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Optimization is the choice of what is most preferable. Geometry and local analysis of nonsmooth objects
are needed for variational analysis which embraces optimization. These involved admissible directions
and tangents as the limiting positions of the former. The calculus of tangents is one of the main
techniques of optimization. Calculus reduces forecast to numbers, which is scalarization in modern
parlance. Spontaneous solutions are often labile and rarely optimal. Thus, optimization as well as calculus
of tangents deals with inequality, scalarization and stability. The purpose of this article is to give an
overview of the modern approach to this range of questions based on non-standard models of set theory.
A model of a mathematical theory is usually called nonstandard if the membership within the model
has interpretation different from that of set theory. In the recent decades much research is done into the
nonstandard methods located at the junctions of analysis and logic. This area requires the study of some
new opportunities of modeling that open broad vistas for consideration and solution of various theoretical
and applied problems.
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Agenda. Optimization is the choice of what is most preferable. Geometry and local
analysis of nonsmooth objects are needed for variational analysis which embraces optimization.
These involved admissible directions and tangents as the limiting positions of the former. The
calculus of tangents is one of the main techniques of optimization (cp. [1, 2]).

Calculus reduces forecast to numbers, which is scalarization in modern parlance.
Spontaneous solutions are often labile and rarely optimal. Thus, optimization as well as
calculus of tangents deals with inequality, scalarization and stability. Some aspects of the latter
are revealed by the tools of nonstandard models to be touched sligtly in this talk (cp. [3-6]).

The best is divine. Leibniz wrote to Samuel Clarke (see [7, p. 54]; cp. [8]): “God can
produce everything that is possible or whatever does not imply a contradiction, but he wills
only to produce what is the best among things possible.”

Enter the reals. Choosing the best, we use preferences. To optimize, we use infima and
suprema for bounded sets which is practically the least upper bound property. So optimization
needs ordered sets and primarily boundedly complete lattices.

To operate with preferences, we use group structure. To aggregate and scale, we use linear
structure.

All these are happily provided by the reals R, a one-dimensional Dedekind complete vector
lattice. A Dedekind complete vector lattice is a Kantorovich space.
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Since each number is a measure of quantity, the idea of reducing to numbers is of a universal
importance to mathematics. Model theory provides justification of the Kantorovich heuristic
principle that the members of his spaces are numbers as well (cp. [9] and [10]).

Enter inequality and convexity. Life is inconceivable without numerous conflicting
ends and interests to be harmonized. Thus the instances appear of multiple criteria decision
making. It is impossible as a rule to distinguish some particular scalar target and ignore the
rest of them. This leads to vector optimization problems, involving order compatible with
linearity.

Linear inequality implies linearity and order. When combined, the two produce an ordered
vector space. Each linear inequality in the simplest environment of the sort is some half-space.
Simultaneity implies many instances and so leads to the intersections of half-spaces. These
yield polyhedra as well as arbitrary convex sets, identifying the theory of linear inequalities
with convexity.

Convexity, stemmimg from harpedonapters, reigns in optimization, feeding generation,
separation, calculus, and approximation. Generation appears as duality; separation, as
optimality; calculus, as representation; and approximation, as stability (cp. [11-13]).

Legendre in disguise. Assume that X is a vector space, E is an ordered vector space, E*®
is F with an adjoined top, f: X — E* is some operator, and C := dom(f) C X is a convex
set. A wvector program (C, f) is written as follows:

reC, f(x)—inf.

The standard sociological trick includes (C, f) into a parametric family yielding the
Legendre transform or Young—Fenchel transform of f:

fr(1) = sup (I(z) — f()),

zeX

with I € X# a linear functional over X. The epigraph of f* is a convex subset of X# and so
f* is convex. Observe that —f*(0) is the value of (C, f).

Order omnipresent. A convex function is locally a positively homogeneous convex func-
tion, a sublinear functional. Recall that p : X — R is sublinear whenever

epip:={(x, t) € X xR | p(z) <t}

is a cone. Recall that a numeric function is uniquely determined from its epigraph.
Given C C X, put
H(C):={(z, t) e X xRT |z € tC},

the Hormander transform of C. Now, C' is convex if and only if H(C') is a cone. A space with
a cone is a (pre)ordered vector space.

The order, the symmetry, the harmony enchant us ... (Leibniz).

Thus, convexity and order are tightly intertwined.

Nonoblate cones. Consider cones K; and K> in a topological vector space X and put
s = (K1, K3). Given a pair s define the correspondence ®,, from X? into X by the formula

P, = {(k‘l,kz,iT) € X3 x= k1 — ko, k, € Kz}

Clearly, ®,, is a cone or, in other words, a conic correspondence.
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The pair s is nonoblate whenever ®,, is open at the zero. Since @, (V) =VNK; —VNK>
for every V' C X, the nonoblateness of s means that

»V = (VﬁKl—VﬂKg)ﬂ(VﬁKg—VﬂKl)

is a zero neighborhood for every zero neighborhood V C X.

Open correspondences. Since »V C V —V, the nonoblateness of s is equivalent to the
fact that the system of sets {5V} serves as a filterbase of zero neighborhoods while V' ranges
over some base of the same filter.

Let A, : z +— (z,...,2) be the embedding of X into the diagonal A, (X) of X™. A pair
of cones s := (K1, K3) is nonoblate if and only if X := (K1 x K3, Ay(X)) is nonoblate in X2.

Cones K1 and Ks constitute a nonoblate pair if and only if the conic correspondence
® C X x X? defined as

P = {(h7$15$2) €X XX2: $Z+h€Kz (’L = 1,2)}

is open at the zero.

General position of cones. Cones K; and K5 in a topological vector space X are in
general position iff

(1) the algebraic span of K and K is some subspace Xo C X;i. e, Xg = K1 — Ky =
Ko — Ki;

(2) the subspace X is complemented; i.e., there exists a continuous projection P : X — X
such that P(X) = Xo;

(3) K1 and K constitute a nonoblate pair in Xj.

General position of operators. Let 0, stand for the rearrangement of coordinates

Onp . ((xlvyl)v SRR (xnayn)) = ((xlw . 7xn)7 (yh' .. 7yn))

which establishes an isomorphism between (X x V)™ and X" x Y.

Sublinear operators Pp,..., P, : X — EU{+4o00} are in general position if so are the cones
A, (X) x E™ and o, (epi(Pr) X -+ X epi(Py)).

Given a cone K C X, put

Tp(K):={T € Z(X,E): Tk<0 (k€ K)}.

Clearly, 7g(K) is a cone in .Z (X, E).

Theorem. Let Ki,...,K, be cones in a topological vector space X and let E be a
topological Kantorovich space. If K1, ..., K, are in general position then

WE(Klﬂ---ﬂKn):WE(K1)+"'+7TE(Kn).

Environment for inequality. Assume that X is a real vector space, Y is a Kantorovich
space. Let B := B(Y) be the base of Y, i.e., the complete Boolean algebras of positive
projections in Y; and let m(Y’) be the universal completion of Y. Denote by L(X,Y’) the
space of linear operators from X to Y. In case X is furnished with some Y-seminorm on X,
by L™ (X,Y) we mean the space of dominated operators from X to Y. As usual, {T' < 0} :=
{r € X | Tz <0}; ker(T) = T7H0) for T : X — Y. Also, P € Sub(X,Y) means that P
is sublinear, while P € PSub(X,Y’) means that P is polyhedral, i.e., finitely generated. The
superscript (™ suggests domination.
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Kantorovich’s theorem. Find X satisfying

x—24-w
Y

(1) (3X) XA = B <> ker(A) C ker(B).
(2) If W is ordered by W, and A(X) — W4 =W, — A(X) = W, then (cp. [2, p. 51])

(3X>0)XA=B+ {A<0}Cc{B<0}.

The Farkas alternative. Let X be a Y-seminormed real vector space, with Y
a Kantorovich space. Assume that Ay,..., Ay and B belong to L™ (X,Y).

Then one and only one of the following holds:

(1) There are x € X and b,b’ € B such that b’ < b and

b¥Bx > 0,bA1x <0,...,bAyz <0.
(2) There are positive orthomorphisms aq,...,ay € Orth(m(Y'))4 such that

N
B = Z oAy
k=1

Inhomogeneous inequalities.

Theorem. Let X be a Y-seminormed real vector space, with Y a Kantorovich space.
Assume given some dominated operators Ai,...,An, B € Lm) (X,Y) and elements
ui,...,un,v € Y. The following are equivalent:

(1) For all b € B the inhomogeneous operator inequality bBx < bv is a consequence of the
consistent simultaneous inhomogeneous operator inequalities bA1x < buy,...,bAyx < buy,
i e.,

(6B < bv} D {bA1 <bur} NN {bAx < bun).
(2) There are positive orthomorphisms asq,...,ay € Orth(m(Y)) satisfying

AU

N
B= ZakAk; (>
k=1 1

N
k=

Boolean modeling. The above infinite-dimensional results appear as interpretations of
one-dimensional predecessors on using model theory.

Cohen’s final solution of the problem of the cardinality of the continuum within ZFC gave
rise to the Boolean valued models by Scott, Solovay, and Vopénka (cp. [4]).

Takeuti coined the term “Boolean valued analysis” for applications of the models to
analysis.

Scott’s comments. Scott forecasted in 1969 (cp. [14]): “We must ask whether there is
any interest in these nonstandard models aside from the independence proof; that is, do they
have any mathematical interest? The answer must be yes, but we cannot yet give a really
good argument.”

In 2009 Scott wrote?: “At the time, I was disappointed that no one took up my suggestion.
And then I was very surprised much later to see the work of Takeuti and his associates. I think
the point is that people have to be trained in Functional Analysis in order to understand these
models. I think this is also obvious from your book and its references. Alas, I had no stu-

2Letter of April 29, 2009 to S. S. Kutateladze.
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dents or collaborators with this kind of background, and so I was not able to generate any
progress.”

Art of invention. Leibniz wrote about his version of calculus that “the difference from
Archimedes style is only in expressions which in our method are more straightforward and
more applicable to the art of invention.”

Nonstandard analysis has the two main advantages: it “kills quantifiers” and it produces
the new notions that are impossible within a single model of set theory.

Let us turn to the nonstandard presentations of Kuratowski—Painlevé limits of use in
tangent calculus, and explore the variations of tangents.

Recall that the central concept of Leibniz was that of a monad (cp. [15]). In nonstandard
analysis the monad u(.#) of a standard filter .# is the intersection of all standard elements
of Z.

Monadic limits. Let F C X x Y be an internal correspondence from a standard set X
to a standard set Y. Assume given a standard filter .4#” on X and a topology 7 on Y. Put

F y': (Vo e w(A)Ndom(F)) (Vy = y) (z,y) € F},

VV(F) = ( (A) (£)) ( ) (
IV (F):=*{y": Gz ep(A)ndom(F)) (Vy=y')(z,y) € F},
YA(F) = *{y/ : (Y € p(H) ndom(F)) By ~ ¥
33(F):=="{y : Bz e p(A)Nndom(F)) 3y~ ) (z,y) € F},

with * symbolizing standardization and y =~ 3/ standing for the infinite prozitity between y
and ¢ in 7, 1. e. ¢y € u(r(y)).
Call Q1Q2(F) the Q1Qo-limit of F' (here Qx (k :=1,2) is one of the quantifiers V or 3).
Kuratowski—Painlevé limits. Assume for instance that F'is a standard correspondence
on some element of .4 and look at the 33-limit and the V3-limit. The former is the limit
superior or upper limit, the latter is the limit inferior or lower limit of F along .4 .

Jy~y)(z,y) € F},

Theorem. If F' is a standard correspondence then

JAFE) = ) c1< U F(ac));

Uenv zeU

Va(F) = () cl( U F(@),

vet zeU

where A is the grill of a filter A4 on X, i. e., the family comprising all subsets of X meeting
pu(A).
Hadamard, Clarke, and Bouligand tangents.

Ha(F,m’) = U int, ﬂ F;az;

UET(J:’)7 zeFNU,
o 0<a<ga’

ar =N U N <F;$+V>;

Ve, UGT(x’)7 zeFNU,

o O<a<ga’
F—=x
/
Bo(f,x):: ﬂ cl, U >
UET(J:/)7 zeFNU,

o/ O<C|l<0/
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where, as usual, 7(z’) := 2/ + 4; and .45, the zero neighborhood filterbase of the topology 7.
Obviously,
Ha (F,2') C C1(F,2") C Bo (F,2').

Infinitesimal quantifiers. Agree on notation for a ZFC formula ¢ and 2’ € F :
(V°z2)p:=NVr~,2)p:=Vr)(zr € FAz~, 1) = ¢,

(V*h)p:=(Vh=h)p:=(Nh)(he X Nh=; h)— o,
V*a)p:=Vax0)p:=Va)la>0ANax0) = e

The quantifiers 3°x, 3*h, 3°« are defined in the natural way by duality on assuming that
(F*z)p:=CFz=~,2)p:=Fz)(r € FAz =~ 2') AN,

(3°h) o= Fhrr W) :=(3h)(he X Nh~r b)) Ao,
p =

F*a)p:=(Fa=x0) Fa)(a>0Aax0) Aep.

Infinitesimal representations. The Bouligand cone is the standardization of the 333-
cone; 1. e., if A’ is standard then

K e Bo(F, x') < (3%2) (3%a) (3°h) z + ah € F.
The Hadamard cone is the standardization of the VVV-cone:
Ha(F, $') = VWV (F, x'),

with p(R;) the external set of positive infinitesimals.
The Clarke cone is the standardization of the VV3-cone: i.e.,

Cl(F,z') = W3 (F,2').

In more detail,

W e CUF,2') ¢ (V*z) (V°a) (3°h) z + ah € F.

Convexity is stable. Convexity of harpedonaptae was stable in the sense that no
variation of stakes within the surrounding rope can ever spoil the convexity of the tract
to be surveyed.

Stability is often tested by perturbation or introducing various epsilons in appropriate
places, which geometrically means that tangents travel. One of the earliest excursions in this
direction is connected with the classical Hyers—Ulam stability theorem for e-convex functions.
Exact calculations with epsilons and sharp estimates are often bulky and slightly mysterious.
Some alternatives are suggested by actual infinities, which is illustrated with the conception
of infinitesimal optimality.

Enter epsilon. Assume given a convex operator f : X — E*® and a point T in the effective
domain dom(f) :={x € X | f(x) < +oo} of f.

Given € > 0 in the positive cone Ey of E, by the e-subdifferential of f at T we mean the
set

0.f@) ={T € L(X,E) | (Vz € X)(Tz — f(z) <TT — f(T)+¢)}.
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Topological setting. The usual subdifferential df () is the intersection of e-subdifferen-
tials:

of (@) = () 0-1(@).

=0
In topological setting we use continuous operators, replacing L(X, F) with Z (X, E).
e-optimality.

Theorem. Let f; : X xY — E® and fo : Y x Z — E*® be convex operators and §,e € ET.
Suppose that the convolution faAfi is 6-exact at some point (z,y, 2); i. e., 0+ (foA f1)(z,y) =
fi(z,y)+f2(y, 2). If, moreover, the convex sets epi(f1, Z) and epi(X, f2) are in general position,
then

O-(foAf)(wy) = |J  0=faly,2) 00 fi(x,y).

120,220,
e1+eo=e+0d
Enter monad. Distinguish some downward-filtered subset & of E that is composed
of positive elements. Assuming F and & standard, define the monad wp(&) of & as
w(&€) :==N{[0,¢] | € € °€}. The members of u(&) are positive infinitesimals with respect to &
As usual, °¢ denotes the external set of all standard members of E, the standard part of &.
Assume that the monad (&) is an external cone over °R and, moreover, u(&) N°E = 0.
In application, & is usually the filter of order-units of E. The relation of infinite proximity or
nfinite closeness between the members of F is introduced as follows:

ep ey rer —er € u(&) & ex—ey € p(é).

Infinitesimal subdifferential. Now

Df@) = () o-f(®) = |J of@,

eees eep(&)

which is the infinitesimal subdifferential of f at T. The elements of D f(Z) are infinitesimal
subgradients of f at .

Infinitesimal solution. Assume that there exists a limited value e := inf cc f(x) of
some program (C, f). A feasible point xg is called an infinitesimal solution if f(xg) =~ e, i. e.,
if f(xzo) < f(z) + ¢ for every x € C and every standard € € &.

A point xg € X is an infinitesimal solution of the unconstrained problem f(z) — inf if
and only if 0 € D f(zo).

Exeunt epsilon.

Theorem. Let f1 : X XY — E® and fy : Y x Z — E*® be convex operators. Suppose that
the convolution faAfy is infinitesimally exact at some point (x,y,z); i. e., (foAf1)(z,y) =
fi(z,y)+ fa(y, 2). If, moreover, the convex sets epi( f1,Z) and epi(X, f2) are in general position
then

D(fQAfl)(x7y) - DfQ(y7Z) ° Df1($,y)
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NCUYUCJIEHUE KACATEJ/IBHBIX 11 BOKPYT

Kycpaes A. I'., Kyrarenanze C. C.

Onrtumusarus — 310 BbIGOp Haubosee npeanouYTuTe/bHOro. [eoMeTprs U JIOKAIbHBIA aHAIN3 HErJIagKuX
00'bEKTOB HEOOXOIMMBI J1J151 BAPUAIIMOHHOTO AHAIN3A, KOTOPHIH BKJIIOYAeT onTuMu3aruio. K HuM oTHOCSTCS
JOIIyCTUMBIE HAIIPABJICHUA U KacaTeJbHbIE KaK IIpeJeIbHble TO3UINY IepBBIX. Vcuucaenne KacaTebHbIX
SABJISETCS OMHUM W3 OCHOBHBIX MHCTPYMEHTOB OnTuMu3aruu. Vcunciienre CBOAUT MPOTHO3 K YUCTIAM, 9TO
Ha COBPEMEHHOM $SI3bIKE MOXKHO Ha3BaTh CKasjsipm3arimeil. CIOHTAHHBIE DENIeHUs YaCcTO HEYCTOWYUMUBBI U
peaKo onTuMasIbHEL. TakmM 06pa3oM, ONTUMU3AIMS U UCINCIICHIE KAaCATeIbHBIX CBSI3aHbBI C HEPABEHCTBA-
MH, CKansgpuldanueil u ycroirtunBocThio. llesnp HacTOsmEel cTaThyl — J1aTh 0030P COBPEMEHHOTO IIOIXOIA
K YKa3aHHOMY KPYTY BOIIPOCOB, OCHOBAHHOI'O HA NPUMEHEHWHN HECTAHIAPTHBIX Mojesteir. Momenb marte-
MaTHUYIeCKO TeOpuy OOBIYHO HA3BIBAETCH HECTAHIAPTHON, €C/IM OTHOIIEHNE TPUHAIIEKHOCTH B MOIEIH
MMEEeT MHTEPIIPETANNIO, OTINIHYI0 OT WHTEPIIPETAINH TEOPUU MHOXKECTB. B mociie/iHre aecaTuieTus BO
MHOTHX MCCJIeJOBAHUAX MCIOJIb3YIOTCHA HECTaHIAPTHBIE METOIbI, PACIOJIOKEHHbIe Ha CTBHIKAX aHAJIN3a U
JIOTMKH. DTa 00JIACTDH, JAeT HEKOTOPHIE HOBHIE BO3MOXKHOCTH MOIEIMPOBAHUS, OTKPBIBAIONINE IIMPOKUE
TePCIeKTUBHI JJId PACCMOTPEHNSA U PelleHnsd Pa3JIMIHBIX TeOPeTUIeCKUX U IIPUKJIATHBIX 3a1a4.

KurodeBble cioBa: KoHyC Anmavapa, koHyc Bynmrana, konyc Kiapka, ofiiee Toj0kKeHne, OriepaTopHoe
HepPaBeHCTBO Oy/IeBO3HAYHBIN AHAIN3, HECTAHJAPTHBIN aHAIN3.



