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Abstra
t. The Tosha-degree of an edge α in a graph Γ without multiple edges, denoted by T (α), is the
number of edges adja
ent to α in Γ, with self-loops 
ounted twi
e. A signed graph (marked graph) is an

ordered pair Σ = (Γ, σ) (Σ = (Γ, µ)), where Γ = (V,E) is a graph 
alled the underlying graph of Σ and

σ ∶ E → {+,−} (µ ∶ V → {+,−}) is a fun
tion. In this paper, we de�ne the Tosha-degree equivalen
e signed
graph of a given signed graph and o�er a swit
hing equivalen
e 
hara
terization of signed graphs that are

swit
hing equivalent to Tosha-degree equivalen
e signed graphs and k
th
iterated Tosha-degree equivalen
e

signed graphs. It is shown that for any signed graph Σ, its Tosha-degree equivalen
e signed graph T (Σ)
is balan
ed and we o�er a stru
tural 
hara
terization of Tosha-degree equivalen
e signed graphs.
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1. Introdu
tion

A graph is an ordered pair Γ = (V,E), where V is a set of verti
es of Γ and E is a 
olle
tion

of pairs of verti
es of Γ, 
alled edges of Γ. For standard terminology and notion in graph theory,

we refer the reader to the text-book of Harary [1℄. All graphs 
onsidered in the paper are �nite,

simple and 
onne
ted. The non-standard will be given in this paper as and when required.

In [2℄, we de�ned the Tosha-degree of an edge in a graph and Tosha-degree equivalen
e

graph of a graph as follows:

Let α be an edge in a graph Γ. The Tosha-degree of α, denoted by T (α), is the number
of edges adja
ent to α in Γ, with self-loops 
ounted twi
e. For any edge α in a graph Γ,

T (α) ⩾ 0.

Let Γ = (V,E) be a graph and ∣E∣ = m. We de�ne a relation ≋ on E as follows: for

α, β ∈ E,

α ≋ β⇔ T (α) = T (β).
It is easy to see that ≋ is an equivalen
e relation on E. Let E1, E2, . . . , Ek be the partition of E

in to disjoint 
lasses by the relation ≋. Let ∣Ei∣ = mi, 1 ⩽ i ⩽ k so that m1+m2+. . .+mk = m.
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The equivalen
e 
lass graph on E de�ned by ≋ is 
alled Tosha-degree equivalen
e graph of Γ

and is denoted by T (Γ).
A signed graph is an ordered pair Σ = (Γ, σ), where Γ = (V,E) is a graph 
alled the

underlying graph of Σ and σ ∶ E → {+,−} is a fun
tion. A marking of Σ is a fun
tion

µ ∶ V (Γ)→ {+,−}.
A signed graph Σ = (Γ, σ) is balan
ed if every 
y
le in Σ has an even number of negative

edges (see [3℄). Equivalently, a signed graph is balan
ed if produ
t of signs of the edges on every


y
le of Σ is positive.

The following are the fundamental results about balan
e, the se
ond being a more advan
ed

form of the �rst. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be

empty.

Theorem 1.1. A signed graph Σ is balan
ed if and only if either of the following equivalent


onditions is satis�ed:

(i) Its vertex set has a bipartition V = V1 ∪ V2 su
h that every positive edge joins verti
es

in V1 or in V2, and every negative edge joins a vertex in V1 and a vertex in V2 (Harary [3℄).

(ii) There exists a marking µ of its verti
es su
h that ea
h edge uv in Γ satis�es σ(uv) =
µ(u)µ(v). (Sampathkumar [4℄).

Two signed graphs Σ1 and Σ2 are signed isomorphi
 (written Σ1 ≅ Σ2) if there is a one-

to-one 
orresponden
e between their vertex sets whi
h preserve adja
en
y as well as sign.

Given a marking µ of a signed graph Σ = (Γ, σ), swit
hing Σ with respe
t to µ is the

operation of 
hanging the sign of every edge uv of Σ by µ(u)σ(uv)µ(v). The signed graph

obtained in this way is denoted by Σµ(Σ) and is 
alled the µ-swit
hed signed graph or just

swit
hed signed graph.

A signed graph Σ1 = (Γ, σ) swit
hes to a signed graph Σ2 = (Γ′, σ′) (or that Σ1 and Σ2

are swit
hing equivalent) written Σ1 ∼ Σ2, whenever there exists a marking µ of Σ1 su
h that

Σµ(Σ1) ≅ Σ2. Note that Σ1 ∼ Σ2 implies that Γ ≅ Γ
′
, sin
e the de�nition of swit
hing does

not involve 
hange of adja
en
ies in the underlying graphs of the respe
tive signed graphs.

Infa
t, the idea of swit
hing a signed graph was introdu
ed by Abelson and Rosenberg [5℄

in 
onne
tion with stru
tural analysis of marking µ of a signed graph Σ.

Two signed graphs Σ1 = (Γ, σ) and Σ2 = (Γ′, σ′) are said to be 
y
le isomorphi
 (see [6℄)

if there exists an isomorphism φ ∶ Γ → Γ
′
su
h that the sign of every 
y
le Z in Σ1 equals to

the sign of φ(Z) in Σ2. The following result is known [6℄:

Theorem 1.2 (T. Zaslavsky [6℄). Two signed graphs Σ1 and Σ2 with the same underlying

graph are swit
hing equivalent if, and only if, they are 
y
le isomorphi
.

One of the important operations on signed graphs involves 
hanging signs of their edges.

The negation of a signed graph Σ, denoted η(Σ), is obtained by negating the sign of every

edge of Σ, i. e., by 
hanging the sign of every edge to its opposite [7℄.

2. Tosha-Degree Equivalen
e Signed Graph of a Graph

In [2℄, we have de�ned the Tosha-degree equivalen
e graph of a graph whi
h is motivated

to extend this notion to signed graphs as follows: The Tosha-degree equivalen
e signed graph of

a signed graph Σ = (Γ, σ) as a signed graph T (Σ) = (T (Γ), σ′), where T (Γ) is the underlying
graph of T (Σ) is the Tosha-degree equivalen
e graph of Γ, where for any edge e1e2 in T (Σ),
σ
′(e1e2) = σ(e1)σ(e2). Hen
e, we shall 
all a given signed graph Σ as Tosha-degree equivalen
e

signed graph if it is isomorphi
 to the Tosha-degree equivalen
e signed graph T (Σ′) of some
sigraph Σ

′
.
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The following result indi
ates the limitations of the notion of Tosha-degree equivalen
e

signed graphs as introdu
ed above, sin
e the entire 
lass of unbalan
ed signed graphs is

forbidden to be Tosha-degree equivalen
e signed graphs.

Theorem 2.1. For any signed graph Σ = (Γ, σ), its Tosha-degree equivalen
e signed

graph T (Σ) = (T (Γ), σ′) is balan
ed.
⊲ Let E

+
j be the set of verti
es of Tosha-degree equivalen
e signed graph T (Σ) ea
h of

whi
h 
orresponds to a positive edge in Σ and E
−
j be the set of verti
es of Tosha-degree

equivalen
e signed graph T (Σ) ea
h of whi
h 
orresponds to a negative edge in Σ. Let eiej
be any negative edge in T (Σ). By the de�nition of T (Σ), the edges ei and ej ofΣ are not of

the same sign and hen
e as verti
es of T (Σ) they 
annot lie in the same part of the partition{E+
j , E

−
j }. On the other hand, if the edge eiej is any positive edge of T (Σ) then, by the

de�nition of T (Σ) the edges ei and ej of Σ are of the same sign and hen
e as verti
es of T (Σ)
they must both lie in exa
tly one of the parts of the partition {E+

j , E
−
j } of the vertex set

of T (Σ). Thus, every negative edge of T (Σ) has its ends in di�erent parts of this partition

whereas no positive edge of T (Σ) has this property. Therefore, by the well known Partition

Criterion for Balan
e of by Theorem 1.1, it follows that T (Σ) must be balan
ed. ⊳
For any positive integer k, the k

th
iterated Tosha-degree equivalen
e signed graph, T

k(Σ)
of Σ is de�ned as follows:

T
0(Σ) = Σ, T

k(Σ) = T (T k−1(Σ)).
Corollary 2.2. For any signed graph S = (G,σ) and for any positive integer k, T

k(Σ)
is balan
ed.

Theorem 2.3. For any two signed graphs Σ1 and Σ2 with the same underlying graph,

their Tosha-degree equivalen
e signed graphs are swit
hing equivalent.

⊲ Suppose Σ1 = (Γ, σ) and Σ2 = (Γ′, σ′) be two signed graphs with Γ ≅ Γ
′
. By Theorem 2.1,

T (Σ1) and T (Σ2) are balan
ed and hen
e, the result follows from Theorem 1.2. ⊳
In [2℄, we have 
hara
terize the graphs su
h that Γ ≅ T (Γ).
Theorem 2.4. Let Γ be a 
onne
ted graph with m edges. Then Γ ≅ T (Γ) if and only

if Γ ≅ K3.

In view of the above result, we now 
hara
terize those signed graphs that are swit
hing

equivalent to their Tosha-degree equivalen
e signed graphs.

Theorem 2.5. For any 
onn
eted signed graph Σ = (Γ, σ) with m edges. Then Σ ∼ T (Σ)
if and only if Σ is balan
ed signed graph and Γ ≅ K3.

⊲ Suppose Σ ∼ T (Σ). This implies, T (Γ) ≅ Γ and hen
e by Theorem 2.4 we see that Γ

is isomorphi
 to 
omplete graph K3. Now, if Σ is signed graph in whi
h underlying graph Γ

is isomorphi
 to K3, Theorem 2.1 implies that T (Σ) is balan
ed and hen
e if Σ is unbalan
ed

its Tosha-degree equivalen
e signed graph T (Σ) being balan
ed 
annot be swit
hing equivalent
to S in a

ordan
e with Theorem 1.2. Therefore, Σ must be balan
ed.

Conversely, suppose that Σ is balan
ed and Γ is isomorphi
 to K3. Then, by Theorem 2.1,

T (Σ) is balan
ed, the result follows from Theorem 1.2. ⊳
By the de�nition of Tosha-degree of an edge in a graph, Tosha-degree equivalen
e graph

of a graph and Theorem 2.4, we have the following result:

Theorem 2.6. Let Γ be a 
onne
ted graph with m edges. Then Γ ≅ T
k(Γ) if and only if

Γ ≅ K3.
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In view of the above result, we now 
hara
terize those signed graphs that are swit
hing

equivalent to their k
th
iterated Tosha-degree equivalen
e signed graphs.

Theorem 2.7. For any 
onn
eted signed graph Σ = (Γ, σ) with m edges. Then Σ ∼ T
k(Σ)

if and only if Σ is balan
ed signed graph and Γ ≅ K3.

For a signed graph Σ = (Γ, σ), the T (Σ) is balan
ed (Theorem 2.1). We now examine, the


onditions under whi
h negation η of T (Σ) is balan
ed.
Theorem 2.8. Let Σ = (Γ, σ) be a signed graph. If T (Γ) is bipartite then η(T (Σ)) is

balan
ed.

⊲ Sin
e, by Theorem 2.1, T (Σ) is balan
ed, if ea
h 
y
le C in T (Σ) 
ontains even number
of negative edges. Also, sin
e T (Γ) is bipartite, all 
y
les have even length; thus, the number

of positive edges on any 
y
le C in T (Σ) is also even. Hen
e η(T (Σ)) is balan
ed. ⊳
Theorem 2.5 and 2.7 provides easy solutions to two other signed graph swit
hing

equivalen
e relations, whi
h are given in the following results:

Corollary 2.9. For any signed graph Σ = (Γ, σ), η(Σ) ∼ T (Σ) if and only if Σ

is an unbalan
ed signed graph and Γ = K3.

Corollary 2.10. For any signed graph Σ = (Γ, σ), η(Σ) ∼ T (η(Σ)) if and only if Σ

is an unbalan
ed signed graph and Γ = K3.

Corollary 2.11. For any signed graph Σ = (Γ, σ), η(Σ) ∼ T
k(Σ) if and only if Σ

is an unbalan
ed signed graph and Γ = K3.

Corollary 2.12. For any signed graph Σ = (Γ, σ), η(Σ) ∼ T
k(η(Σ)) if and only if Σ

is an unbalan
ed signed graph and Γ = K3.

2.1. Chara
terization of Tosha-Degree Equivalen
e Signed Graphs. The following

result 
hara
terize signed graphs whi
h are Tosha-degree equivalen
e signed graphs.

Theorem 2.13. A signed graph Σ = (Γ, σ) is a Tosha-degree equivalen
e signed graph

if and only if Σ is balan
ed signed graph and its underlying graph Γ is a Tosha-degree

equivalen
e graph.

⊲ Suppose that Σ is balan
ed and Γ is a Tosha-degree equivalen
e graph. Then there exists

a graph Γ
′
su
h that T (Γ′) ≅ Γ. Sin
e Σ is balan
ed, by Theorem 1.1, there exists a marking

µ of Γ su
h that ea
h edge uv in Σ satis�es σ(uv) = µ(u)µ(v). Now 
onsider the signed graph

Σ
′ = (Γ′, σ′), where for any edge e in Γ

′
, σ

′(e) is the marking of the 
orresponding vertex in Γ.

Then 
learly, T (Σ′) ≅ Σ. Hen
e Σ is a Tosha-degree equivalen
e signed graph.

Conversely, suppose that Σ = (Γ, σ) is a Tosha-degree equivalen
e signed graph. Then

there exists a signed graph Σ
′ = (Γ′, σ′) su
h that T (Σ′) ≅ Σ. Hen
e Γ is the Tosha-degree

equivalen
e graph and by Theorem 2.1, Σ is balan
ed. ⊳
A
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Àííîòàöèÿ. Ñòåïåíü Òîøà ðåáðà α â ãðà�å Γ áåç êðàòíûõ ðåáåð, îáîçíà÷àåìàÿ T (α), � ýòî ÷èñëî

ðåáåð, ñìåæíûõ ñ α â Γ, ïðè÷åì ïåòëè ñ÷èòàþòñÿ äâàæäû. Çíàêîâûé ãðà� (ïîìå÷åííûé ãðà�) � ýòî

óïîðÿäî÷åííàÿ ïàðà Σ = (Γ, σ) (Σ = (Γ, µ)), ãäå Γ = (V,E) � ãðà�, íàçûâàåìûé áàçîâûì ãðà�îì Σ è

σ ∶ E → {+,−} (µ ∶ V → {+,−}), ÿâëÿåòñÿ �óíêöèåé. Â äàííîé ñòàòüå îïðåäåëÿåòñÿ çíàêîâûé ãðà� ýêâè-

âàëåíòíîñòè ñòåïåíè Òîøà çàäàííîãî çíàêîâîãî ãðà�à è ïðåäëàãàåòñÿ õàðàêòåðèñòèêà ýêâèâàëåíòíîñòè

ïî ïåðåêëþ÷åíèþ çíàêîâûõ ãðà�îâ, êîòîðûå ïåðåêëþ÷àþòñÿ ýêâèâàëåíòíî çíàêîâûì ãðà�àì ýêâèâà-

ëåíòíîñòè ñòåïåíè Òîøà è k-îé èòåðàöèè çíàêîâûõ ãðà�îâ ýêâèâàëåíòíîñòè ñòåïåíè Òîøà. Òàêæå áûëà

èçó÷åíà ñòðóêòóðíàÿ õàðàêòåðèñòèêà çíàêîâûõ ãðà�îâ ýêâèâàëåíòíîñòè ñòåïåíè Òîøà.

Êëþ÷åâûå ñëîâà: çíàêîâûé ãðà�, áàëàíñ, ðåáðî ñòåïåíè Òîøà, çíàêîâûé ãðà� ýêâèâàëåíòíîñòè

ñòåïåíè Òîøà, îòðèöàíèå.
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