7), respectively.

               
Fig. 1.24

Exactly as in 1.2.5, you might wonder whether there could 
possibly exist a ‘magic formula’ that could ‘predict’ the coordinates 
estimated above. Such a formula does exist, but its derivation is 
even harder than that of the reflection formula in 1.2.6 and can only 
be understood with some knowledge of Trigonometry.

1.3.7 The rotation formula. Let R(x, y) = (x ′′′′ , y ′′′′ ) be the image 
of an arbitrary point (x, y) under rotation about the rotation 



center K = (a, b)  by a rotation angle φφφφ. Then either

x ′′′′  = (1−−−−cos φφφφ)a −−−−  (sin φφφφ)b + (cos φφφφ)x + (sin φφφφ)y ,

y ′′′′  = (sin φφφφ)a + (1−−−−cos φφφφ)b −−−−  (sin φφφφ)x + (cos φφφφ)y                             
                                                                                                         
(in case φ is clockwise ) or

x ′′′′  = (1−−−−cos φφφφ)a + (sin φφφφ)b + (cos φφφφ)x −−−−  (sin φφφφ)y ,

y ′′′′  = −−−−(sin φφφφ)a + (1−−−−cos φφφφ)b + (sin φφφφ)x + (cos φφφφ)y    
                                                                                                   

(in case φ is counterclockwise ) .

These formulas are indeed complicated, almost hard to believe, 
aren’t they? Well, for a quick check you may like to verify that, no 
matter what φ is, both formulas yield x′  = a and y′  = b when x = a and 
y = b, that is, R(a, b) = (a, b) : indeed the center of every rotation 
remains invariant  under that rotation! Moreover, the two formulas 
are really one and the same: mathematicians tend to view clockwise 
angles as ‘negative’ ; so, substituting φ by −φ in the second formula 
yields the first one via cos( −−−−φφφφ) = cos φφφφ, sin( −−−−φφφφ) = −−−−sin φφφφ.

 
 Proof*: We offer a complete proof for the case of clockwise  φ 

and a basic hint for the very similar case of counterclockwise φ. 
Once again, some familiarity with basic trigonometric functions and 
identities will be assumed; do not get discouraged if this proof 
seems too hard for you, and do not hesitate to ask for some help! 

Let P = (x, y) be a point that clockwise rotation by angle φ about 
center K = (a, b) maps to a point P′  = (x′ , y′), as shown in figure 1.25. 
Notice, referring to figure 1.25 always, that |KP ′′′′ | = |KP| , |GK| = |CA| 
= |OA| − |OC|, and |GP| = |BD| = |OD| − |OB|; moreover, θθθθ′′′′  = 1800−−−−θθθθ−−−−φφφφ, 
hence cosθ′ = −cos(θ+φ) = −cosθcosφ + sinθsinφ and sinθ′ = sin(θ+φ) =  
sinθcosφ + cosθsinφ. 

Now x′ = |OE| = |OA| + |AE| = |OA| + |KH| = |OA| + |KP ′′′′ |cos θθθθ′′′′  =  
= |OA| − |KP|cos θθθθcosφ + |KP|sin θθθθsinφ = |OA| − |GK|cosφ + |GP|sinφ = 
= |OA| − (|OA| − |OC|)cosφ + (|OD| − |OB|)sinφ =  
= a − (a − x)cosφ + (y − b)sinφ =  



= (1−cosφ)a − (sinφ)b + (cosφ)x + (sinφ)y, as claimed.

            
Fig. 1.25

Similarly, y′ = |OF| = |OB| + |BF| = |OB| + |HP′| = |OB| + |KP ′′′′ |sin θθθθ′′′′  = 
= |OB| + |KP|sin θθθθcosφ + |KP|cos θθθθsinφ = |OB| + |GP|cosφ + |GK|sinφ =
= |OB| + (|OD| − |OB|)cosφ + (|OA| − |OC|)sinφ =
= b + (y − b)cosφ + (a − x)sinφ =
= (sinφ)a + (1−cosφ)b − (sinφ)x + (cosφ)y, as claimed.

When φ happens to be counterclockwise , figure 1.25 changes 
into figure 1.26 below: now θθθθ′′′′  = θθθθ−−−−φφφφ, hence cosθ′ = cosθcosφ + 
sinθsinφ and sinθ′ = sinθcosφ − cosθsinφ; |GK| = |OA| − |OC| and |GP| =       
= |OD| − |OB| remain valid. You should be able to fill in the details and 
derive the claimed formulas for x′  and y′ .

                  
Fig. 1.26



There are in fact more cases to investigate, like when φ is                          
counterclockwise and larger  than θ, for example. Similar arguments 
left to you as exercises do work in all such cases, and our rotation 
formula works always.

1.3.8 Let’s check it out! Let us now return to figure 1.24, 
augmented by A″B″C″ , the clockwise  image of ABC (figure 1.27). As 
we did in the cases of translation (1.1.4) and reflection (1.2.7), we 
would like to verify that geometr ical  estimates (1.3.6) and 
algebraic  formulas (1.3.7) are in full agreement with each other.

Fig. 1.27  

Let’s see: with cos700 ≈≈≈≈  .34 and sin700 ≈≈≈≈  .94, the 



counterc lockwise  rotation formula for A = (2, 1) yields 

x′ ≈ (1−.34)×8 + .94×(−−−−2) + .34×2 − .94×1 = 5.28−1.88+.68−.94 = 
3.14 and

y′ ≈ −.94×8 + (1−.34)×(−−−−2) + .94×2 + .34×1 = −7.52−1.32+1.88+.34 
= −6.62,

                                                                                        
therefore R(2, 1) ≈≈≈≈  (3.1, −−−−6.6) , which is quite close indeed to that 
(3.2, −6.8) estimate in 1.3.6. Perhaps we could have achieved some 
greater precision with the use of more precise drawing and 
instruments, but such great precision will probably not be possible 
when you take your exam anyway...

Let us now see how things work out for A″ , the clockwise  
image of A = (2, 1). Coordinate estimates (figure 1.27) indicate that 
A″  ≈ (8.8, 4.7). The rotation formula yields

x″  ≈ (1−.34)×8 − .94×(−−−−2) + .34×2 + .94×1  = 5.28+1.88+.68+.94 =    
= 8.78 and

y″  ≈ .94×8 + (1−.34)×(−−−−2) − .94×2 + .34×1  = 7.52−1.32−1.88+.34 =  
= 4.66, 

                                                                                        
therefore R(2, 1) ≈≈≈≈  (8.8, 4.7): our estimate (in fact our drawing) 
worked perfectly this time -- it happens!

By the way, a closer look at the preceding two examples should 
help you understand why the image of an arbitrary  point (x, y) under 
rotation by 700 about (8, −2) is approximately (7.16 + .34x + .94y, 
6.2 −−−−  .94x + .34y)  in the clockwise case and  (3.4 + .34x −−−−  .94y, 
−−−−8.84 + .94x + .34y)  in the counterclockwise case.

 
You should now get a bit more practice by near-matching formula 

outcomes and geometrical estimates for B′ , C′ , B″ , and C″ , redrawing 
the image triangles A′B ′C ′ and A″B″C″  in case you are not happy with 
our drawing: good luck! 

1.3.9  ‘Interior’ centers. Just as the reflection axis is allowed to 
cross a set that is reflected about it (1.2.8), the rotation center K 
could very well be inside  a set rotated about it. Here is an example: 



                        
Fig. 1.28

When, in the case of such ‘internal centers’, the image falls, 
point by point, back on the original, we say that the figure in 
question has an internal  turn  and rotational  symmetry . The 
following English letters have rotational symmetry (of 1800, see 
1.3.10): H, I, O, S, X, Z.

1.3.10 A ‘straight’ rotation. We have seen how important it is to 
know whether a rotation is clockwise or counterclockwise. There is 
however precisely one angle for which the distinction between 
clockwise and counterclockwise does not matter at all, and that is 
the 1800 angle: regardless  of which way the point P is rotated 
about the rotation center K, we end up with an image point P′  on the 
extension  of the segment PK such that |KP ′′′′ | = |KP|  (figure 1.29).

               

Fig. 1.29



This very special rotation by 1800 is also known as half  turn  or 
po in t  ref lect ion  -- we will be using either term at will -- and is 
destined to become very important in chapter 2 and beyond. For the 
time being, here is an example of half turn applied to the 
quadrilateral of figure 1.18:

Fig.1.30

Notice here an important property of point reflection: it always 
maps a straight line segment to a straight line segment (equal and) 
parallel  to it. You may confirm this with the help of figure 1.30 
and/or a simple geometrical proof. 

1.4  Glide reflection

1.4.1 Is it a ‘new’ isometry? Our fourth and last planar isometry 
is at the same time the least ‘intuitive’ -- you will truly understand 
it only after going through the next three chapters -- and the easiest 
one to introduce: how can this happen? The answer is simple: it is 
the ‘combination’  of two already described isometries, translation 
and reflection, but it is not so clear in the beginning why anyone 
would ever bother to combine them!

1.4.2 Axes and vectors. All we need to describe the new 
isometry is, as hinted above, a reflection axis L and a translation 

vector v
→

 parallel  to L: the image of an arbitrary point P is now 
found either by first reflecting about L to PL and then gliding  



(translating) along v
→

 to P′  or by first gliding along v
→

 to Pv and then 

reflecting about L to P′  (figure 1.31). That is, the order in which the 
two operations are performed does not  affect the final outcome P′ , 

the image of P under glide  reflection  G = (L, v
→→→→

) by L and  v
→

. We 
view glide reflection as a ‘deferred  reflection’  and use dotted  

lines for L (a ‘half’ (glided) mirror) and v
→

 (a ‘half’ (mirrored) glide) 
in order to stress their interdependence:

            
Fig. 1.31

Why do these two isometries, a reflection and a translation 
parallel to each other, commute ? Figure 1.31 (and rectangle  
PPLP ′′′′PV  in particular) makes that ‘obvious’, but it is worth 

stressing the role of parallelism: since v
→

 is parallel to L, the final 
image of P is bound to lie on a line parallel to L and at a distance 
from L equal  to the distance from P to L, regardless of the order in 
which we performed the two operations. Observe at this point that a 
reflection and a translation not  parallel to each other do not  
commute (figure 1.32);

     
Fig. 1.32



that is generally the case whenever one tries to ‘combine’ any two 
isometries, as we will see in chapter 7. On the other hand, leaving 
something unchanged twice certainly preserves it: the combined 
effect of every two isometries is still an isometry, as each of the 
two isometries preserves all distances; in particular every glide 
reflection is indeed an isometry.  

1.4.3 Images. Figure 1.33 demonstrates how one determines the 

image of the pentagon S under a glide reflection G  = (L , v
→→→→

), as well 
as the commutativity between reflection and translation; the 
relation among the three isometries (translation, reflection, glide 
reflection) and the respective three images (T(S), M(S) , G(S)) is 
shown clearly:  

Fig. 1.33



1.4.4 Two opposite glide reflections. Let us once again revisit 
triangle ABC of figure 1.11, as well as the reflection axis L  of 

figure 1.16, adding two vectors v 1

→→→→
 and v2

→→→→
 (figure 1.34): these are of 

equal  length  and of the same  direction  (parallel to L), but of 
opposite  sense . The two vectors create two glide reflections 

opposite  of each other, G1 = (L,  v 1

→→→→
) and G2 = (L,  v 2

→→→→
); the images 

A ′B ′C ′, A″B″C″  of ABC under G1, G2, respectively, are shown below:

Fig. 1.34

What would have happened in case we successively  applied G1 

followed by G2 (or G2 followed by G1) to ABC? It shouldn’t take you 

that long to realize that we would have gone first to A′B ′C ′  (or 
A″B″C″) and then back where we started from, ABC. This is why G1 

and G2 are called inverses  of each other: they simply cancel each 

other’s effect, just as the two translations of 1.1.4 and the two 
rotations of 1.3.8 do. Notice by the way that every reflection  is the 
inverse  of  itself , and the same holds for every half  turn .                               



1.4.5 The glide reflection formula. Deriving a formula for the 
coordinates of the image point G(x, y) under a glide reflection is not 
that challenging in view of the work we have done in sections 1.1 
and 1.2. We will in fact offer two formulas, one here (based on 1.1.4 
and 1.2.6) and one in 1.4.7 (based on 1.1.5 and 1.2.6): unless you still 
have problems with basic Trigonometry you will probably find the 
formula in 1.4.7 easier to use, so you may certainly choose to read 
that section f i rst .

Avoiding Trigonometry for now, let ax + by = c  be the equation 
of the glide reflection axis L and let <A, B>  be the glide reflection 
vector parallel to L. The slope B/A  of <A, B> must be equal  to the 
slope of L, which is −−−−a/b  (see 1.2.6); so we may and do write <A, B> 
as <bs, −−−−as>, where s  is a parameter  that depends on the vector’s  
length  S  via 

S = A2+B2  = (bs)2+(as)2  = |s| a2+b2 . 

That is, <A, B> = <bs, −−−−as> , where s = ±±±±
S

a2+b 2
. In the case 

of the vectors v 1

→→→→
 and v2

→→→→
 of 1.4.4, a = 6, b = 13, S = 5 (see 1.2.7 and 

figures 1.16 & 1.35), so s = ±5/ 62+132  ≈  ± .35; now s = +.35 yields 

v 1

→→→→
 ≈ <13 × .35, −6 × .35> = <4.55, −−−−2.1>, while s = −−−−.35 leads to     

v 2

→→→→
 ≈ <−13 × .35, 6 × .35> = <−−−−4.55, 2.1>. We obtain approximately the 

same coordinates for v 1

→→→→
 and v2

→→→→
 (like <4.6, −−−−2.1>  and <−−−−4.6, 2.1>, 

as in figure 1.35) following the procedures outlined in figures 1.11 
or 1.12.   

Now we combine the reflection  formula from 1.2.6 and the 
translat ion  formula from 1.1.4 to obtain G(x, y) = (x ′′′′ , y ′′′′ ), where

x ′′′′  = bs + 
2 a c

a2+b 2
 + 

b 2−−−−a2

a2+b 2
x −−−−  

2 a b

a2+b 2
y,  



y ′′′′  = −−−−as + 
2 b c

a2+b 2
 −−−−  

2 a b

a2+b 2
x −−−−  

b 2−−−−a2

a2+b 2
y.    

So, all we did was to apply the reflection first and then add  the                  
translation effect coordinatewise! We still had to do a bit of work, 
of course, and that was the determination of the translation vector’s 
coordinates .

1.4.6 Let’s check it out! The game is perfectly familiar by now: 
we redraw figure 1.34 in a cartesian coordinate system, estimate 
the coordinates of points and vectors alike (figure 1.35), and use 
this numerical input to confirm the validity of the glide reflection 
formula. The work has been largely done in 1.2.7 (where we computed 

the quotients 
b2−a2

a2+b2
, 

2ab

a2+b2
, 

2ac

a2+b2
, and 

2bc

a2+b2
 for a = 6, b = 13, and  

c = 78 in order to derive the reflection part of the formula) and 1.4.5 
(where we determined s and the two vectors of length 5 that are 
parallel to the axis 6x + 13y = 78). Combining everything, we obtain

 
G1(x, y)  = (4.55 + 4.56 + .65x − .76y, −2.1 + 9.89 − .76x − .65y) = 

(9.11 + .65x −−−−  .76y, 7.79 −−−−  .76x −−−−  .65y)  and 

G2(x, y)  = (−4.55 + 4.56 + .65x − .76y, 2.1 + 9.89 − .76x − .65y) =  

(0.01 + .65x −−−−  .76y, 11.99 −−−−  .76x −−−−  .65y) . 

Applying these formulas to A and B, respectively, we obtain 
G 1(2, 1) = (9.65, 5.62) for A′  and G 2(2, 3) = (−−−− .97, 8.52) for B″ , 

which are quite close to our geometrical estimates below:



Fig. 1.35

1.4.7 Alternative formula. You certainly know that, more often 
than not, there is a gap between theory and practice. In the present 
context we point out that, while, in theory, the formula in 1.4.5 
nicely expresses the glide reflection vector’s coordinates in terms 
of the glide reflection axis’ equation’s coefficients, in practice 
determining the parameter s  (and its sign ) is quite complicated. It 
turns out that, as we promised in 1.4.5, Trigonometry offers a quick 
rescue.

Indeed, going back to 1.1.5, we recall that every vector may be 
written as <S ....cos θθθθ, S....sin θθθθ> , where S  is the vector’s length and θθθθ is 
the vector-angle, that is the counterclockwise  angle between the 
vector and the positive  x-axis. In the case of the two opposite 

gliding vectors v1

→
, v2

→
 of 1.4.5, our method is fully illustrated in 

figure 1.36: 



Fig. 1.36 

That is, the fact that the glide reflection vectors v1

→
, v2

→
 are 

parallel  to the glide reflection axis L reduces  the angle’s 
measurement, for both vectors, to simply measuring the 
counterclockwise  angle between L and the positive  x-axis (as 

shown in figure 1.36). As the vector-angles for v2

→
 and v1

→
 are θθθθ2 ≈ 

1800 − 24.50 = 155.50 and θθθθ1 = θ2 + 1800 ≈ 155.50 + 1800 = 335.50, we 

obtain cosθ2 ≈ cos(155.50) ≈ −.91 and sinθ2 ≈ sin(155.50) ≈ .41, so 

that cosθ1 = cos(θ2+1800) = −cosθ2 ≈ .91 and sinθ1 = sin(θ2+1800) = 

−sinθ2 ≈  −.41. It follows, with S = 5, that v 1

→→→→
 = <5....cos θθθθ1 , 5....s in θθθθ1> ≈ 

<5 × (.91), 5 × (−.41)> = <4.55, −2.05> and v2

→→→→
 = <5....cos θθθθ2 , 5....s in θθθθ2> ≈ 

<5 × (−.91), 5 × (.41)> = <−4.55, 2.05>: these are indeed very close to 
the vectors determined in 1.4.5.

From here on all there is to be done is to add the translation 
effect (as computed above) to the reflection effect (as determined 
in 1.2.6), obtaining G(x, y) = (x ′′′′ , y ′′′′ ) with



x ′′′′  = S....cos θθθθ + 
2 a c

a2+b 2
 + 

b 2−−−−a2

a2+b 2
x −−−−  

2 a b

a2+b 2
y , 

y ′′′′  = S....sin θθθθ  + 
2 b c

a2+b 2
 −−−−  

2 a b

a2+b 2
x −−−−  

b 2−−−−a2

a2+b 2
y ,

                                                                                             
where S  is the gliding vector’s length, θθθθ  is the gliding vector’s 

vector-angle (as discussed right above and also in 1.1.5), and, again, 
ax + by = c  is the equation of the glide reflection axis L. We leave 

it to you to check that, with vector-angles θθθθ1 and θθθθ2 for G 1 = (L , v 1

→→→→
) 

and G2 = (L , v2

→→→→
), respectively, 

G 1(x, y) ≈≈≈≈  (9.11 + .65x −−−−  .76y, 7.84 −−−−  .76x −−−−  .65y)  and  

G 2(x, y) ≈≈≈≈  (0.01 + .65x −−−−  .76y, 11.94 −−−−  .76x −−−−  .65y) :

 these formulas are certainly very close to those in 1.4.6. 

Of course, those with a strong Trigonometry background should 
have no trouble seeing the connection  between 1.4.6 and 1.4.7: 

indeed cos155.50 = −cos24.50 ≈ −
|OP|

|PQ|
 = −

1 3

132+62
 ≈ −.908 and 

sin155.50 = sin24.50 ≈ 
|OQ|

|PQ|
 = 

6

132+62
 ≈ .419. Moreover, they would 

know that the coordinates of P and Q yield a more exact  value for 
the vector-angle via cos−1(.908) ≈ sin−1(.419) ≈ tan−1(6/13) ≈ 24.770.    

1.4.8  Reflections as glide reflections. Trivial as it might seem 
to you right now, this is a fact that is worth keeping in mind: every 
reflection may be seen as a ‘degenerate’ glide reflection the gliding 
vector of which has length zero . Indeed setting either s = 0 in the 
glide reflection formula of 1.4.5 or S = 0 in the glide reflection 
formula of 1.4.7 yields the reflection formula of 1.2.6.



1.5*  Why precisely four planar isometries?

1.5.1 An old claim revisited. Back in 1.0.5 we promised to show 
that every isometry on the plane can be expressed via a formula like 
F(x, y) = (a′+b ′x+c ′y, d′+e ′x+f′y), where a′ and d′ are arbitrary, b ′′′′2+e ′′′′2 
= c ′′′′ 2+f ′′′′ 2 = 1, and either f ′′′′  = b ′′′′ , e ′′′′  = −−−−c ′′′′  or f ′′′′  = −−−−b ′′′′ , e ′′′′  = c ′′′′ . Before  
we establish this claim (and more) in 1.5.4, let us prove that every 
function on the plane defined by such a formula is indeed an 
isometry. We do this using the distance  formula : given any two 
points (x1, y1), (x2, y2), the distance between their images, F(x1, y1) 

= (a′+b′x1+c′y1, d′+e′x1+f′y1) and F(x2, y2) = (a′+b′x2+c′y2, d′+e′x2+f′y2), 

is 

((a′+b′x1+c′y1)−(a′+b′x2+c′y2))2 + ((d′+e′x1+f′y1)−(d′+e′x2+f′y2))2  

= ((b′(x1−x2) + c′(y1−y2))2 + ((e′(x1−x2) + f′(y1−y2))2  

= (b′2+e′2)(x1−x2)2 + 2(b′c ′+e ′ f′)(x1−x2)(y1−y2) + (c′2+f′2)(y1−y2)2     

= (x1−x2)2 + 2(b′c′−b ′c′)(x1−x2)(y1−y2) + (y1−y2)2  

= (x1−x2)2 + (y1−y2)2 , the distance between (x1, y1) and (x2, y2).

Notice at this point that, once (and if) we know that all 
isometries are l inear , that is of the form F(x, y) = (a′+b ′x+c ′y, 
d ′+e ′x+f ′y), then it is not too difficult to show that they must be of 
the form conjectured in 1.0.5 (and restated above): you might be able 
to do this using the fact that all three  distances  among (1, 0),    
(0, 1), and (0, 0) must be preserved. But how do we show that every 
isometry is linear? One possible way to do that would be to first 
recall that every isometry maps straight lines to straight lines 
(1.0.7) and then try to prove that every planar function that 
preserves straight lines must indeed be linear: the latter happens to 
be true, but it’s a real theorem  the proof of which lies beyond the 
scope of this book. 

We can actually show that every isometry is linear following a 
more direct path: first we record the particular way (l inear  
formula)  in which each one of the four isometries already studied 
is linear (1.5.2); then we show that every linear function expressed 



by one of the four linear formulas must  actually be one of the four 
isometries already studied (1.5.3); and finally we prove that every  
isometry is expressed by one of the four linear formulas (1.5.4). That 
is, we will manage to show that all isometries are linear and must 
be one of the four isometries already studied ... at  the  same  t ime !                  

1.5.2 Our bag of isometries. In the previous four sections we 
studied four planar functions (translation, reflection, rotation, and 
glide reflection) and showed each one of them to be an isometry. Our 
proof was purely geometrical in all four cases. Now we can provide 
algebraic proofs using the lemma we just established in 1.5.1! We do 
this by going back to the formulas derived in 1.1.4, 1.2.6, 1.3.7, and 
1.4.5 and simply verifying that each of them satisfies the isometry  
conditions  of 1.5.1:

Translation: f′ = b′ = 1, e′ = −c′ = 0, a′ = a, d′ = b. 

Reflection: f′  = −b ′  = −
b2−a2

a2+b2
, e′ = c′ = −

2ab

a2+b2
, a′ = 

2ac

a2+b2
,            

d′ = 
2bc

a2+b2
; (b2−a2)2 + (2ab)2 = (a2+b2)2 implies b′2+e ′2 = c′2+f′2 = 1.

Rotation: f′ = b′ = cosφ, e′ = −c′ = ±sinφ, a′ = (1−cosφ)a + (±sinφ)b,  
d′ = −(±sinφ)a + (1−cosφ)b; cos2φ + sin2φ = 1 yields b′2+e ′2 = c′2+f′2 = 1.    

Glide reflection: f′  = −b ′  = −
b2−a2

a2+b2
, e′ = c′ = −

2ab

a2+b2
, 

a′ = bs + 
2ac

a2+b2
, d′ = − as + 

2bc

a2+b2

1.5.3 ‘Going backwards’. The formulas summarized in 1.5.2 allow 
us to characterize any linear function F(x, y) = (a′+b ′x+c ′y, d′+e ′x+f ′y) 
satisfying the isometry conditions of 1.5.1 as one of the four types 
of isometries we have encountered in this chapter; omitting the 
technical details involved (like solutions of 2×2 l inear  systems ), 
we present the results as follows:



(I) A linear function F(x, y) = (a′+b ′x+c ′y, d′+e ′x+f ′y) satisfying    
f ′′′′  = b ′′′′  ≠≠≠≠  ±±±±1 , e ′′′′  = −−−−c ′′′′  ≠≠≠≠  0, and b ′′′′ 2+e ′′′′ 2 = c ′′′′ 2+f ′′′′ 2 = 1 is a rotation  by 

(angle) cos −−−−1(b ′′′′ ) about (center) [ (1−−−−b ′′′′ )a ′′′′+c ′′′′d ′′′′  

2(1−−−−b ′′′′ )
, 

−−−−a ′′′′c ′′′′+(1−−−−b ′′′′ )d ′′′′

2(1−−−−b ′′′′ )
] , 

clockwise if c ′′′′  < 0 and counterclockwise if c ′′′′  > 0; this rotation 

becomes a half  turn  about (
a′′′′

2
, 

d ′′′′

2
) when c ′′′′  = 0, b ′′′′  = −−−−1, and is 

reduced to a translation  by <a ′′′′ , d ′′′′>  when c ′′′′  = 0, b ′′′′  = 1.

(II) A linear function F(x, y) = (a′+b ′x+c ′y, d′+e ′x+f ′y) satisfying   
f ′′′′  = −−−−b ′′′′  ≠≠≠≠  ±±±±1 , e ′′′′  = c ′′′′  ≠≠≠≠  0, and b ′′′′ 2+e ′′′′ 2 = c ′′′′ 2+f ′′′′ 2 = 1 is a glide  
reflection  about (axis) 2(1−−−−b ′′′′ )x −−−−  2c ′′′′y = a ′′′′ (1−−−−b ′′′′ )−−−−c ′′′′d ′′′′  by (vector) 

< a ′′′′c ′′′′+(1−−−−b ′′′′ )d ′′′′

(1−−−−b ′′′′ ))))2+c ′′′′ 2
....c ′′′′ , 

a ′′′′c ′′′′+(1−−−−b ′′′′ )d ′′′′

(1−−−−b ′′′′ ))))2+c ′′′′ 2
....(1−−−−b ′′′′ )>  when (1−−−−b ′′′′ ))))2 + c ′′′′ 2 ≠≠≠≠  0 

and about (axis) y = 
d ′′′′

2
 by (vector) <a ′′′′ , 0> when c ′′′′  = 0, b ′′′′  = 1; this 

glide reflection is reduced to a reflection  when a ′′′′c ′′′′  + (1−−−−b ′′′′ )d ′′′′  = 0 
(first case) or a ′′′′  = 0 (second case). 

You should probably try to verify the validity of these claims and 
formulas by revisiting our old examples, like 1.2.7 (where a′  ≈  4.56, 
b ′  ≈ .65, c′  ≈ −.76, and d′  ≈ 9.89 do indeed satisfy the reflection  
condition  a′c ′  + (1−b ′)d ′  = 0) or 1.3.8 (where either a′  ≈ 7.16, b′  ≈ .34, 
c′ ≈ .94, d′ ≈ 6.2 or a′ ≈ 3.4, b′ ≈.34, c′ ≈ −.94, d′ ≈ −8.84 do indeed yield 

the rotat ion  center  via [ (1−b′)a′+c′d′ 

2(1−b ′)
, 

−a′c′+(1−b′)d′

2(1−b ′)
]  = (8, −2)). 

More to the point, you may substitute a′ , b′ , c′ , d′  by the ‘general’ 
values provided by the formulas in 1.5.2, and see what happens!       

With these important observations (on the nature of the linear 
formulas associated with each one of the four known isometries) at 
hand, we are now ready to demonstrate why every  planar isometry 
must be one of the four familiar ones: this is the kind of result that 
mathematicians affectionately call classif icat ion  theorem .



1.5.4 Isometries and circles. Let us begin with a fundamental                         
observation: every planar isometry is bound to map a circle of radius 
r to a circle of radius r. Indeed if the center O is mapped to O′ , then 
every image point P′  must satisfy |O ′′′′P ′′′′ | = |OP| = r . Consider now a 
fixed isometry that maps the unit circle, x2 + y2 = 1, to the circle 
(x−a′) 2 + (y−d′) 2 = 1, and the point P1 = (1, 0) to a point P1′  (figure 

1.37). Isometries map straight lines to straight lines (1.0.7), so the 
x-axis OP1 is mapped to a line O′P1′  that makes a counterclockwise  

angle φφφφ with the positive x-axis  (figure 1.37). Consider now the 
points P = (r, 0) and Q = (rcos θθθθ , rsin θθθθ) on the circle x2 + y2 = r2, 
which is mapped to the circle (x−a ′ ) 2 + (y−d′) 2 = r2. Since P lies on 
OP1, it must be mapped to the unique  point P′  on the intersection of 

O′P1′  and (x−a′) 2 + (y−d′) 2 = r2 that satisfies |P ′′′′ P 1′′′′ | = |PP1| (figure 

1.37).

Fig. 1.37

The critical question is: where is Q mapped? Obviously to a point 
Q′ on (x−a′) 2 + (y−d′) 2 = r2 such that |P ′′′′Q ′′′′ | = |PQ|. But there isn’t that 
much room on a circle, is there? If you are standing at P′  facing O′  
and wish to move to any  other point on  the circle at a given  
distance from P′ , how many choices do you have altogether? 
Precisely two : either you move ‘to  your  left  hand’  (making a 



clockwise  angle θ with O′P ′) or you move ‘to  your  right  hand’  
(making a counterclockwise  angle θ with O′P ′); these two 
possibilities are shown in figures 1.38 & 1.39, respectively. 
Moreover, it shouldn’t take you long to realize that all  points on       
x2 + y2 = r2 are ‘isometrically forced’ to follow the fate of Q: we 
cannot have some points going clockwise and some points going 
counterclockwise!                                                                                               

In the first (‘clockwise’) case, Q = (x, y) = (rcosθ, rsinθ) is 
mapped (figures 1.37 & 1.38, see also 1.3.7 and figure 1.25) to 

Q ′′′′  = (a′′′′ +rcos( φφφφ-θθθθ), d ′′′′ +rsin( φφφφ-θθθθ)) =  
= (a′+rcosφcosθ+rsinφsinθ, d′+rsinφcosθ−rcosφsinθ) =
= (a′+(cosφ)(rcosθ)+(sinφ)(rsinθ), d′+(sinφ)(rcosθ)+(−cosφ)(rsinθ)) 
= (a′+(cosφ)x+(sinφ)y, d′+(sinφ)x+(−cosφ)y) =
= (a′+b′x+c′y, d′+e′x+f′y), where f′ = −b′ = −cosφ, e′ = c′ = sinφ, 

b′2+e′2 = c′2+f′2 = (cosφ)2+(sinφ)2 = 1.

Fig. 1.38

The whole argument holds for every r and every θθθθ (hence 
taking care of every single point (x, y) on the plane!) and is indeed 
very similar to what we did when we established the rotation 
formula in 1.3.7. At first you might even think that our isometry is 
in fact a rotation, but a careful look at the list of isometries in 
1.5.2 shows otherwise: while rotations (and translations) satisfy    



f′  = b′  and e′  = −−−−c ′ , our isometry satisfies f ′′′′  = −−−−b ′′′′  and e ′′′′  = c ′′′′ , just as 
reflections and glide reflections do! To summarize, our isometry has 

to be either a reflection  (in the special case tan φφφφ = 
2a ′′′′d ′′′′

a ′′′′2−−−−d ′′′′2
, as it 

follows from the conditions given in 1.5.3) or, far more likely, a 
glide  reflection  -- essentially because it maps ‘counterclockwise 
circles’ (think of the P-to-Q arc) to ‘clockwise circles’ (think of the 
P ′-to-Q ′  arc), formally because of our observations in 1.5.3.

In the second (‘counterclockwise’) case, Q = (x, y) = (rcosθ, rsinθ) 
is mapped (figures 1.37 & 1.39, see also 1.3.7 and figure 1.26) to 

Q ′′′′  = (a′′′′+rcos( φφφφ+θθθθ), d ′′′′+rsin( φφφφ+θθθθ)) =
= (a′+rcosφcosθ−rsinφsinθ, d′+rsinφcosθ+rcosφsinθ) =
= (a′+(cosφ)(rcosθ)+(−sinφ)(rsinθ), d′+(sinφ)(rcosθ)+(cosφ)(rsinθ)) 
= (a′+(cosφ)x+(−sinφ)y, d′+(sinφ)x+(cosφ)y) = 
= (a′+b′x+c′y, d′+e′x+f′y), where f′ = b′ = cosφ, e′ = −c′ = sinφ, 

b′2+e′2 = c′2+f′2 = (cosφ)2+(sinφ)2 = 1. 

Fig.1.39

As in the first case, these computations are valid for all  r  and  
all  θθθθ and cover the entire plane. But this time our isometry maps 
‘counterclockwise circles’ to ‘counterclockwise circles’ (think, as in 
figure 1.38, of the P-to-Q and P′-to-Q ′  arcs) and ‘looks identical’ to 
a rotation! Is it one? Referring to 1.5.3 again, we see that yes, this 



time it is indeed a rotation (by angle φ), unless of course φφφφ = 00, in 
which case f′  = b′  = 1, e′  = −c ′  = 0 and our isometry is the 
translation  <a′ , d′> (which does not  rotate circles at all)!

To summarize, we have shown that every planar isometry maps 
circles to circles and does so either reversing  circular  
orientation  (in which case it must be a glide reflection, or 
possibly a reflection) or preserv ing  circular  or ientat ion  (in 
which case it must be a rotation, or possibly a translation). We 
ended up both proving our claim from 1.0.5 about isometries being 
linear and classifying them! This is not the only way to classify 
isometries: probably it is not even the easiest one, see for example 
section 7.2. But it is a rather neat way to do it, at least for those 
with some familiarity with Precalculus. And those with greater such 
familiarity could even have more fun, like trying to determine the 
axis and vector (in the case of a glide reflection) or the center (in 
the case of a rotation) in terms of a′ , d′ , and φ (and in the spirit of 
1.5.3), for example!   

Postscript:  It is possible to combine our ‘circular’ approach 
above with ideas from chapter 7 in order to provide a completely 
geometrical classification of isometries (not only of the plane but 
of space as well): please check Isometries Come in Circles at  
http://www.oswego.edu/~baloglou/103/circle-isometries.pdf. 

                                                                                                
first draft: summer 1998                             © 2006 George Baloglou  
                                                                                                                      

            


