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New Standards for the Solution of
Geometric Calculation Problems by
Using Computers

Heinz Schumann, Weingarten

To pour old wine into new bottles?

Abstract: The availability of computers and of software for the
geometric tasks of construction, measurement and calculation, as
well as the availability of software for numerical and symbolic
computation induce new methods for the solution of geometric
calculation problems: computer-aided graphical, numerical and
algebraic methods of solution. These computer-aided solutions
are explained in relation to suitably chosen tools (Mathematica
and Cabri Géometre) and traditional examples.

Kurzreferat: Neue Standards fiir das Losen geometrischer
Berechnungsaufgaben mit Hilfe von Computern. Die Verfiig-
barkeit von Computern und von Software flir geometrische
Aufgaben wie konstruieren, messen und berechnen, sowie fiir
numerische und symbolische Berechnungen induzieren neue
Methoden fiir das Losen geometrischer Berechnungsaufgaben:
computergestiitzte graphische, numerische und algebraische
Losungsmethoden. Diese computergestiitzten Methoden werden
in bezug auf geeignet ausgewéhlte Werkzeuge (Mathematica und
Cabri Géometre) und traditionelle Aufgaben erldutert.

ZDM-Classification: G40, R20

1. Introduction

Elementary geometry is a powerful tool to model reality.
This becomes apparent, inter alia, in applications to engi-
neering sciences and crafts, where elementary geometric
calculation has a large scope. Geometry at school, in par-
ticular in German-speaking areas, has a tradition of geo-
metric calculation reaching back to the 19th century. Such
geometric calculation is justified as a subject at school
by its applicability and by its relevance for practising the
solution of mathematical problems. Today this tradition is
expressed mostly in geometric problems set for graduation
exams at intermediate school levels and in geometric ex-
ercises used in preparation for the corresponding written
exams. Therefore the treatment of geometric calculation
problems in class suffers from a certain stiffness as re-
gards content and method.

To master arithmetic and algebra is, besides correspond-
ing heuristic and geometric knowledge, a prerequisite for
the ability to solve geometric calculation problems. So far
students have to be practised at these skills. The capac-
ity of suitable computer applications raises the question
whether the use of computers can lead to methodical in-
novations for the solution of (not only) geometric calcu-
lation problems. Thus a convivial juxtaposition of new,
that is, computer-aided standards and traditional methods
to treat geometric calculation problems can keep learning
and teaching of geometry alive and attractive.

In the following we explain such new standards to solve
geometric calculation problems in relation to suitably cho-

Analyses

sen computer applications. We distinguish three standards
of solution:
— computer-graphical solution
— computer-numerical solution
— computer-algebraic solution.

By a graphical solution we mean those possibilities for
a solution which arise from the use of school-geometric
computer applications which allow interactive variation
(drag mode), construction, measurement and calculation
(Schumann 1995a). The procedure is essentially described
by Diagram 1. Of course, graphical solutions are possible
only for so-called special calculation problems. Solutions
obtained are approximations to the wanted quantities. Due
to yet coarse resolution of pixelation the quality of solu-
tions is low (here we only mention that there is a procedure
to overcome the pixelation problem to a large extent).

Interactively construct
a calculation figure

Trial measurement of given and wanted data
also by means of term generation

Vary the calculation figure
until it matches given data

A4

Read sought-after data

Diagram 1

The advantage of a graphical solution is, that an experi-
mental approach and a vivid geometric penetration of the
problem become possible by making a movable on-screen
drawing, largely without the hindrance of arithmetical and
algebraic barriers.

As a suitable tool for graphical solutions we use Cabri
géometre I by J.-M. Laborde and F. Bellemain (1994),
which is currently the probably most developed and er-
gonomic software as regards geometric content.

For numerical solutions we use an approximating algo-
rithm, which allows to solve as a whole those particular
geometric problems for which the formulation (4Ansatz)
is an algebraic system of equations. Algebraic solutions,
which is to say exact solutions of special and general ge-
ometric calculation problems, use a corresponding exact
algorithm of the computer algebra component of a math-
ematical package for the solution of the formulation of
the problem considered. (The exact solvability of such
a system of algebraic equations is naturally limited.) A
suitable package now with formula editing facilities and
the possibility of installing commands as mean options
is MATHEMATICA (Schumann 1994, 1995b). Thereby a
formulation consists of
— aset of (implicit) algebraic equations which completely

describe the relations between given and sought-after

quantities and auxiliary quantities as defined by the
problem
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— the set of wanted quantities
— a set of auxiliary quantities which are to be eliminated.
In the syntax of MATHEMATICA, using a modified auto-
solver (Gloor/Schumann 1994/95/96):
(N)SolveReal[{algebraic equations},

{wanted quantities},

{auxiliary quantities}]
“NSolveReal” is used for approximate (numerical) real
solutions and “SolveReal” for exact (algebraic) real so-
Iutions. The action for numerical and algebraic solutions,
respectively, is described roughly in Diagram 2.

Develop a formulation

Implement the formulation

Execute the formulation
using the auto-solver

Interpret the results

Diagram 2

The advantages of such numerical and algebraic solutions
are, above all, the concentration on heuristic development
of a formulation as the true original mental effort of the
human solver, and the elimination of the need to rou-
tinely execute algorithms. Formulation-oriented solutions
enhance the aspects of solution planning as well as of solu-
tion interpretation and thus improve so-called methodical
competence in (computer-aided) solutions of mathematical
problems.

The three solution standards are not to be considered
separately but induce a computer-aided comprehensive
treatment of calculation problems. We propose the fol-
lowing sequence, indicated by increasing abstraction, for
a systematic treatment of calculation problems in geometry
class:

Graphical Solution

!

Numerical Solution

!

Algebraic Solution

Deviations from this sequence are possible, for example,
in case a numerical solution is to be visualised or checked
against a graphical solution.

In the following we give three examples to illustrate the
above program. Given the abundance of geometric cal-
culation problems, these examples can not be considered
representative. However, they demonstrate computer-aided
geometric calculation as it could be implemented today.
We restrict ourselves to problems for which the formu-
lation is given by a system of algebraic equations. This
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class of geometric calculation problems covers a lot of
geometric calculations common in secondary education.

2. Examples of computer-aided solution

Example 1:

Given a trapezium ABCD with AB parallel CD, a (9cm),
b (5em), o (90°), B (55°) and the triangle ABE of area
Ay (12cm?), E on BC. Sought-after is the area of triangle
AED.

Graphical solution:

We construct the trapezium as instructed, with E moveable
on BC. We measure the area of ABE and AED using
polygonal area measurement and denote the results A,
As, respectively (Fig. 1.1).

Now we change the position of E until 4; = 12.0 cm?
and read Ay = 14.6cm? (Fig.1.2). — We can vary the
particular problem by changing the given quantities a, b,
(§ and A; and solve graphically (Fig. 1.3).

D C
E
b=5,0 em
a,=14,1 em?
A=12,5 em?
=55,0%4 B
& 3=3,0 om
Fig. 1.1
D, C
E
4 =146 om? b=5,00 cm
14
A,=12,0 em?
F=55,04
A 3=9,00 cm
Fig. 1.2
C
E
A2=2?,30m’
= H
AEIERem =7.0em
F=134,02
& a=7,5 om E
Fig. 1.3

Numerical solution: A formulation for the particular prob-
lem is systematically developed by assembling the area of
the trapezium from three triangular areas (A; = 12, As,
As). These three triangular areas as well as the residual
sides of the trapezium are expressed in terms of given
quantities and additional auxiliary quantities. We use a
figure to develop a formulation.
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Most simply we expand one of the figures already con-
structed during the graphical solution process (Fig. 1.4).
The problem requires to solve for A5 and to eliminate the
auxiliary variables Ar, Az, ¢, d, and h. The command
“NSolveReal” is used to determine approximate solutions
(input 1.1). For A we obtain, given to six significant
digits, the approximate value 14.6071 (output 1.1).

NSolveReal[{AT == 12 +A, + A3,
Ap=={%°g 12 ==19n;, a5 == {dl¢

]

c==9 - 5Cos[55°], d==5Sin[55°] },

{Az},
{Ar, B3, c, 4,y }]

{4, = 14.6071}
Input and Output 1.1

The solution is independent of the order in which the equa-
tions of the formulation are given. In this case we chose
a so-called fop-down formulation. There are 6! different
possibilities for a formulation by sequencing the equations.

Algebraic solution:

To obtain a solution for the class of all problems which are
represented by our particular problem, we need to gener-
alise the formulation such that particular numerical values
are replaced by variable names. Then the exact command
“SolveReal” can be applied to this formulation (input 1.2).
In a matter of seconds the general solution is returned (out-
put 1.2), an equation for A, in terms of a, b, 5 and A;.

SolveReal[{Ar ==12; +A; +23,
Ap =24 ==1lah a;=={Mlc
c==a—bCos[f],d==bSsin[A]},
{Az},

{AT, A3, ¢, d, h1}],

__ b(a’Ssin[8]1—2Cos[41A,)
{A2 - 2a }

Input and Output 1.2

One can gain further information by considering some of
the auxiliary variables, which are to be eliminated, as el-
ements of the set of wanted quantities, or by declaring
the sought-after quantity as an auxiliary variable. Thereby
we change the original problem by manipulating its for-
mulation and gain additional aspects of how to treat the
problem. An example is shown in input and output 1.3.

SolveReal[{Ar ==12; +A; + A3,

Ap == a) ==1lah; a3 == (Ml
c==a—bCos[f],d==bSin[A]},
{m2, Ar},

Az, ¢, d’ hl}]

__ b(a’Sin[8]1—2Cos[41A,)
{AQ - 2a s

Ap == —2b(—2a+bCos[3]) Sin[A1}

Input and Output 1.3
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Example 2:

A ladder of a length of 5 meter is to be leaned against
a wall. This is hindered by a plinth of equal height and
depth (Im). At which distance from the wall has the ladder
to be erected to reach as high as possible at the wall?

Graphical solution:

We model the situation in plane geometry. On a horizontal
ray we measure 5 cm (scale 1:100) from a movable point
A, the base of the ladder, such that the top of the ladder
drags along the vertical wall. Furthermore the drawing in-
cludes the square cross section of the plinth (Fig. 2.1).The
distance from the base of the ladder to the wall is denoted
a and b is the height of the top of the ladder above the
ground. We drag A until the ladder touches the free corner
of the square and obtain one graphical solution (Fig.2.2).
The second solution, which is reflection symmetric with
respect to the bisector of the right angle between “ground”
and “wall”, is eliminated according to the requirements of
the problem (Fig.2.3).

b= 4.2 cm

a= Z,5cm

Fig. 2.1

b= 4,5 cm L=5,0em

==1,0em

a=1,%cm

s=1.,00m L=5,0cm

b= 12 cm

a=48om

Fig. 2.3
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Supplement: Using an animation, various ladder positions
can be illustrated dynamically (without hindrance by the
plinth) by “snapping” the point A (Fig.2.4). The result
of the animation shows an envelope enclosing the various
ladder positions; it is just one of the four branches of an
asteroid (explanation?).

N
\\\\“\ t\
\\\\Q“\\N‘

TR N ™
IR

Fig. 2.5

The modelling could be done in a different manner by
gliding the ladder through the free corner of the plinth.
Thereby the top of the ladder can come to lie behind the
wall, which is unreal (Fig.2.6). Solutions are obtained
from the intersections of the linearly interpolated envelope
and the wall (Fig.2.7). We can also animate the various
ladder positions dynamically.

Fig. 2.6
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Fig. 2.7

With this we have exhausted the heuristic principle to find
solutions among the set of figures obtained by relaxing one
of the conditions given.

Numerical solution:

Using the similarity of triangles and Pythagoras’ theorem
we extract from Fig.2.2 a formulation for our particular
problem consisting of two equations. These can be solved
approximately for a and b using “NSolveReal”. There is no
need for auxiliary variables (input 2.1). Output 2.1 shows
four solutions, two of which are eliminated because of
their negative values and only one of which represents
the sought-after optimal solution with approximate values
improved upon the graphical solution.

NSolveReal[{% == %, a? +b? == 52},

{2, 2}]

{{a == —4.9304, b == 0.831377},
{a==0.831377, b == —4.9304},
{a==1.26052, b == 4.8385},
{a==4.8385, b == 1.26052} }

Input and Output 2.1

A reasoning for four solutions: The formulation leads to
an algebraic equation in a of order 4, which is not evident
from the computer numeric and algebra. That could be a
starting point for a traditional treatment of such kind of
problems.

In a different form of the formulation, in which we as-
sociate variable names s and L with the given data, we can
express the equations in general terms straightaway with-
out using particular values; the result is identical (input
and output 2.2).

NSolveReal [{s =1L== 5 S —=

{2, p}].

2 2 2
2-5 a?4p? =17},

{{a == —4.9304, b == 0.831377},
{a==0.831377, b == —4.9304},
{a==1.26052, b == 4.8385},

{a==4.8385, b == 1.26052} }

Input and Output 2.2
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From this we obtain a formulation for the general solution
by removing the association between variables and values.
The exact solution returns, among other things, the func-
tional dependence of the wanted quantities in terms of the
given quantities (input and output 2.3).

NSolveReal[{% ==2=5 32 4p% =12 },

a

{2 p}],
2s (Lz—(s+\/lﬁ> (—25+ L2—25(5+\/m> )
(s+\/m— \/L2—25(5+\/m>)2

<s+m¢gzs(s+m)>},

{{o-

2s (L2+(s+m> (25+ L2—25(5+m> ) )
(S+m+\/m_zs(s+\/m) )

<s+m+¢gzs(s+m)>},

2s (L2+(—s+\/L2+52> (—25+ L2+25(—s+\/L2+52> )
2
(—S+\/ L2+s2+ \/L2+25 (—s+\/ L2+52> )

bt <s¢m¢mzs(s+¢m)>},

>

2s (L’— (yﬁ) (25+ L2425 (—yﬁ) ) )
(s_m+\/y+zs(_s+m))2

<s¢m+\/mzs(s+m)>}},

Input and Output 2.3

Among the four returned solutions the first one is correct
(to that we establish the approximate values of the exact
particular solution, for example, according to input 2.2).
To obtain a simple condition for real solutions one has to
solve

L? = 2s(s + (L* + s*)Y/?) > 0

for, e.g., L; calculus with inequalities can thereby be
avoided if we solve L? — 2s(s + (L? + s2)'/2) = 0 for L
using “SolveReal” and test the inequality by inserting so-
lutions for L and s. The result is L > 2\/§ -s. This can also
be understood as follows: the ladder cannot reach the wall
if its length is less than twice the diagonal of the square
plinth cross section. The height b and the denominator of
a, which equals (2b)2, vanish only for s = 0, that is, in
case the square cross section of the plinth degenerates to
a point.

The particular solution can now be generalised, for ex-
ample, by allowing the plinth to have a rectangular cross
section. Fig. 2.8 shows a corresponding graphical solution
etc. The formulation needs to be generalised to

S92 a — S1

=—, L*=d+V
b a

and solved for a and b.
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L=5,0em
b= 4,6 cm

s1=1,60m

=09
£,= 0.9 cm

= 2,0em

Fig. 2.8

Example 3:

A square pyramid has a volume of 50 cubic centimetres
and a surface of 100 square centimetres. Determine the
base length and height of the pyramid (reversal of a stere-
ometric standard problem).

Graphical solution:

We construct a cavalier projection of a square pyramid
with variable base length (movable corner A) and variable
height (movable apex X) — Fig.3.1. Using the calculator
from our construction tool set and measurements for a, h
and hr (the height of a side triangle which is hidden in
the figure) we generate terms for volume V' and surface
S, the values of which vary with a and h. (Using a 3D-
graphics package suitable for geometry at school we could
compute volume and surface of a spatial object “square
pyramid” directly.) We drag A and X more or less system-
atically until approximate values for V' = 50.0cm? and
S = 100 cm? are achieved and read for the base length and
the height the values: ¢« = 6.2cm, h = 3.9 cm (Fig. 3.2).

a=7,2 cm A
Surface = 144,0 cm?

Yolumme = 91,5 cms

Fig. 3.1

a=6,2 om A
Surface = 100,0 em?

Yolume = 50,0 o

Fig. 3.2
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Numerical solution:

Either we use a sketch or one of the figures already made
for the graphical solution (Fig.3.3). — Starting from the
given data one develops a formulation for the solution in
a manner as systematic as possible; in this case in the form
of a so-called top-down formulation (input 3.1).

Fig. 3.3

NSolvePositive[{V == 50, S==100,

v==1Bh,
=B +1LS,
== a2’

Ls == 4T,

T == 3 hr,

= (3)° 412}

{a, n},

{B, 1S, T, hr }]
{{n == 3.92375, a == 6.18204},
{h == 12.7429, a == 3.43092}},

Input and Output 3.1

a=3,4 cm A

Surface = 100,0 crg
Volume = 50,0 cm’

Fig. 3.4
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SolveReal [{V == % Bh,

S==B+LS,

B== a2,

LS == 4T,
== %hT’

{a, h},

{B, Ls, T, he }]
{{n=n EEmmsr m}

s°—+/5'—288sV° 2883v2 \/ S%+ s4—2883v2
{n— a= |8
24V

\/m}}

Input and Output 3.2

2
§%++/5%—2885V2
{h == ,a=

24V

The sought-after variables are a, h and the auxiliary vari-
ables are B, LS, T and hr. Because the determination and
elimination, respectively, of six variables requires six (es-
sential) equations we have satisfied a necessary condition
for the solvability of the system of equations. We obtain
four solutions of which only two correspond to positive
solutions of a and & (output 3.2). — This raises the question
of why there are four solutions. Resolving the formulation
for a leads to a biquadratic equation. Doing the algebra by
hand one would better solve for h. One of the solutions
is already known. The other solution has been overlooked
while constructing the graphical solution. (Warning! — Be
not always satisfied with graphical solutions gained by
dragging figures.) Now we can graphically illustrate this
solution by correspondingly dragging A and X (Fig.3.4).
There is a flat but broad pyramid and a higher but nar-
rower one, both of which match the given data for surface
and volume.

Algebraic solution:

To get a grasp of the class of all problems represented
by the particular solution we need to determine the exact
general solution for given S and V. From this we can
obtain the conditions for solvability, that is, relations be-
tween S and V for which real solutions, and, according
to the requirements of the problem, real positive solutions
exist.

We only need to remove the “N” from “NSolveReal”
and relax the assignments V' = 50, S = 100 (input 3.2).
The exact resolution of the general formulation leads to
four solutions, of which only the second and the fourth
are acceptable (output 3.2). (If, for other problems, we
could not easily recognise the correct solutions among the
general ones, we only had to apply the approximating com-
mand “N” to the exact solutions while substituting given
data.)

Conditions for real solutions:

St —288-5-V2>8, or S >2-(12-V)2.
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Conditions for positive real solutions:
5% (8% —288-5-VHY2> 6 or288-5-V2>0,

which is satisfied for S > 0 and V' > 0.

(Because current computer algebra systems cannot yet
readily solve non-linear inequalities one would have to
strengthen calculus involving inequalities in class.)

3. Concluding remarks

Remark 1:

Ideally a computer application should be able to execute
all discussed modes of solution without the need to change
the user interface, because such a change can, despite
multi-tasking, cause difficulties for naive users. There is
still demand for software development in this regard.

Remark 2:

Computer-aided treatment of (geometric) calculation prob-
lems depends essentially on the chosen application. The
question of which computer application best aids the so-
lution of a particular kind of problem needs competent
teachers and competent designers of syllabi for an an-
swer. This as long as there are no didactic expert systems
available. A difficulty is posed by the current monism as
regards computer applications, that is, the attempt to solve
(almost) all mathematical problems of relevance to school
with a single computer application.

Remark 3:

The idea, illustrated in this work, of a comprehensive treat-
ment of geometric calculation problems is an example of
a change induced by a medium not only of methods but
also of aims and subjects. However, here the conservative
opinion is advocated that it is sufficient, initially, to realise
new methods and aims with traditional, suitably complex
problems.

Remark 4:

Computer-aided teaching of mathematics, particularly in
secondary education plays a marginal role due to lack of
corresponding curricula. This prevents a fruitful competi-
tion of old and new standards in the treatment of mathe-
matical problems. Consequently ideas for the integration
of new media in the teaching of mathematics fail to mate-
rialise and the crisis to justify mathematics instruction is
intensified.
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