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Abstract. In this paper a survey on the construction of Clifford regular elementary func-
tions by Fueter’s mapping is given. Furthermore, using a suitable decomposition of the Dirac
operator an application of the d-problem is lined out.
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1. Indroduction

The effective application of methods of Clifford analysis to partial differential equations
needs systems of elementary functions which are Clifford regular and still satisfy most of
the properties which we know from the complex plane. The reason for writing this paper
is to show presumed users of Clifford-valued elementary functions the considerable sim-
ilarity to classical complex elementary functions and to reduce the shyness in applying
higher-dimensional elementary functions. In this paper we will give a review on Fueter’s
method and will construct some important Clifford regular elementary functions which
knowledge seems to be useful in transform analysis.

We will mention here important authors which deliver contributions in this field.
In his early papers [5 - 7] R. Fueter, a follower of D. Hilbert, formulated a method
to transfer complex analytic functions to Clifford regular ones. Later M. Sce [18], A.
Sudbury [22], M. Imaeda [9], F. Sommen [20, 21], P. Lounesto and P. Bergh [15], G.
Jank and F. Sommen [11], H. Leutwiler [12 - 14], M. Marinov [16] and K. Nono [17]
made attempts in generalizing classical elementary functions in a hypercomplex sense.
Further, the reader can find contributions to this subject in [1, 2, 4].

Using the power series expansion of an exponential function with a paravector argu-
ment we deduce a " full” class of so-called radially regular elementary functions including
a paravector-valued logarithm. Most of the expected properties could be maintained.
We continue with a suitable decomposition of the Dirac operator and study the opera-
tors which there occur. In this part we use results of J. de Graaf [3] and N. van Acker
[23]. On the basis of papers by M. Sce [19] and T. Qian [18] we are able to describe
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at least in the case of quaternions the transform of radially regular function to quater-
nionic regular functions. Finally, we apply these results for the construction of kernel
functions of the 0-problem.

2. Preliminaries

Let R%™ be the anti-Euclidean space with the basis {ey, ..., e, } and the quadratic form
Q(z) = —>_" | z2. We consider the 2"-dimensional real Clifford algebra C¥ ,, which is
generated by {ey,...,e,} and contains copies of R and R%™. The multiplication rule is
defined by e;e;j+eje; = —20;;. In C¥y ,, a basis is given by eg, e1,..., €y, €1€2,...e_16y,
...,e1---e,. Elements of the type x = xq..pep, - g, (1 <41 < ... </t < n) are
called k-vectors.

k

For k-vektors the conjugation is defined by Z = (—1)@52. Elements © = zg + 2
with z = Z?zl x;e; are called paravectors. Furthermore, xg is called scalar part, xq :=
Sc x, z is called vector part, x := Vec x, and x—x is called imaginary part, t—xq := Im x.
Obviously, zz = Y., 27 for z = x¢ + z. Denote w(z) := z/|z| € S™, where S™ is the
unit sphere in R™.

3. Paravector-valued elementary functions

Let z be a paravector in C¥y ,. The following statement can be easily shown.

Proposition 3.1. For an arbitrary ¢ > 0 it is always possible to find a sufficiently
large number N such that for any r,s > N

5 ok
2
k=r

s Kk k
<y = . (3.1)

k!
k=r

holds where K is a constant which only depends on n and satisfies the inequality |xy| <
K(n)lz|lyl.

Inequality (3.1) gives us the possibility to define elementary functions similarly to
the case of one complex variable. First of all we have to introduce an exponential
function:

Definition 3.2. For a paravector z € C¥ , the exponential function e” is defined
k
by e® =3 72, &
Similarly to the complex case one can prove the following properties.

Theorem 3.3. Let x be a paravector in Cly . Then we have:
(i) e® = e™(cos |z| + w(z) sin |z|).
(ii) e® = limmoo (1 + Z)™.

(iii) e®tY = e%e¥ if zy = yx.
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Proof. We will only prove property (ii). Because of (% — @) > 0 we obtain

() 3 (G S Yt e ()

For m — oo this difference tends to zero i

Corollary 3.4. Furthermore, we have:
(i) e® #0.
(ii) |e*| = e®o.
(iii) e %e® = 1.
(iv) e*2 = (eZ)* (Moivre’s Formula)
(v) ev@m = 1.
Proof. This is a straightforward consequence of Theorem 3.3 i

Let z be a paravector in C4p . Then hyperbolic and trigonometric functions are
defined by

T _ o7 T —x
sinhzx = c-° and coshz = ere”
2 2
and, for |z| # 0,
erw(z) _ o—aw(z) erw(z) 4 e—rw(z)
sinz = 5 w(x) and cosT = 5

Corollary 3.5. Immediately the representations

cosh z = cos hxg cos |z| + w(x) sin hzg sin [z
sinh z = sin hzg cos |z| + w(z) cos hxg sin |z|
COS T = €08 Tg oS h|z| + w(x) sin h|z| sin zg
sin x = sin xg cos h|z| + w(x) sin h|z| cos g
follow. The right-hand sides of sinx and cosx can be used by definition in the case of
lz| = 0.
Proof. For the proof we refer to our book [8: pp. 53 - 55] 1

Definition 3.6. Let x be a paravector in Cly,, with x # xo < 0. Then logz is
defined by

Zo

logz = In|z| + w(x) arccos (Jz| # 0 or |z| = 0,z¢ > 0).

|z
Theorem 3.7. Let x be a paravector in Cly ,, with v # xo < 0. Then we have:
(i) €°8% = z and loge® = z.
(ii) log1 =0 andloge; =5 (i=1,...,n).
|z] |z

(iif) 1 — ; — arctan (2 < log|z| < [z| — 1+ arctan 1.

(iv) log(zy) = logx + logy if xy = yzx.
Proof. The proof follows immediately from Definition 3.6 B
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Finally, it is also possible to introduce a general power function.

Definition 3.8. Let a be a real number. The general power function z® is defined
by ¥ = ealogw‘

The following example will confirm this definition.

Example 3.9. Let x =z and a = % We obtain after a straightforward calculation
1 m  2ke . (T 2km
zn = {/|z| |cos (— + —) + w(z) sin (— + —)
2n n 2n n

for k=0,1,...,n— 1.

4. On the Cauchy-Fueter operator

In order to prepare differentiability properties of the elementary functions introduced
above we need a suitable decomposition of the so-called Cauchy-Fueter operator

B n B
0=0y+D  where 9y = o andD:izzleiai, 0; = T

With the denotations

L= ZeiLi(x) with L;(z) = |z|0; — x4y, and £, = Zwiai
i=1

=1

we will obtain the decomposition

1 1
3=§(30——L+w€w).

|

For a better understanding it is useful to deduce properties of the decomposition oper-
ators L and £,,.

Proposition 4.1. Let f € C'(R") be a paravector-valued function. Then:
() loz = w.

(ii) 4, w = 0.

(iii) Lo f = g7

(iv) |z|0jwk = 0k — wrw; = Ljw.

(v) 30 wiL; =ScwL = 0.

Proof. These relations are simple consequences from the definition of the operators
L; and /7, 1
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Proposition 4.2.

(i) Let f € CY(R) and f = f(|z|) a paravector-valued function. Then Lf = 0.
(ii) Let ¢ € CY(R) and ¢ = ¢(w) a scalar-valued function. Then

Lo =z| | ) Ou,pex — Y widu, | = |z|[grad, ¢ — w(grad, ¢ - w)].
k=1 k=1

(iii) 2yp(w) = 0 is valid.

Proof. Statement (i): For j = 1,...,n we obtain by definition L;(|z|) = |z|0;|z| —
zjl,|z| = 0. Furthermore, we have

Lif(lz)) = |2[0;f — x; Y widif = Lo f(|2]0j|z] — zjlu|z) = Ly fLjz| = 0.

=1

Statement (ii): Let ¢ = ¢(w). Then

Ly = |z|grad, ¢ — w[(grad,p) - w]

where grad, ¢ = >, €;0,, = ¢. Indeed, we have

(Lo)w) = 3 eiLipw) = o] leidh — wibulo(w).
Setting now ¢*(z) := p(w),

059") (&) = 0, 00wk = > Do (81 — wjtw)-

j=1 k=1

Hence,

D €00t (@) =D > €0, 90wk
j=1

71=1k=1
n n n n
=D ei0u POk = ) ) el pui
k=1 j=1 k=1 j=1
n
= grad, ,p —w Z Ow), PW
k=1

= grad,p — w(grad,p - w).
Statement(iii): We have

Lop(w) = Zakgoéwwk = grad ¢ - {,w = 0.
k=1

Thus the proposition is proved il
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Remark. Following [3] we get for L the vector representation
n -
L= Z €j (’UJ : D)
i=1

where v/ = |z|e; — wjz, which can be easily seen by the help of Proposition 3.1
Proposition 4.4. wL is the spherical Dirac operator.
Proof. Because of Proposition 4.1/(iv) we find
wl = Zejekijk
Jj#k
== Zejek(ijk — kaj)
i<k
= Z ejer [(wj\@ak — wjrrly,) — wklz|0; — zjwrly,
i<k
= Zejek(xj8k — xk83)
i<k
and the statement is proved N
Theorem 4.5. We have the equality
(wL + Lw)u = (1 —n)u
for the anti-commutator. Special cases:
(i) If u = up(|z|), where uy a real-valued function, then Lwug = (1 — n)ug.
(ii) If u = w, then (wL)w = (n — 1)w.
Proof. We have

n n
Lw= Z ejeijwk + Z ejekkaj.
J,k=1 J,k=1
Using Proposition 4.1/(iii)-(iv) we get
n
Lw= Z (055 — wrwj)ejer —wl = —n+1—wL
J,k=1

and the statement is proved i

Proposition 4.6. The Cauchy-Fueter operator permits the decomposition

11

1
0= 5(80+w£w)— §‘£| .

Proof. It is easy to see that

wL = wZej [|z|0; — zjl,] = D + |z|L,.

=1

From this we obtain the assumption by a straightforward calculation il
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Corollary 4.7. Let { = £(|z|). Then:
(1) L(¢w) = (n = 3)§ + 2(¢, w)w-
(ii) D(éw) = |$| L(éw) + d|$|f

Proof. Corollary 4.6, the generalized Leibniz rule [8: p. 40] and Proposition 4.4
deliver

D(¢w) = (Dg)w—ng—2Z§Ja w_wgw—2zzek§ iwg) + |_|1§.
j=1k=1
Furthermore, it follows
d ( 2 «
D(¢w) = w(mf)w +— 2] Z Z eré;l0jk — wjwk]

- — j=1k=1
d n—1 2

= (gg)e @\5‘\| PG

o d 1 2(§,w)

—w(@ >w+—|( n—3)¢+ iz w

Obviously, we get from £, (éw) = (i'ﬁ)w and Corollary 4.6

L{gw) = lz|(D (§w)—w(d| ‘ £)w) = (n = 3)& + 26, w)w

and the proof is finished I

5. Fueter’s mapping

The elementary functions introduced above are not Clifford regular. Above all this is
caused by the occurence of the operator L and his action

L(upw) = (1 — n)uyg

(cf. Theorem 4.5). Such a cross-mapping which acts from the vector part to the real
part is disturbing the structure of this simple type of elementary functions. In order to
maintain such differentiability properties it seems to be useful to introduce the ”reduced”
operator O, = %(80 —w/,,). Analogously to the complex case we abbreviate 0,qu =: u'.

Definition 5.1. Let
f = fO + w(x)fla fz : R GaRl — Rl, fz = fi(x()a ‘QD (Z = 17 2)7 h = hOw(‘T)|h‘

Such a paravector-valued function f is called radially differentiable or radially Clifford

reqular if _
. +h) — h
VAL QYR
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exists.
Corollary 5.2. For radially differentiable functions As(xz) = f'(x) holds.

Corollary 5.3. The paravector-valued function f = fo + wf1 1s radially differen-
tiable if and only if Orof =0

Corollary 5.4. All above defined elementary functions are radially Clifford regular.
Hence it follows:

(i) (e”)" =e”.
(ii) (sinz)’ = cosz and (cosx)’ = —sinz.
(iii) (sinhz)" = coshz and (coshz)’ = sinh z.
(iv) (logz)' = 1.
(v) 2% = az* ! (¢ €R).
Proof. The proof follows straightforward by using the elementary relations £,w =
0,4,|z| = %—I ande =/l ,z=wll

Now we will demonstrate how to transform these radially differentiable elementary
functions to Clifford regular functions. The key-idea goes back to R. Fueter and was later
generalized by M. Sce [19], F. Sommen [20, 21] and T. Qian [18]. Let u = u(zo, |z|) and
v = v(xp, |z|) real-valued functions and h = u + wv. We will denote by 7, the mapping

(n=1)

q="7n(h) =k, A7 h,

where A denotes the Laplacian and k,, a normalization factor. For even n the oper-

ator A" has to be considered as Fourier multiplier operator induced by the symbol
(2mi[€[)" .

Theorem 5.5 (Qian [18]). Let h = u + wv be radially differentiable in R* ™1 and
n =2k + 1. Then for any k € N we find

T (h) = ﬁA’“h = (k—1)! [(;j&,)ku—i-w (zwéj)kv] : (5.2)

Corollary 5.6. Let k = 1. A radially quaternionic reqular function h = u + wv
fulfils the partial differential equation

\z|>?Ah — 2|z|€,h + 2Vech = 0.

Remark. A componentwise consideration of equation (5.2) leads for the scalar part
to the Laplace-Beltrami equation in the hyperbolic metric and for the vector components
to the Laplace-Beltrami equation to the eigenvalue -2.

Now we will give a lot of examples which will emphasize how effectively Fueter’s
mapping 7, is working. For abbreviation we write

r(i-k) 2\ 7 1
v = oty () w
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Example 5.7 (Exponential function). Let n = 2k + 1 and h(z) = e®. We obtain
by applying Fueter’ s mapping

EXPrz := b () [Jk_%(@\) + ka+%(|£D e”

where

(5’

In(z|) = elelt(1 — 2> "zdt (A eR)

are Bessel functions of first kind. Indeed, we obtain from [10: p. 740] the equalities

2 a1 k1 2/ 1\k
Tt (lz]) = (—1)k+1\/;|£|k+2 (mfw) cos |z| = (—1)k\/;(€wm) sin |z|.

A straightforward calculation leads to the above defind exponential function EXPgx.
In the special case for £k = 1 we have

r-3) /2 |2«
=R [2 -

and
Jy () = /== sin 2|
) = — S1n |
S e TS
5 .
Ty(zl) = | (22 cosaf)
2 mlz| \ |z|
Hence,
EXPiz = €™ [SIT ||£| +w (Sm 2 _| ||£2| €08 |£|>] = € (sinc |z| — wsinc'[z])
Z Z
where sinc |z| = SiTxngl and sinc’|z| := ﬁ(sinc \z|).

In [21] F. Sommen obtained by using of a similarity principle for Vekua systems
a class of hypercomplex exponential functions which can be seen as generalization of
Fueter type mappings.

Example 5.8 (Hyperbolic functions). Let n = 2k+1. Further, let h(x) the radially
hyperbolic sine function. We get

SINH z := 7, (sinh ) = bi(2) | sinhzoJ;_1 (|2]) + w cosh zo i 1 (|z])],
and in the special case £k = 1 we have

SINH z := sinh zgsinc |z| — w cos zosinc’|z.
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Let h(z) the radially cosine function. We obtain
COSH z := 7,,(cosh z) = by () [cosh z0Jp—1 (|z]) + wsinh zoJy 1 (|2]) |,

and in the special case £ = 1 we have

COSH z := cosh zq sinc || — w sinh g sinc’ |z|.

Example 5.9 (Trigonometric functions). Let n = 2k + 1. It is easy to see that

Hence, |y| = |zo| and w(y) = w(z)2%. It follows that

[zol

xr
EXPry = bg(wo) |:Jk—%(|§|0) + w(x)|x—2|Jk+%(|x0|)} e~ ool

We can now define a Clifford regular SIN-function by

1
SINz = (EXPyy + EXPk(—y)) w(y)

: T
=by(z) [cosh || 41 (Jzol) +w(:v)s1nh@|Jk_%(‘x0|)ﬁ} .

Analogously we can also define
1
COSz =3 [EXPry + EXPg(—vy)]

: T
=h(o) {COSh [T (Jzol) — w(z) sinh |§|Jk+%(|$0|)ﬁ] '

In the special case k =1 we have

SIN z := — cosh |z| sinc’ |z | + w(x)sinh|z| sinc .’Eoﬂ

|Zol

Lo

|o|”

Now we will give an application of this conception of elementary functions.

Theorem 5.10. Let n = 3. The exponential function EXPsx fulfils the property

COS z := cosh |z sinc |zg| + w(z) sinh |z sinc |z

OEXP;(\z) = A\EXP3z (X € Q).

Proof. Using the decomposition D = |z|~!'L + w¥,, we obtain

4 sinAlz| sin \|z|
(o) [ -t (S5

_ 1 2|-1L sin A|z| + sin A|z|
AL E Azl

- [w(m)ﬂww(m)éw (Sin)‘@') Y (w(x)zw Si“@)} .

|| |z
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From Proposition 4.2/(i) immediately

I (sin)\@\) 0
]

LL <w€ M) _ 2 ’ (sin)\@\) _ _2sin)\|@| N cos A|z|
Nl U\ ) T e Nelo TP

follows. It remains to consider

1 sin A|z| 1 , (sinA|z]
Swty [ —we, 2BAELY 2y .
ot (Con ) =5 (M

A straightforward computation delivers

and

152 (sm)\|g|) _ AsinAlz| 2cos)\|g| N 2sm)\\g|.

APz ] | Alz[?

Finally, we have DEXP3(\z) = —AEXP3(\z) and so 0EXP3(Az) = AEXP3(\z) B
From the definition of the exponential function it follows now
Corollary 5.11. We have |EXP3z|?> > 0 and limg_,o EXP3z = e®°.
We consider now the so-called 0-problem and obtain the following result.

Corollary 5.12. Let L,, = and + ...+ a10 + ag (ar, € R). Further, let i be the
roots of the algebraic equation a,\" + ... + a1A+ag = 0. Then

up = EXP3A\px (k=1,..,n)

belong to ker Ly, e.g. we have constructed a set of solutions of the n-th order linear
partial differential equation L,u = 0 relatively to the operator 0.

Proof. We have to make the ansatz u = EXP3Az. The result follows by using
Theorem 5.10 i
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