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Abstract. In this work, we will consider the singular Hahn—Sturm—Liouville difference equation defined
by —q 'D_ -1 4-1Dwqy(x) + v(2)y(z) = Ay(z), * € (wo,00), where X is a complex parameter, v is
a real-valued continuous function at wo defined on [wp,00). These type equations are obtained when
the ordinary derivative in the classical Sturm—Liouville problem is replaced by the w, g-Hahn difference
operator D, 4. We develop the w, g-analogue of the classical Titchmarsh—Weyl theory for such equations.
In other words, we study the existence of square-integrable solutions of the singular Hahn-Sturm-Liouville
equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson—Norlund integral
and then we study families of regular Hahn—Sturm-Liouville problems on [wo,¢™ "], n € N. Then we
define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point,
limit-circle cases in the Hahn calculus setting by using Titchmarsh’s technique.
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1. Introduction

The Titchmarsh-Weyl theory is at the heart of the area of ordinary differential operators

and deals with the existence of square integrable solutions. This theory has led to important
contributions over the years to our understanding of the spectral properties of differential
operators. H. Weyl introduced this theory in 1910. In [1], Weyl proved that the singular
Sturm—Liouville problem of the type

—(p@)y (@) +q@)y(@) = y(z), 0<z<o0,

has a non-trivial square integrable solution. He constructed a sequence of nested circles which
converges to a circle or a point and defined the limit-point, limit-circle classification. This
theory has been attracting the attention of many researchers; see, for instance, [2-6].
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The study of the Hahn difference operator first appeared in [7, 8] where the quantum
difference operator D, , was introduced. Such an operator is known to be a generalization of
the forward difference operator and the quantum g-difference operator defined by Jackson [9].
Hahn difference operators have received considerable attention due to their applications in the
construction of families of orthogonal polynomials and approximation problems, see [10-14]
and the references therein.

There are some papers in the literature dealing with Hahan’s difference equations. In [15,
16|, Hamza and Ahmed studied the existence and uniqueness of solution for the initial value
problems for Hahn’s difference equations. Moreover they proved Gronwall’s and Bernoulli’s
inequalities with respect to the Hahn difference operator and investigated the mean value
theorems for this calculus. In 2016, Hamza and Makharesh [17] investigated Leibniz’s rule and
Fubini’s theorem associated with Hahn'’s difference operator. Sitthiwirattham [18| consider the
nonlocal boundary value problem for nonlinear Hahn’s difference equation. In [19], the regular
Hahn—Sturm-Liouville problem

~q7' Dyt g1 Dangy(@) + v(@)y(@) = Ny(a),

ary(wo) + azD_ -1 4~1y(wo) = 0,
bly(b) + bgD,wq—lg—ly(b) =0,

is studied, where wyp < z < o0, a € C, a;,b; € R := (—00,00), i = 1,2, and p(-) is a real-
valued function defined on [wg,b] and continuous at wp. Annaby et al. [19] define a Hilbert
space of w, g-square summable functions. The authors discussed the formulation of the self-
adjoint operator and the properties of the eigenvalues and the eigenfunctions. Furthermore,
they construct the Green’s function and give an eigenfunction expansion theorem.

In this paper, we attempt to study the w, g-analogue of the classical Titchmarsh—Weyl
theory.

The paper is organized as follows. In Section 2, we summarize all the necessary definitions
and properties of Hahn’s difference operator. In Section 3, we formulate the singular Hahn—
Sturm—Liouville difference equation and develop the classical Titchmarsh-Weyl theory for
such equation.

2. Notation

In this section, our aim is to present some basic concepts concerning the theory of Hahn
calculus. For more details, the reader may refer |7, 8, 19, 20|. Throughout the paper, we let
g€ (0,1) and w > 0.

Define wp := w/ (1 — q) and let I be a real interval containing wy.

DEFINITION 1 [7, 8]. Let f : I — R be a function. The Hahn difference operator is defined
by

fw+qz) — f(z)
Dygf(z) =4 wtlg—1z
f'(wo), T = wo,

provided that f is differentiable at wg. In this case, we call D, 4 f, the w, g-derivative of f.

) CU#WO,

(1)

REMARK 1. The Hahn difference operator unifies two well known operators. When ¢ — 1,
we get the forward difference operator, which is defined by

f(erw)—f(x),

e R.
(wH+z)—2 v

Auf(x) =
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When w — 0, we get the Jackson g¢-difference operator, which is defined by

flgz) — f (w)’

(gz) — dhaly

Dyf (z) :=
Furthermore, under appropriate conditions, we have

lim Dy, ,f (x) = f(x).

q—1,
w—0

In what follows, we present some important properties of the w, g-derivative.
Theorem 1 [20]. Let f,g : I — R be w, g-differentiable at x € I and h(z) := w + qz.
Then for all x € I we have:
i) Dy q (af +bg) () = aD, qf () +bD, 9 (z), a,bel,
i) Dug (f9) (2) = Duwg (f (%)) g () + f (w+2q) Do gg (),

i 7) — Dw,q (f (:c))g (x) - f (:C) Dw,qg (:C)
i) DM(!J)( )= g9(x)g(w+zq)
iv) Dy (W1 (@) = D_pygm1 41 f (@) .

)

The concept of the w, g-integral of the function f can be defined as follows.

DEFINITION 2 (Jackson-Norlund integral [20]). Let f : I — R be a function and
a,b,wg € I. We define w, g-integral of the function f from a to b by

/bf(ﬁﬂ) o g () = /bf(w) dy.q (%) —/af(w) A g (2)

where

”), rzel,

provided that the series converges at © = a and x = b. In this case, f is called w, g-integrable
on [a,b].

ff(w)dw,q( — (- g)o—w Zq"f(

Similarly, one can define the w, g-integration for a function f over (wq,00) by

/f =(1-q)—w Zq"f<

The following properties of w, g-integration can be found in [20].

Theorem 2 [20|. Let f,g : I — R be w,g-integrable on I, a,b,c € I, a < ¢ < b and
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a, B € R. Then the following formulas hold:

b b b
i) / {of @) + B9 (2) }dug () = a / F (@) dug () + B / 9(2) dug (),
ii) /f (x)dyq (z) =0,
“ b

i) /b F (2) dug () = / £ @) o (0) + [ 1)y (@),

iv) /bf(x) Ay q (7) = —/af(w) g () -
a b

Next, we present the w, g-integration by parts.

Lemma 1 [20]|. Let f,g : I — R be w,q-integrable on I, a,b € I, and a < b. Then the
following formula holds:

b

b
/f(l‘) Dy qg () duv g (x) + /g(w +qx) Doy f (1) du g (z) = f (0) g (b) = f (a) g (a).

a

The next result is the fundamental theorem of Hahn’s calculus.
Theorem 3 [20]. Let f : I — R be continuous at wg. Define

F (x) ::/f(t)dw7q(t), z el

Then F is continuous at wg. Moreover, D, ,F(x) exists for every x € I and D, F(z) = f(x).
Conversely,

b
/ Do F (2) dug () = £ () — [ (a).

Let Li,q(wo, o0) be the space of all complex-valued functions defined on [wp, 00) such that

1
2

o0
170= [ 17 @F dugr | <oc.

wo
The space Liq(wo, 00) is a separable Hilbert space with the inner product

o
(19 = [ F@ 7@ g, .9 € 12,y f0.50)
wo
(see [20]).

The w, ¢-Wronskian of functions y(-), z(-) is defined as

Waq (y,2) () := y (2) Dugz (2) = 2 (2) Dugy (), @ € [wo,00). (2)
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3. The Singular Hahn—Sturm—Liouville Equation and Titchmarsh—Weyl Theory

In this section, we introduce the Titchmarsh-Weyl theory of the singular Hahn—Sturm-—
Liouville difference equation.
Consider the singular Hahn—Sturm-Liouville difference equation

F(y) = _q_lwaq_l,q—lDw,qy (CC) —{—v(m)y(m) = )‘y (x)’ WS (WO,OO)’ (3)
where )\ is a complex parameter, v is a real-valued continuous function at wg defined on [wy, o).
We note that there exists a unique solution of (4) satisfying the conditions [19]
y(wo) =di, D_yg-1,4-1y(wo) = dz,
where dy,ds € C.
Lemma 2 (see [19]). For any y and z in Laq(wo, 00), the following relation holds

T x

[z st~ [ 4T gt = 1.5 (@) 2] ) (@)

wo wo
where
ly,z] =y (D—wqfl,qflz) - (D—wqfl,qfly) zZ.

Theorem 4. For each A € C and z € [wy, ), the w,q-Wronskian of any two solution of
equation (4) is independent of .

< Let y and z be two solutions of equation (4). It follows from (4) that

/ ()7 dy gt — / YT du gt = [y, 7] () — [y, 2)(w0)

= Ww,q (y,?) (h_l (x) ) >‘) - Ww,q (y,z) (h_l (WO) a)‘) .

Since I'(y) = Ay and I'(z) = Az, we have

u{l‘(y)z dy gt —u{ yI'(2) dy gt = (A — )\)Zy(t, A)z(t, N)dyqt =0 )

= Ww,q (y’ Z) (h_l (x) 5 >‘) - Ww,q (ya Z) (h_l (WO) a)‘) .

Then we have W, ,(y,2)(h™1(z), \) = W, 4(y, 2)(h" (wp), A), i. e., the Wronskian is indepen-
dent of z (x € [wp,0)). >
Now we impose a boundary condition for the solution y of equation (4) as

Dy qy (qfn) sina + y (qfn) cosa=0, aeR, neN:={1,2...}. (6)
Let x(x,\) and ¢(z, A) be the solutions of the equation (4) satisfying

X (wo, A) =sin¢, ¢ (wo,A) = cos(,
waq_l,q_1X(w0,)‘) = —cosg, waq—l,q—MD(WO,)\) = sin,

where 0 < ¢ < 7. Since W, 4(x, ¢) = 1, the solutions x and ¢ are linearly independent.
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Lemma 3. For x € [wy,o0) and X € C, we have

x(z, \) :X(x,X), oz, \) = <p(x,)\).

< If x(z, A) is a solution of the equation (4), then we have
_qilD—wq*Hq*lDw,qX(x? )‘) +v (.YJ) X(ma )‘) = )\X(Z’, )‘)7 (S (w07 OO)

Taking the complex conjugate, we obtain

—q 'D_ -1 41Dy gx(@, A) + v (2) x(2,A) = X x(7,)), 2 € (wo, ).

By (7), x(z, A) is a solution of
—q'D_ 141D gu () +v (@) u(z) = Xu(z), =€ (wo,o0).

But u = x(z,\) is also a solution of the equation (4) with the same conditions (7). By the
uniqueness of solutions we get the desired result. >

Lemma 4. If y(z, \) is a solution of equation (4), then we have

b
Qﬁfjfhﬂx,ANdeﬂx::IV@g(y,y)(hlaﬁ,A)——EV@g(y,y)(h1ﬁwﬁ,A),

wo

(8)
c=Im), b>0, XecC.

< Substituting z(z, \) = y(x,\) in (4), we have (5). Thus, we get (8). >
Now using (7) we shall construct a solution ¥ of (4) as
Oz, A) = x(2, ) +np(@, ), @ € [wo, 00),

where 7 is a constant. If we substitute ¢ for y in (6) we obtain

(Q+nF)sina+ (T +nP)cosa =0, 9)
where
Q=Dugx (@A), F =Dugp(a™A),
T=x(g"™A), ®=¢(¢™A) (neN).
Then, we get

Tcosa + Qsina

n=- (10)

®cosa + F sina’

n is a meromorphic function of A because x(x,\) and ¢(x,\) are entire functions of A.
Furthermore, since the eigenvalues of the regular problem are real, all poles of 7 are real
and simple. If cos « is replaced by a complex variable z, then we have

Tz4+Q

- — . 11
" bz 4+ F (11)

It follows from the theory of Mobius transformations [21] that the equation (11) is a one-
to-one conformal mapping in z for every A. Hence n describes a circle Cy-» in the complex
plane.



22 Allahverdiev, B. P. and Tuna, H.

The task is now to find the center and the radius of Cy—n» (n € N). Let us denote by O,
r,, the center of the circles Cy-n (n € N) and its radius, respectively.

Theorem 5. Let A € C, 0 =Im A\ # 0. Then, we have

W (06®) (@)
O = e R () (12)
qg " -1
n (A) = (20 / |g0(x,)\)|2dw7qx> (n € N). (13)

< On(A) (n € N) is the symmetric point at co. Let 2’ and z” are in the z-plane such that
n ()\, z') =00, 7 ()\, z”) =0, ().

Then 2’ and 2" must be symmetric with respect to the real axis of the z—plane, i. e., 2/ = 2.
But (), 2’) = oo if and only if

o — _Dw,qu(q_", >‘) ‘
(g™, A)

Hence, we have

—-n Dugp(a="\) n
0, (\) :77<A Dy (q n,A)> _ X (g ,A)( =i >+D ax (@)
QD( -n )\) q -n )\)( DW‘ISO(Q n >+qu(p n’)\)

A

( 0(g=,\)
_ xX(@" M) Dugp (a7 2) =9 (a7 A) Dugx (a7
@ (™) Dy go (7™ X) — @ (a7 X) Dugp (g7, A)
Wes06P) (g™ )

= W, eo @y "N

It is evident that r,(A) is the distance between the center of C,-» and the point n(\,0)

on
Cy—n(N). It follows from W, 4(x,»)(¢”") =1 (n € N) that

Do (a7 X) Wag (X, 0) (7", N)
Dqutp (qina )‘) Ww,q(‘% @) (q,n’ )\)

r ()\) — ‘ DW,QX (q—n, >‘) _ Ww,q (Xa@)(q_na )‘) ‘ _
" D%Q“P (qinv )‘) Ww,q (‘107 @) (q,n’ )\)

‘ X, ¢) (g "A)‘ 1
Waoa (0, @) (@™ A | [Weq(0.9) (@™ N

By virtue of Lemma 4, we conclude that

(n €N).

n

N
Wy (0. 2) (@A) = 2i0 / o, \)[2 du g

wo
Thus, we get

—-n

q

Wey (0.2) (@™ N)| = 2]0] / (@ N2 dug .

wo

which proves the theorem. >
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Now, our next concern will be the behavior of the family of circles {Cy-n(A)} (n € N).

Theorem 6. Let A = p+io. If ImnA = o > 0, then the upper half-plane is associated
with the exterior of the circle Cy-n (n € N).

< It follows from (2) that

Dy (0" M) _ 1. Dugp(ad™N) | Dugp (™)
Im{ w (a7 ) }_ { ol N ¢ (g X) }

]
2

L W@ @) (@A) _ 1 Wy (29) (67"
20l P 2 el NP
q*n
= % / lo(z, N dp gz >0 (n€N),
e (a1 J

i. e., if ¢ > 0, the exterior of C,-»()) is mapped onto the upper half-plane of the z-plane. >
Now, we can prove the following result.

Theorem 7. Let Im A = o > 0. Then 1 lies on the circles Cy—n (n € N) if and only if

q "
2 Im

/ X (2, A) + (2, V)| dy g = 777 (n € N), (14)
wo

and n belongs to the interior of qun if and only if

n

-
I
[ Ix@ ) + npte N duge < 0 (neN)

wo
< Let n € C. Then, we have

Weoq(X + 19, X + 10 ) (w0, A) = Wag (X; X) (w0, A) + nWes g (€, %) (wo, A) (15)
+ﬁWw,q (X7¢) (wo, )‘) + ‘77’2 Ww,q (‘107@) (w07 )\) =-"n + ﬁ = —2iIm n.
It follows from Lemma 4 that

—n

q
1 . ,
20 / (2, X) 41, A) P d g = = (WagOxtne, x+m9)(@ ", A) +2iTmn) - (n € N). (16)

wo
From Theorem 6, if Im z < 0, then 7 is inside C;—» (n € N) for v > 0. By (11), we obtain

_Q+?7F __Tz—i—Q
T+n® T @z
Q= Dyqx (qin’ >‘) , F =Dygp (q,n’ )\) )
T=x("A, ®=¢(¢ ™A (neN).

Hence,

. __.{ Q-+ §+n_F} WX +ne. X F19) (67" N)
i(z—%2)=1

— =, =1 n € N).
T+n®  T+7d T+ no|? n &N)
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Then, Im z < 0 if and only if

iWe(x +ne,x+n9) (7" A) >0 (neN). (17)
By virtue of (16) and (17), we conclude that

—n

q
I

[ Ixt@ ) + npte N duge < =1 (ne ) (18)

wo

On the other hand, 7 is on the circle Cy-» if and only if Im z = 0. Therefore, we have

Woq(Xx +ne.xFn2) (" A) =0 (neN). (19)
Substituting (19) in (16), we obtain the equality (14). >

Theorem 8. Let Im A = o > 0. The circles C~n are nested as n — oo.
< Let us consider another point k such that ¢=% < ¢~". Using (16) we may write

k n
Imn

q q
/ Ix(2, ) + nep(z, )\){2 dyqr < / Ix(@, ) + nep(z, )\)‘2 dy,qx < —
wo wo
This implies that the point 7 must be inside the circle Cj—x. >
Corollary 1. The circles Cy-» may converge either to a circle or a point as n — 0.
DEFINITION 3. If C is a point, then the equation (4) is said to be in the limit-point case.
Similarly, if C is a circle, then the equation (4) is said to be in the limit-circle case.

Theorem 9. Let 1 be a point lying on or inside the limiting circle Coo, and V(z, \) :=
x(x,\) +ne(z,A), Imn\ = o > 0, be the solution of (4). Then ¥(-,\) € ij,q(wo, o0), 1. e.,

o
2
/ IX(@,\) + 1z, A)|” du gz < 00.
wo
We note that 7 is called a Titchmarsh—Weyl function, and W (z, \) is called a Weyl solution
of the equation (4).
<1 Let 1 be a point lying on or inside the limiting circle Co. Then we have

n

=
I
/ ‘X(ac, A) + np(z, )\)‘Qd%qm < % (n € N). (20)

wo
Since the right-hand side of (20) is independent of the point ¢~", we may pass to the limit as
n — oo. Thus, we get

o0
Im
/|\I'(a:,)\)|2dw,qx < —U",
wo

which completes the proof. >
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Hocsawaemes 80-aemuto npogeccopa
Cmegana 'puzopvesuya Camro

Awnnoramusi. B 3Toit pabore paccMaTpuBaeTcs CHHIYJISIDHOE PA3HOCTHOe ypaBHeHne Xana — [llTypma —
JInyBuUILIsA, ONpeesisieMblil ypaBHEHHEM —q_lD_wq—l’q—l D, qy(z) + v(z)y(z) = A\y(z), € (wo,00), Tae A —
KOMIIJIEKCHBIH ITAPAMETD, ¥ — BEIeCTBeHHO3HATHAs (DYHKINSI, OTIPE/IEICHHAs HA [Wo, 00) M HENPEPBIBHAS B TOY-
Ke wo. Takoro Buia ypaBHEHUsT BOSHUKAIOT, KOT/Ia OOBIYHYIO IIPOM3BO/IHYIO B Kjaccudeckoit 3agade [ITtypma —
JInyBuiis 3ameHsiercst Ha (w,q)-XaH pasHOCTHBIM omeparopoM D, 4. Pa3BuBaercs (w,q)-aHajor Kiaccude-
ckoit Teopun Turumapma — Beiis fja Takux ypaBHeHuil. pyrumu cjoBaMu, u3ydaeTcs CyIIECTBOBAHUE
KBa/[PATHUYHO MHTEIPUPYEMOE DEIIeHHe CUHIYJIsIpHOro ypasHenust Xana — I[lltypma — JInysusisa. Caagana
OIIPE/IEJISIeTCs OJIXO/IsAIIee I'UIb0EPTOBO IIPOCTPAHCTBO B TepMuHaxX mHTerpasia Jlxekcona — Hépaynma. 3a-
TeM U3y9aroTCa ceMeiicTBa perynsapHbix 3agad Xana — ltypma — Jluysusta ma [wo,q” "], n € N. anee,
OTIPEEISIETCST CEMENCTBO OKPYXKHOCTEM, CXOISIIEcs Tub0 K ToUKe, JTUO0 K KPYTy. TeM caMbIM, B UCUUCJIEHUHT
XaHa BO3HHMKAIOT CJIydYay IPeJIeJIbHON TOUYKM MJIM TIPEIEIbHON OKPYKHOCTH, UCIIOJIb3ysl TeXHUKY Turamapmia.

KuroueBsblie cioBa: ypasaenne Xana — [IIrypma — JluyBuiuis, npejiesbHas OKPY?>KHOCTD U IIPeIeJIbHAST
TOoYKa, Teopust Turumapira — Beits.
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