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1. Introduction

In recent years, the cardinal functions have been finding an important role in nu-
merical analysis [1]. Both mathematicians and physicists have devoted considerable
effort to find robust and stable analytical and numerical methods for solving stochastic
differential equations, Adomian method [2]|, implicit Taylor methods [3, 4] and recently
the operational matrices ofintegration for orthogonal polynomials Legendre wavelets,
Chebyshev polynomials, etc. [5-20]. Several analytical and numerical methods have been
proposed for solving various types of stochastic problems with the classical Brownian
motion [10, 12, 14, 21-23|. Noting that finding the exact solutions for most of these equations
is hard, therefore, we have to apply approximate numerical methods to obtain numerical
solutions. This motivates our interest to propose an efficient and accurate computational
method for solving stochastic integral equations. In [24] M. H. Heydari & al. used Chebyshev
cardinal wavelets and their application in solving nonlinear stochastic differential equations
with fractional Brownian motion. M. H. Heydari obtained a new method based on the Cheby-
shev cardinal functions for variable-order fractional optimal control problems [25]. An effective
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direct method to determine the numerical solution of Volterra—Fredholm integro-differential
equations based on Chebyshev cardinal functions and deterministic operational matrices was
also found in [26]. The aim of this paper is to use cardinal Chebyshev functions to solve
nonlinear stochastic integral equations:

¢

X(t) = Xo +/k:1(t,s) [X(s)]pds+/k2(t, s)[X(s)]"dB(s), (1)
0 0

under the initial condition X (0) = Xy, where X(¢) is an unknown process, the function
ki(t,s), ka(t,s) are defined on the square 0 < ¢, s < 1, X is a random variable, B(s) is a
Brownian motion and p,q € N. After, we apply cardinal Chebyshev functions to SDE in the
following general form

t

¢
X(t)=Xo+ /a(s,X(s)) ds + / b(s, X(s))dB(s), (2)
0 0

where a(s, X(s,w)), b(s, X (s,w)) for s,t € [0,1] are known stochastic processes defined on
the same filtered probability space (Q2,.%,.%;, P) with natural filtration .%;, Xy is the known
random variable with F|Xg|? < 400 and X (t) is unknown stochastic process which should be
computed. The second integral in (2) is the It6 integral. Furthermore, all Lebesgue’s and It
integrals in (1) and (2) are well defined. The organization of this paper is as follows. In the se-
cond section, we give some preliminaries of stochastic calculus. We introduce Chebyshev
cardinal functions and operational matrix of integration in Section 3. In Sections 4 and 5
we describe the numerical procedure of the numerical solution of the proposed problem.
Convergence analysis of the method will be investigated in Section 6. To show the effectness of
the numerical technique, some numerical examples are illustrated in Section 7. Finally, a brief
conclusion is drawn on Section 8.

2. Preliminaries

DEFINITION 1. Let ¥ = ¥/(S,T) be the class of functions g(t,w) : [0,00) — R such that:
1) the function g(t,w) be & x .# measurable, where 4 is the Borel o-algebra of RT;
2) the function g(t,w) is F-adapted (measurable);
3) E[ 592(t,w)dt] < 0.

Lemma 1 (It6 isometry). For each X (t,w) € ¥ (S,T), we have

E(/tX(s,w) dB(s)>2 = E(/tXQ(s,w) d.s>.
0

0

Lemma 2 (the Gronwall inequality). Let «, S : [tg,T] —> R be integrable with
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3. Chebyshev Cardinal Functions

In this section, to construct the so called Chebyshev cardinal functions for the set
of orthogonal Chebyshev polynomials T (z), we will use the Taylor expansion of Tny1(x)
in neighborhood the j-th root of T1(z), which gives

Top1(2) = Tnga(25) + T o — 5) + o(x — ;).

Since the first term in the right hand side vanishes, we can define the cardinal function
of degree N in [—1, 1] as follows [1, 27]

_ Tny1()
Tnt1,2(25) (v — 25)

Cj(x) x € [—1,1], (5)

where the subscript « denotes x differentiation and x; are the zeros of Tyy1(x) defined by

(25 — 1) ,
IEJ':COS(W y jzl,,N+1, (6)

with the kronecker property

1, if j=4i,

Cylwi) = 05 = {0 if j#i

3.1. Function approximation. To obtain cardinal functions in the interval [0, 1], we

change the variable t = ‘TT“, then the shifted Chebyshev cardinal functions are defined on

the interval [0, 1] as follows:
City=Cy(2t—-1), i=1,...,N+1. (7)

REMARK 1. The shifted Chebyshev cardinal functions are orthogonal with respect to

the weight function w*(t) = w(2¢t — 1) on [0, 1], where w(t) = 11_t2 and we have

1

(Ci(t),C5 (1)) = /C;‘(t)c;‘(t)w*(t) dt = 5

y m 5z‘j- (8)

Theorem 1. Any function g(t) mean square integrable on [0, 1] can expanded by element
of shifted cardinal Chebyshev function as follow

N+1
g(t) = > u;Ci(t) = UT®n (1), (9)
j=1
where +1
T

are the shifted points of z;,

U= (u1,u2,...,uns1)
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QIf g(t) = S04 uCx(t), then
N+1 N+1

= Z ujC]*(tl) = Z ujéﬁ.
i=1 i=1

Then u; = g(t;). >

Theorem 2. Any function ¢(t,s) mean square integrable on [0,1]x[0,1] can be approxi-
mated by cardinal functions as follow

Nt
Z (ti55)CF()C () = n(t)T K 1@ (s), (10)

I M+

where K1 ; j) = g(ti,s;) and tj, s; are the corresponding shifted points of x;.
<1 The proof proceeds in a similar way as the proof of Theorem 1. >

3.2. Deterministic and stochastic operational matrices. Let
* * * T
(I)N(t) = (017027'-- 7CN+1) .
Lemma 3. We have

/@N(s) ds = P7'QoN (1), (11)
0

where the (N + 1) x (N + 1) matrix P is called the transform matrix (or Vandermonde’s
matrix) and is given by

tl t2 t]\/'+1
2
1 | | iy 8t
ity ... tyg oo
t2 t2 t2 N-1
N-—-1 N—-1 -
p— 1 2 N+1 and Q= |4 ty N1
PR PR PR N—l N—l N_l
N-1 N-1 N-1 N
ty iy tN+1 ﬁ ﬂ INt1
tN tN tN N N N
1 2 cee N+1 AN+ $N+1 AR
1 2 N+1
N+1 N+1 N+1

< Let ;(t) =t~ for i = 1,... N + 1, by expanding v;(¢) in (N + 1) terms of the shifted
Chebyshev cardinal functions, we obtain

N+1
Yilt) = ilt))Ci (1), i=1,2,... N+1.
j=1
Then
() Ci ()
alt) | _p | G| 2 gy,

by (t) Ciyoa (1)
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Since the matrix P is invertible, ®y(t) = P~1Wx(t), where
Y1(t)
Un(t) = v2lt)
Yn41(t)
Hence
t t t 5
/@N(s) ds = /P_llllN(s) ds = P_l/\I’N(S) ds =P~ ! 7
0 0 0 tN+1
N+1

Now, let g;(t) = t—;, i=1,2,...,N+ 1, we have g;(t) = Z;V:ﬁl gi(tj)C]*(t) = Q®Px(t). Then

/@N(s) ds = P1QBN (1),
0

Lemma 4. Assume ®n(t) = (C],C5,. .. ,C'J*V_H)T and U = (uyg,us,...,uny1)’ . Then

On (1)L (U = Udn (), (12)
where U = diag[uy, ug, ..., un+1]-
<1 We have
Ci)Ci(t)  CrmCs(t) ... CTOCK (1) up
@N(t)fb%(t)U ~ C3(t)CT (1) C3()C3() ... C3(1)Cx 11 () U2

Cr@CT() CH g ()C3() ... CR i (0)CR ()
and expanding C;(t)Cj(t), i,j = 1,2,...,N + 1, by the elements of Chebyshev cardinal

functions, we get

N+1 N+1
Ci()Cj(t) = > Ci(tr)Ci(tr)Cr(t) = > GirdjuCi(t).
k=1 k=1
From this we conclude
symelpu~| 0 O 0 o _ Gy,
0 0 e C;;Jrl(t) UN+1

Lemma 5 [26]. If we consider X (t) ~ UT®x(t), then for every p € N, we have

(X)) = UTon(t) ~UT(U)" ' Dn(t),

or
(X (t)]" = [uf, b, ... Juby 1 | PN (1),

where U = diag(uy,ug, ..., un+1)-
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3.3. Stochastic operational matrices of integration. In this subsection, we give

stochastic operational matrix of integration with respect to Brownian motion we have

t

/t ~(s)dB(s) /P "Wy (s)dB(s ):P—l/\p (s)dB(s)
0

t t t
/dB /sdB /sNdB
0 0 0

we apply [t6 formula, we get

[ az) 0

bftsdB(s) ({B(s)ds

j82 dB(S) - B(t)\IIN(t) - QOJSB(S) ds = AN(t) = (ai)izo,...,Na
0

hofSNdB(S) NOfsN_lB(S)dS

where

t
a; :tiB(t)—i/silB(s)ds, i=20,...,N.
0

For the integral fg s'"1B(s) ds, we can use Simpson rule as follow

t

[ 516 %(oi—lB(0)+4<§>i_lB<%> +tf—1B<t>), =12

0

a; = £ B() —ié <4<%>i_13<§) +ti—1B(t)) - (<1 - %)B(t) - = ;_2B<g)>ti,

i=1,2,...,

SO

a; = B(t) for i=0.
Also we approximate B(t) and B(%) for 0 < ¢t < 1 by B(0.5) and B(0.25), then we obtain
2

P_IAN(t)
B(0.5) 0 0 ... 0 1
0 2B(05)—2B(0.25) 0 ... 0 t
=p ' .. t2

(1- %)3(0.5)“—' B(0.25) i

_N
3282
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Then
P 'AN(t) = PTAUN(t) = P APON(L) = PoON (1), (15)
where
B(0.5) 0 0 ... 0
a—| 0 2B(0.5) —2B(0.25) 0 ... 0

(1—&)B(0.5) — 358— B(0.25)

and P, = P~1A P is (N + 1) x (N + 1) stochastic operational matrix. Finally,

/ Oy () dB(t) ~ Pdy (). (16)
0

4. Numerical Method for Solving Stochastic Integral Equation (1)

In section, we describe numerical technique for solving stochastic integral equation (1),
first we approximate the functions k;(¢,s), k2(t,s) and X(¢) by elements of the basis C},
1=1,2,...,N + 1, as follow

X))~ UTdN(t), ki(t,s) ~ N TK 1PN (s), ko(t,s) ~ L (1) Ka®n(s).  (17)
Then, we approximate the integrals fg k1(t,s)[X (s)]Pds and fg ka(t, s)[X (s)]?7dB(s), we obtain

/ ki (t,s)[X (s)|Pds ~ / On(t)T K1 DN (s)PN(s) Upds ~ O (1) Ky / D (s)Pn(s) Upds
0 0 0
(18)

t
~ oy ()T KU, / Dn(s)ds| ~ dn(t) K U,P71QON (1),
0

where (719 = diag(uf,ub,...,u}y, ) and U, are the coefficients of XP(t) in the basis ®n(t).
Let U, be the coefficients of X9(t) in the basis ®n(t). Then we have

/kg(t, s)[X(s)]"dB(s) ~ /@N(t)TKQCI)N(s)CI)N(s)TUq dB(s)
0 0

t t (19)
~ @N(t)TKg/be(s)fI)N(s)TUq dB(s) ~ on(t)T KU, /@N(s) dB(s)
0 0
~ &y (1) KyU, P,®y(t).
We replace equations (17), (18) and (19) in equation (1), we get
UT®N(t) — Xo — On(0)T K\ U,P71Q® N () — B (1) KoU, Po® () = 0. (20)

To solve equation (20), we have three methods.
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1. First, by collacting equation (20) in (N 4 1) points ¢;, j = 1,2,..., N +1, shifted points
of z;, we obtain

UT®n(t)) — Xo — O ()T KU, PTIQON(t;) — B (t;) T Koy Pe® (L) = 0,

21
j=1,2,...,N+1. 1)

We have &y (t;) = ej»v , where eé-v denotes the column of ordre j of identity matrix I of order
N + 1. Then we obtain a nonlinear system included N + 1 unknowns (uq,us, ... ,uN+1)T

and IV + 1 equations, Newton method can be used to obtain accurate solution of nonlinear
systems.
2. Here, we approximate ®y(t;)T K1U,P~1Q®y(t;) and @ (t;)T KoU,Ps®n(t;) as follow

Lemma 6. We have
SN ()T K U,PLQ® N (t) ~ My® (1), (22)

O (1) KoUy Py® (1) ~ My®(t), (23)

where My and My are (N + 1) row vectors including elements equal to the diagonal entries
of KlUprlQ and KU, Py respectibely.

< It is easy to proof identity (22) and (23). >
We replace (22) and (23) in equation (20), we get

UT®N(t) — Xo — M@y (t) — Ma®p(t) = 0. (24)

Hence
[UT — Ag — My — Ms]@p(t) =0, (25)

where Ag is (N + 1) row vector including elements equal to Xy. The obtained system (25) is
a nonlinear system with N + 1 unknowns (uy,us, ..., un11)".

3. We can use orthogonality condition.

5. Solving Stochastic Integral Equation (2)

We approximate equation (2) as follows:
21(t) = a(t, X (1), 22(t) =0b(t,X(t)), te]0,1]. (26)
By using equation (2) and (26), we have
z1(t) = a(t, Xo + ftzl(s) ds + ftZQ(s)dB(s)),
0 0
29(t) = b(t, Xo+ [z1(s)ds + fZQ(S)dB(S)).
0 0

By expanding z1(t) and z5(t) by elements of cardinal functions, we get

21(t) = Ul ®n(t), 2(t) =Ui on (). (28)
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By substituting equation (28) in (27), we obtain

z1(t) = a<t, XO—I—OftUlTQJN(S) d8+0ftU2T‘I>N(5)dB(S)),

(29)
¢ ¢
Zg(t) = b(t, Xo + fUlT‘I)N(S) ds + fUéT(I)N(S) dB(S)),
0 0
which is equivalent to
Zl(t)—CL(t X0+U1 f(I)N dS+U2 f(I)N dB( ))
(30)
z9(t) = b<t Xo+ UL f@N s)ds+ UL f@N )dB(s ))
By using equation (11) and (16), we get
Ul'®n(t) = a(t, Xo+ U P71QON(t) + U P@n (1)), (31)
UF®n(t) =b(t, Xo+ U{ PLQON(t) + U P.On(1)).
We collocate (29) at shifted points t;, j = 1,2,... N + 1, and we arrive at
Ul'el = a(tj, Xo+U{ P~'Qe} + UJ Peel), (32)
Ug el =b(tj, Xo+ U P7'QeY + U Pel),

where e denotes the column of ordre j of identity matrix I of order N + 1. The system (32)
can be solved for the unknown U; and U with Matlab software packages or by the Newton’s
iterative method. By determining U; and Us, we can determine the approximate solution
of X (t) as follow

Xn(x) = Xo + U P71QON(t) + Uy Pi®n(t). (33)

6. Convergence Analysis

In this section, we investigate the convergence and error analysis of the proposed method
in the Sobolev space.

DEFINITION 2 [28|. The Sobolev space H"'(a,b) is defined as follow:
H(a,b) = {u € L2 (a,b), uYV(t) € L% (a,b), j =0,1,...,m}, (34)

where w be a weight function and m > 0 be an integer.

REMARK 2. The Sobolev space H})'(a,b) is endowed with the following weighted inner
product

m b
(u(),0(t)) 0 = D / w9 v w(t) dt. (35)
=17

The space H'(a,b) is a Hilbert space with the following norm

[ e = (ZHu Hmab)- )
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Lemma 7 [28]. Let

N+1
1

we H'(-1,1), w(t)= ——— and Iyu= Z u;Cj(t)

1—=x )

be the Chebyshev interpolant of u(t) Then, the truncated error u — Inu satisfies

m

2
[ IN’U’HL%)(—Ll) S CmN_m< Z Hu(]) HL%(—M)) ’ (37)

j=min(m,N)

where ém is a positive constant independent of N and dependent on m. Moreover, in the
maximum norm, it yields

~

Hu - INUHngo(fl,l) S OnN

=

m( 3 Hu@‘wwwl,n) , @)

j=min(m,N)

where C,, is a positive constant independent of N and dependent on m, and ||lu||pee(—1,1) =
sup_ << |u(t)].
Theorem 3. Let

N+1
ue€ H}%(0,1), w*(t) =w(2t —1) and Iyu= Z u;C3 (1), uj = u(t;)
j=1

be the Chebyshev interpolant of u(t). Then, the truncated error u — Iyu satisfies

m

N 1\% " 3
* —
H“ - INU’HL?U*(O,I) S CuNTT Z (5) H“j HL?U*(O,l) J (39)
j=min(m,N)
where ém is a positive constant independent of N and dependent on m. Moreover, in the
maximum norm, it yields

R L m 1 27 ) %
) (D SN ) " PP I

j=min(m,N)

where C,, is a positive constant independent of N and dependent on m, and |lu| e 0,1y =
SUPogi<1 u(t)].

< The proof proceeds in a same manner as the one of Theorem (5.4) in [24]. >

Theorem 4. Suppose X (t) € H]J'(0,1) and X (z) be the exact and approximate solutions
of equation (2), respectively, furthermore, we suppose that

(H1) |a(t,X1(t)) — a(t, Xa2(t))| + |b(t, X1(t)) — b(t, X2(t))| < L|X; — Xo| (Lipschitz
condition),

(H2) |a(t, X (t))| + |b(t, X (t))| < L(1 + |X|) (Linear growth condition), where t € [0, 1],
X1,X5 € R and L; are positive constants for i = 1, 2.

(H3) E|Xo|? < o0.
Then X, (t) converges to X (t) in L?.
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< Let en(t) = X(t) — Xn(t) be an error function of approximate solution Xy (¢) to
the exact solution X (t),

t t

X(t) - Xn(t) = / (21(s) — 21(s)) ds + / (22(s) — 22(s)) dB(s), (41)

a a

where z;(t), i = 1,2, are given by z;1(t) = a(t, X (t)), z2(t) = b(t, X (t)), also z;(t), i = 1,2, is
approximated form of z;(t) by schifted cardinal Chebyshev function

Elen(t)|? <2E

/ (z1(s) — 21(s)) ds
0

by the Schwartz inequality and Itd isometry, we get

E‘eN(m2 < 2E</|z1(3) —21(3)|2d3> +2E(/‘ZQ($) —22(3)|2d$>,
0 0

consequently,

2E</|z1(3)—21(3)|2d3> <4E</‘z1(3)—z{\7(3)|2ds> +4E</‘z{v(s)—21(3)|2ds>,
0 0 0

2E</|z2(s)—z2(5)|2d5> <4E</|z2(s)—zév(5)|2d5> +4E</|z§v(s)—z2(5)|2ds>.
0 0

0
By using Theorem 3, there exists a;(m, N), j = 1,2, such that

E||2N(s) = z(9)||” < (a;(m,N))?, =12,

where

N

a;(m,N) = émN—m<

> (5) e

; . i=1,2.
£2,(0,1)
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Then
B Jen(t))” <41 (m, N) + as(m, N))*+ 4</E l21(s) — 2 (s)| ds +/E 2 (s) — zg(s)|2ds>.
By using Lipschitz condition, we get

B Jea(t)]” < 4(a1(m, N) + as(m, N))* + 8L/E len(s)| ds, (42)

hence by Gronwall inequality we obtain Eley(t)|*> — 0, as N — co. >

REMARK 3. We can see that if m is sufficiently large than the error in Lemma (7) is
sufficiently small.

7. Numerical Examples

To demonstrate the accuracy and effectiveness of the method proposed herein, we have
applied it to several examples. These examples are solved in different references, so the
numerical results obtained here can be compared with those of other numerical methods. In
order to analyze the error of the method we introduce the absolute error, with M simulations

en(t) = |X(t) — Xn(t)].

ExaMPLE 1. Consider the deterministic Volterra integral equation of the kind as fol-
lows [29]:

t
1
_1_5( — 8exp(2t) + 6sin(t) + 3 cos(t) + Hexp(— / exp(s —t) + sin(t — s) X (s)) ds,
0

where the exact solution is X (¢) = exp(2t). The numerical results are summarized in Table 1.

Table 1. The absolute errors obtained by the proposed method

with different values of N for Example 1
t N =4 N =10 N =15

8.1011 E-3 6.4010 E-9 8.3377 E—14

0.2 5.3252 E-3 6.6734 E-9 2.5157 E—-13

0.4 9.8748 E-3 1.0813 E—9 3.5527 E—15

0.6 1.0258 E—-3 8.5579 E—9 2.0872 E—14

0.8 15953 E—2 4.6935 E—-9 1.4264 E—12

1 7.2225 E—-2 1.1335 E—7 3.9968 E—13

ExaMPLE 2. Consider the deterministic Volterra integral equation of the second kind as
follows:

t
X(t) = cos(t /t—s cos(t — )X (s)ds,
0

where the exact solution is X(t) = %(2cosV/3t + 1). The numerical results are shown in
Fig. 1-2.
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w***#,_* === Approximate solution
b + Exact solution
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L . 4
0.95 ey,
4 \\\
oot W |
"
+
*x
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0-85 L 1 1 L 1 1 L
0 0.05 04 015 02 0.25 0.3 0.35 04
t
Fig. 1. The graphs of exact and approximate solutions for N = 4 for Example 2.
1.05 T T T . T
———Exact solution
s + Approximate solution
1T o
MPP-F_?:.‘%
++:“"-.
5 e,
So95 W 1
+ s
+ T
++\-P-
0.9r ¥y ]
h' S
'S
Rl
085 | I 1 1 I I 1 b o
0 0.05 041 015 £ 02 0.25 03 0.35 04
Fig. 2. The graphs of exact and approximate solutions for N = 2 for Example 2.
The proposed method, can be also applied to nonlinear deterministic Fredhoml integral
equations.

EXAMPLE 3. Consider the Fredholm integral equation of the second kind [30]

X(t) = exp (275 + (é)) 4 /16xp (275 - (§>S>X(s) ds,
0

with the exact solution X (¢) = exp(2t). The computational results are compared with that
obtained in [30] and are illustrated in Table 2.

(43)

Table 2. The absolute errors obtained by the proposed method
with different values of N for Example 3

¢ N=5 N=6 N=10 m=064[30] m = 128 [30]
0 1.0589 E—4 7.6683 B—6 6.2495 E—11 5.6999 E—5  4.0000 E—5
02 83927 E—5 7.8574 E—6 4.6068 E—11 1.2000 E—4  1.9999 E—5
04 41799 E-5 83148 E—6 5.3258 E—11 9.9992 E-5  3.0000 E—5
0.6 44243 E—5 87391 E—6 5.5025 E—11 4.5999 E—4  4.9999 E—5
0.8 99533 E—5 9.1235 E—6 5.0805 E—11 7.5999 E—4 2.9999 E — 5
1 14078 E—4 98403 E—6 7.3655 E—11 3.5000 E—4  4.9999 E—5

EXAMPLE 4. Consider the deterministic Riccati differential equation

u'(t) +u?(t) —1=0, wu(0)=0. (44)
exp(2t)—1
exp(2t)+1°

given in Table 3, and are compared with the results obtained in [31].

The exact solution is given by u(t) = The numerical results of this example are
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Table 3. The absolute errors obtained by the proposed method
with two values of N for Example 4
t = 6 (Present method) N =12 (Present method) m =12 [31]
0.1 1.2775 E—6 1.6259 E—-11 1.11 E-10
0.2 2.6439 E—6 2.5123 E—-12 2.04 E-10
0.3 1.3688 E—7 2.3986 E—11 2.10 E-12
0.4 2.8560 E—6 2.2805 E—11 2.23 E-10
0.5 7.3035 E—-7 1.3141 E—-11 4.03 E-10
0.6 2.39994 E—6 2.3181 E—-13 1.79 E—10
0.7 9.8334 E-7 1.1980 E—-11 8.59 E—11
0.8 2.5757 E—6 1.4748 E—11 2.70 E-10
0.9 2.8394 E-7 5.0553 E—12 1.89 E—10
1.0 2.6817 E—6 2.3652 E—11 2.66 E—11
EXAMPLE 5. Let us consider the problem
¢ ¢
X(t) = Xo + /a cos(X (s)) sin®(X (s)) ds — / ))dB(s), € [0,1]. (45)
0 0
The exact solution is X (t) = arccot(aB(s) + cot(Xp)). The computed errors for N = 5,

a=1/8 and Xy =7/32, Xg =0.1, Xg = 0.01, Xy = 1 are summarized in Table 4.

Table 4. The absolute errors obtained by the proposed method
with different values of Xy for Example 5

t X0=0.01 X0=m/32 X0=0.1 X0=1

0 82145 E-6 4.0132 E—4 8.3099 E—4 6.2593 E-2
0.1 7.7400 E-6 6.8875 E—4 7.8514 E—4 5.9772 E-2
0.2 1.0725 E—6 8.6983 E—4 1.1750 E—4 1.1500 E—2
0.3 4.6979 E-7 4.2429 E—-4 4.6663 E—4 3.2472 E-2
0.4 4.2535 E—6 9.1225 E-5 3.0996 E-5 1.2364 E—3
0.5 7.6467 E—6 1.3240 E—4 7.8170 E-4 6.1292 E-2
0.6 3.0515 E-6 1.2116 E—4 3.2278 E—4 2.8464 E-2
0.7 6.1677 E-6 3.2922 E—-4 6.1092 E—-4 4.1968 E—2
0.8 1.5208 E-6 6.1442 E—-4 1.3615 E—-4 4.9793 E-3
0.9 3.2037 E-6 9.8149 E—4 3.0564 E—4 1.7478 E—2

EXAMPLE 6 (Stochastic Lotka—Volterra model). Lotka—Volterra model also known as the
predator-prey equations, in deterministic subclasses, are well-known and have been an active
area of research concerning ecological population modeling [32]. The logistic model is often
represented as follow:

dX (t)
dY (1)

= X(t) (b1 — anX(t) — ang(t))dt + UlX(t)dBl (t),
= Y(t) (b2 — CLQlX(t) — CLQQY(t))dt + O'QY(t)dBl (t),
with initial conditions X (0)

= Xo, Y(0) = Yy, where ai1, ai2, azi, az, bi, by, 01 and o9

are parameters. The application of the proposed method, gives the corresponding nonlinear

system
UT
VT

= X'+ 06 U0TP1Q

— a11ﬁ2TP—1Q

—apUTVP1Q + o, UT PP,
=Yy + VTP Q- anVIUP'Q — apnVy P71Q + 0o VT PP,
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where
Xt =U"Qn(t), Y(t)=VTQn(t), X2(t)=Us@Qn(t), Y2(t)=ViQn(1),

V= diag[vl,vg, . ,UN+1], U = diag[ul,ug, . ,uN+1],
= T T
Vé: (U%vv%w"v?\f—%l) ’ U2 = (u%vu%w"u%\f—i—l) )
with U = (uy,ug,...,uny1), V = (v1,v2,...,un+1). In this example, we take X (0) = 0.5,
Y(O) = 1 and bl = 20, B2 = —30, ajl] = a9y = O, alp = a9 — 25 and o1 = 09 = 1. We
take M = 80 simulations for N = 8 and M = 30 for N = 5, we compute the means of X ()
and Y'(t). The numerical results are shown in Fig. 3-4.

oo B T T T
_>;-' —+ - Approximate Xit) e
S 4L ©+ Approximate Y(t) /2'" \‘\\ 4
§ // Ay
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g 3L //* N =
g % X
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§ 1<..d..f:::—\- """" 1—' """"" ¥ A
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Fig. 3. Approximate solutions for M = 80 and N = 8 for Example 6.
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Fig. 4. Approximate solutions for M = 30 and N = 5 for Example 6.

ExaMPLE 7. Consider the following nonlinear stochastic It6 integral equation

t

Xt)=1+ /X(t)(gi2 - X2(t)> dt + /0.25X(t) dB(t), te]o,1], (46)
0 0

with the exact solution
exp(0.25B(t))

\/1 + Qjexp(O.SB(s)) ds
0

X(t) = : (47)

where X () is a stochastic process defined on the probability space (€2,.%, P). The numerical
results with M = 150 simulations are shown in Table 5 and are compared with the results
obtained in [10].
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Table 5. The absolute errors obtained by the proposed method
with different values of N for Example 7

t N=4 N =38 N=10 N=4[10] N=8][10] N =10 [10]
0 1.6360 E—3 4.0901 E—2 14337 E—1 817 E—2 276 B—2  9.29 B2
0.1 3.4591 E—2 7.6948 E—2 82714 E—2 529E-2 251 E-2  6.31 E-2
0.2 11814 E—1 69798 E—2 1.3960 E—3 289 E—2 259E—2  3.86 E—2
0.3 9468 E—2 24183 E-2 1.7747TE—2 67E-3  3.06 E—2  1.65 E—2
04 75338 E—2 9.7591 E-3 84280 E—3 159E-2 384E—2  43E-3
0.5 7.7120 E=2 6.4695 E—3 59106 E—2 4.12 E—2 487 E—2  2.41 E-2
0.6 6.1632 E—2 9.0339 E-3 12380 E—2 7.25E—2 6.08 E—2  4.31 E-2
0.7 54542 E—2 1.0809 E—-1 48138 E—2 1141 E—1 742E-2  6.12 E-2
0.8 6.9447 E—2 6.1975 E—2 48274 E—2 1714 E—1 889E—2  7.87 E-2
0.9 6.6438 E—2 23192 E—2 88528 E—2 2512 E—1 1.055 E—1  9.55 E—2

EXAMPLE 8 (the basic Black—Scholes model). Consider the following linear stochastic

t €10,1],

equation
dX(t) = AX(t)dt + pX (t)dW (t), X(0)= Xo,
where the exact solution is given by
1
X(t) =exp <()\ - §u2)t + uW(t)).

(48)

The results obtained for A = —10, ¢ = 1, N = 5 and M = 100 simulations of this example

are given in Table 6 and in Fig. 5-6.

Table 6. Computed errors for Example 8

t Xo =0.001 Xo =0.01 Xo=1
6.0012 E-5 2.1938 E—3 1.2309 E—1

0.1 7.1472 E—4 25322 E—-3 9.5855 E—2

0.2 83066 E—4 1.5726 E—3 2.8627 E—2

0.3 7.0929 E—4 6.0209 E—4 4.0362 E—2

0.4 4.8256 E—4 4.1796 E—4 1.8396 E—2

0.5 23794 E—-4 3.8518 E—4 2.7327 E-2

0.6 5.5484 E-5 4.4513 E—4 3.7373 E-2

0.7 26947 E-5 5.3577 E—4 29311 E-2

0.8 1.8354 E—-6 5.6066 E—4 5.1787 E—3

0.9 8.6807 E-5 5.4154 E—-4 2.0294 E—-2

-3
. 19’\‘10 ; ; ; ; ; ;
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Fig. 5. Exact and approximate solutions for Xy = 0.01 for Example 8.
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Fig. 6. Exact and approximate solutions for Xy, = 0.001 for Example 8.

8. Conclusion

Some stochastic differential equations can be written as stochastic Volterra integral
equations. There are many stochastic integral equations which can not be solved analytically.
In recent decade, many researcher are trying to develop the numerical methods for solving
stochastic integral equations. In this paper, we introduced the cardinal Chebyshev functions,
then the deterministic and stochastic operational matrices of these orthogonal functions have
been obtained. These matrices can be also used to solve linear and nonlinear differential
equations. These cardinal functions was used and applied for solving linear and nonlinear
Volterra integral equations. The convergence and error analysis of the proposed method were
investigated. Finally, several examples were included to demonstrate the applicability of the
presented approach, the method of Chebyshev cardinal functions proposed in this paper can
be further expanded to solve systems of stochastic integro-and integral equations for futur
studies.
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Awnunoranusi. [lenb craTbu — MpUMEHUTH KapAuHAJIbHBIE (DYHKIMNA UeObIeBa K YUCJIEHHOMY PEIIEHUIO
CTOXaCTUYECKUX MHTErPajbHbIX ypaBHeHuil Bosbreppa. MeTo ocHOBaH Ha Pa3JIOXKEHUM UCKOMOI'O IIPU-
OJIMZKEHHOTO PEIeHNsI 10 KapIUHAJbHBIM (yHKIusaMu debbimesa. st ymoMsHyTHIX 6a3UCHBIX (DYHK-
il BBIBOJIUTCST HOBasl ONEpaIlMOHHAsT MATPHUIIA NHTErPUPOBaHusi. TouHee, MCKOMOE peIlleHne pa3jIaraerTcst
B TEpMHUHAX KapIUHAJBHBIX (DYyHKIMI HebbIeBa ¢ Hen3BeCTHbIMEU Kodddunuenramu. [logcrapisis yka-
3aHHOE DA3JIOXKEHUE B UCXOAHYIO 33/1a4dy, OlEPAIOHHAs] MATPHIA CBOIUT CTOXACTUYIECKOE MHTErPAJIHLHOE
ypaBHEHME K CHCTeMe aJirebpandecKux ypaBHeHwmil. VlcciiefoBaHBI CXOAMMOCTH W OIEHKA ITOTPEITHOCTH
B npocrpanctBe C CoboseBa. MeToJi OABEPrHYT YMCIEHHON OINEHKE IIyTeM PEIleHUsl TEeCTOBBIX 3aJ1ad,
B3SITBIX U3 JINTEPATYPHI, C TOMOIIBI0 KOTOPHIX JEMOHCTPUPYETCS BEIYUCIUTENbHAS 9PHEKTUBHOCTD METO-
na. C BbIYACIUTENBHON TOYKN 3PEHHs PEIlleHne, IOy IeHHOEe STUM METOJIOM, OTIUYIHO COIJIACYETCs C Pe-
MIEHUSIMY, [IOJIyYEHHBIMHA B JAPYTUX paborax, u ero 3bdEKTUBHO UCHOJIb30BATH [P PEIIEHUN PA3JIMIHBIX
3a/1ad.

KuaroueBbie ciioBa: KapjauHajbHble (DYyHKIUN JeObIleBa, CTOXaCTUIECKasi OllepaIllMOHAaIbHAsST MATPHUIA,
GPOYHOBCKOE JIBUXKeHUe, nHTerpaJ VITo, MeTos KOJLUIOKAINK, YUCJIEHHOE PEIleHNE.
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