
 
 
Carl Friedrich Gauss Prize awarded to Kiyoshi Itô 
 
The first laureate of the newly created Gauss prize for 

applications of mathematics is the Japanes mathematician 
Kiyoshi Itô, 90. The prize honors his achievements in 
stochastic analysis, a field of mathematics based essentially 
on his groundbreaking work. Stochastic analysis is the art of 
modelling random events that can happen literally at any time. 
King Juan Carlos of Spain himself will hand out the prize at 
the opening ceremony of the International Congress of 
Mathematicians in Madrid on August 22, 2006. 

 
 
Carl Friedrich Gauss (1777–1855), known as "princeps 

mathematicorum" ("prince of mathematicians"), unites within his 
person two sides of mathematics in a classical way. He not only 
achieved great progress in number theory, called the "queen of 
mathematics" because it was glorious as well as far from any 
real-world applications, a statement that was valid until a few 
decades ago; he also created what is today called the "least 
squares fit", a method that is applied every time you have to 
deal with real-world problems, in particular measuring 
inaccuracies. 

So it is with a good reason that the newly created prize for 
"mathematical research that has had an impact outside 
mathematics – either in technology, in business, or simply in 
people’s everyday lives" is named after Gauss. The prize is 
awarded jointly by the Deutsche Mathematiker-Vereinigung (DMV = 
German Mathematical Union) and the International Mathematical 
Union (IMU), and administered by the DMV. It consists of a 
medal and a monetary award (currently valued at EUR 10,000). 
The source of the prize is the surplus from the International 
Congress of Mathematicians (ICM’98) held in Berlin. The prize 
will be awarded for the first time at this year's ICM in 
Madrid. 

The prizewinner is the Japanese mathematician Kiyoshi Itô. 
aged 90. His theoretical work that had such an enormous impact 
shows in a paradigmatic way that it is a long and complex way 
from the real-world phenomenon to its abstract mathematical 
description and back to its application to a real-life problem. 

In Itô's case, this way begins with a look into a microscope 
showing pollen grains or dust particles in water moving around 
in an erratic way. Today, this strange dance is called Brownian 
motion after the Scotch botanist Robert Brown who observed it 
in 1827 and gave a detailed description. The particles are 
pushed by large numbers of water molecules whose impacts cancel 
eachother – but not completely. What you see is the net effect 
of a large number of collisions. It was Albert Einstein who 
formulated a mathematical model of the Brownian motion in one 
of his three papers of 1905 each of which amounted to a 
revolution in science. Norbert Wiener (1894–1964), better known 
as the founder of cybernetics, followed in 1923 with a proof 
that Einstein's model was mathematically sound.  

It turned out that Einstein and Wiener had found a 
mathematical idealization of pure chance. Whatever moves dust 
particles in water, lets a checkout counter queue grow or 
shrink, or drives up or down the price of a share on the stock 



exchange, it can plausibly be described by a Wiener process. 
This model is about as universal as Gauss's normal distribution 
that turns up every time a quantity is influenced by many 
indepedent perturbations. 

This idealization, however, came for a price. Physicists 
normally assume that nature behaves smoothly in some sense. But 
a Wiener process violates this assumption in a fundamental way. 
The particle's path is "infinitely wiggly" – nowhere 
differentiable in technical terms. Moreover, it is infinitely 
long. Just a hundred years ago, mathematicians used to turn 
away in horror from those "monsters", as they are intractable 
with the classical tools to handle curves. 

One of those classical tools is the integral that in its 
basic form is taught in schools. To calculate the area under a 
curve you cut it into a lot of small strips, each of them 
rectangular with the exception of a small curved piece at the 
top. You replace those short curves by horizontal lines such 
that you obtain a set of rectangles whose area is easily 
calculated. In the limit of infinitely narrow strips, you 
obtain the integral – no problem for an interval on the real 
line, but plainly impossible on a Brownian path. 

At this point, Itô enters the scene. In fact, he had to redo 
the classical process that leads to the definition of the 
integral, but under much more severe conditions. A long and 
tedious effort, beginning in 1942, led to a new concept named 
"stochastic integral", including calculation rules and a 
solution theory for stochastic differential equations. An 
ordinary differential equation is the form mathematicians use 
to describe the motion of a particle under a known 
(deterministic) force; a stochastic differential equation 
includes in addition forces that depend on, e. g., a Wiener 
process. 

The way from this theoretical framework back to reality is 
hard as well. A stochastic integral in itself can never be the 
final solution of a problem. You cannot know a random process 
in advance – if you could, it wouldn't be random –, so it's 
useless to ask where a point subject to a stochastic 
differential equation will be five minutes from now or when it 
will pass a given line for the first time. But Itô's method 
delivers probabilities for events of that kind. 

Take instead of a particle's position a gambler's assets in 
a game like roulette or the value of an investor's portfolio. 
Those persons have a vital interest to know when this value – 
that depends on chance as well as on their own actions – first 
passes the zero line, as this marks the time when the game is 
over. Risk-averse players, in particular bankers, want to 
direct their own actions so as to minimize the effects of 
chance. 

This is the idea underlying financial instruments like 
options and futures. A call option amounts to a bet on a future 
event like the price of a share. So the bank must take 
provisions to have the money available the day it may lose the 
bet; the cost of those provisions is the price for the option 
that the bank charges the customer. The bank, however, is free 
to take these provisions, depending on the actual share price, 
at any time from now on up to the time the option is due. So 
the option price is to be expressed – and calculated – by a 
stochastic integral. 



At this moment, this is the most popular and most 
influential application of Itô's theory. At the beginning of 
the seventies, economists Fischer Black, Myron S. Scholes, and 
Robert C. Merton found an explicit formula to calculate the 
price of an option. Today the Black-Scholes formula, that 
contains only known data, underlies almost all financial 
transactions that involve options or futures: moreover it won 
Merton and Scholes the Nobel prize in economics (Black died in 
1995). 

But Itô's theory is sufficiently abstract to serve 
completely different needs. Beyond particle positions and share 
prices, it applies also to the size of a population of living 
organisms, to the frequency of a certain allele within the gene 
pool of a population, or even more complex biological 
quantities. Chance is not completely blind in these cases: The 
average fluctuation of a population size is not a constant but 
proportional to the actual size itself, the frequency of two 
alleles that occupy about half of the population tends to 
change more rapidly than if one of them is close to extinction. 
So the concept of a Wiener process had to be generalized, a 
task that would have been almost impossible without Itô's 
theoretical framework. In the end, biologists can assess the 
probability with which a gene will dominate the whole 
population or a species will survive. 

These generalizations, in turn, came in handy for the 
economists. In 1985, John C. Cox, Stephen A. Ross, and Jonathan 
E. Ingersoll found a mathematical model for the time evolution 
of interest rates that has become standard by now. Stephen L. 
Heston generalized the Black-Scholes model in 1993 so as to 
bring it closer to reality. 

On the other hand, it took mathematicians themselves quite a 
while to appreciate the importance of Itô's results. This is 
partially due to Japan's isolation during World War II. Only 
from 1954 on, Itô lectured on his achievements at the Institute 
for Advanced Study in Princeton. 

Moreover, there was a competing theory available to describe 
the effects of pure chance at a more global level. If you want 
to know how a drop of ink disperses in water, you can either 
try to follow the Brownian motion of single ink particles; or 
you consider both ink and water as a continuum and formulate 
their motion in terms of a partial differential equation – a 
diffusion equation in this case. Obviously, as both methods 
describe the same physical phenomenon, they should lead to the 
same results, so there should be some connection between them. 
It took some time to bring this connection to light – but it 
has already been taken to good use. The Black-Scholes formula 
contains the solution of a diffusion equation. 

Today, there is no doubt that stochastic analysis is a rich, 
important and fruitful branch of mathematics with a formidable 
impact to "technology, business, or simply people’s everyday 
lives". 

 


