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1. Introdution and the Main Result

It is known that determining the onnetedness (or the number of onneted omponents)

of real algebrai surfaes is a very hard lassial problem in algebrai geometry (see

e. g. [4, 13℄). In this paper we deal with similar problems relating to the normalized Rii

�ow on generalized Wallah spaes. The importane of these problems is due to the need to

develop a speial apparatus for studying general properties of degenerate singular points of

Rii �ows initiated in [1�3℄. More onretely, in the above papers, the authors onsidered

some problems onerning the topologial struture of the sets (0, 1/2)3 ∩Ω and (0, 1/2)3 \Ω,
where

Ω =
{
(a1, a2, a3) ∈ R

3 : Q(a1, a2, a3) = 0
}

is an algebrai surfae (see Fig. 1 and 2) in R
3
de�ned by a symmetri polynomial Q(a1, a2, a3)

in a1, a2, a3 of degree 12:

Q(a1, a2, a3) = (2s1 + 4s3 − 1)
(
64s51 − 64s41 + 8s31 + 12s21 − 6s1 + 1

+240s3s
2
1 − 240s3s1 − 1536s23s1 − 4096s33 + 60s3 + 768s23

)

− 8s1(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)s2

− 16s21
(
13− 52s1 + 640s3s1 + 1024s23 − 320s3 + 52s21

)
s22

+64(2s1 − 1)(2s1 − 32s3 − 1)s32 + 2048s1(2s1 − 1)s42,

(1)

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.
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Fig. 1. Singular points of the surfae (0, 1/2)3 ∩ Ω.

Fig. 2. The surfae (0, 1/2)3 ∩ Ω.

The surfae Ω naturally arises in studying of general properties of degenerate singular

points of the following dynamial system (see [1�3℄):

dx1
dt

= f(x1, x2, x3),
dx2
dt

= g(x1, x2, x3),
dx3
dt

= h(x1, x2, x3), (2)

where xi = xi(t) > 0, i = 1, 2, 3,

f(x1, x2, x3) = −1− a1x1

(
x1
x2x3

− x2
x1x3

− x3
x1x2

)
+ x1B,

g(x1, x2, x3) = −1− a2x2

(
x2
x1x3

− x3
x1x2

− x1
x2x3

)
+ x2B,

h(x1, x2, x3) = −1− a3x3

(
x3
x1x2

− x1
x2x3

− x2
x1x3

)
+ x3B,
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B :=

(
1

a1x1
+

1

a2x2
+

1

a3x3
−

(
x1
x2x3

+
x2
x1x3

+
x3
x1x2

))(
1

a1
+

1

a2
+

1

a3

)
−1

.

ai ∈ (0, 1/2], i = 1, 2, 3.

It should be noted that the system (2) an be obtained from the normalized Rii �ow

equation

∂

∂t
g(t) = −2Ricg +2g(t)

Sg
n
,

where g(t) means a 1-parameter family of Riemannian metris, Ricg is the Rii tensor and Sg
is the salar urvature of the Riemannian metri g, onsidered on one speial lass of ompat

homogeneous spaes alled three-loally-symmetri or generalized Wallah spaes, see [9, 12℄.

In the reent papers [7℄ and [11℄, the omplete lassi�ation of these spaes was obtained.

A more detailed information onerning geometri aspets of this problem and the Rii

�ows ould be found in [8�10℄ and [14℄.

In [1℄, the authors noted that the set (0, 1/2)3 ∩ Ω is onneted, and the set (0, 1/2)3 \ Ω
onsists of three onneted omponents O1, O2 and O3 (see Fig. 1) ontaining the points

(1/6, 1/6, 1/6), (7/15, 7/15, 7/15) and (1/6, 1/4, 1/3) respetively.
The present work is devoted to detailed proof of this observation. The main result is the

following

Theorem 1. The following assertions hold with respet to the standard topology of R
3 :

(1) The set (0, 1/2)3 ∩ Ω is onneted.

(2) The set (0, 1/2)3 \ Ω onsists of three onneted omponents.

We note also the following

Corollary 1. The assertions of Theorem 1 are preserved if (0, 1/2)3 is replaed by (0, 1/2]3.

Remark 1. The symmetry of Q with respet to a1, a2, a3 implies the invariane of Ω
under the permutation a1 → a2 → a3 → a1.

Remark 2. Proof of Theorem 1 is based on the idea of Remark 8 in [2℄: One should

onsider a segment I with one endpoint at (0, 0, 0) and with the seond endpoint at an

arbitrary point of any faet of the ube (0, 1/2)3 ontaining (1/2, 1/2, 1/2). Aording to

Remark 1, we an assume without loss of generality that I is de�ned by the following

parametri equations

a1 := at, a2 := bt, a3 := t/2, (3)

where t ∈ [0, 1], a, b ∈ (0, 1/2). Substituting (3) into (1) we obtain some polynomial p(t) :=
Q(at, bt, t/2) in t of degree 12. Thus the problems under onsideration ould be redued to the
problem of determining the possible number of roots of p(t) in [0, 1] when (a, b) ∈ (0, 1/2)2 .
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2. Proof of the Main Result

Using Maple we have the following expliit expression for p(t):

p(t) = −256b2a2(2a + 1)2(2b+ 1)2(b+ a)2t12 + 32(16b3a3 + 4b3a2 + 2b3a+ 2b3

+8b2a2 + b2a+ 4b2a3 + 2ba3 + ba2 + 2a3)(2a + 1)(2b + 1)(2b+ 1 + 2a)(b+ a)t10

− 32(2a + 1)(2b + 1)(b + a)(16b3a3 + 4b3a2 + 2b3a+ 2b3 + 8b2a2 + b2a+ 4b2a3

+2ba3 + ba2 + 2a3)t9 − (72b2a2 + 104ba3 + 208b3a2 + 104b3a+ 208b2a3 + 52b4

+176a4b+ 208b4a2 + 176b4a+ 52ba2 + 52b2a+ 208a4b2 + 52a4 + 352b3a3 + 13b2

+13a2 + 44a3 + 44b3 + 22ba)(2b + 1 + 2a)2t8 + 2(2b+ 1 + 2a)(72b2a2 + 104ba3

+208b3a2 + 104b3a+ 208b2a3 + 52b4 + 176a4b+ 208b4a2 + 176b4a+ 52ba2

+52b2a+ 208a4b2 + 52a4 + 352b3a3 + 13b2 + 13a2 + 44a3 + 44b3 + 22ba)t7

+(600b2a2 + 392ba3 + 784b3a2 + 392b3a+ 784b2a3 + 108b4 + 14b+ 14a+ 128a6

+448ba5 + 224a5 + 528a4b+ 432b4a2 + 528b4a+ 196ba2 + 196b2a+ 432a4b2 + 108a4

+288b3a3 + 224b5 + 448b5a+ 128b6 + 2 + 27b2 + 27a2 + 36a3 + 36b3 + 66ba)t6

− 6(8b3 + 4b2a+ 2b2 + 8ba+ b+ 4ba2 + 2a2 + 8a3 + 1 + a)(2b+ 1 + 2a)2t5

+(2b+ 1 + 2a)(40b3 + 24ba+ 5 + 40a3)t4 + (22b+ 22a+ 88ba2 + 88b2a+ 2

+44b2 + 44a2 + 16a3 + 16b3 + 80ba)t3 − 6(2b + 1 + 2a)2t2 + (8a+ 8b+ 4)t− 1.

(4)

Consider the following set

K :=
{
(a, b) ∈ R

2 : a, b ∈ (0, 1/2)
}
.

Fig. 3. The urve γ.

Lemma 1. If (a, b) ∈ K then the disriminant D of the polynomial p(t) equals to zero if

and only if a = b.

⊳ Easy alulations show that D is non-negative, moreover, D has the same zeroes as the

following polynomial:

(2b − 1)12(2a− 1)12(a− b)12
(
F (a, b)

)2
, (5)



On Topologial Struture of Some Sets 9

where

F (a, b) := 40a3 − 24a2b− 24ab2 + 40b3 − 12a2 + 12ba − 12b2 − 6a− 6b+ 5.

Denote by γ the urve determined by F (a, b) = 0 (see Fig. 3). We will prove that γ has

no ommon point with the square K.

Changing the variables by the formula

x− y = a
√
2, x+ y = b

√
2 ,

we get a new equation for γ, from that we an express y expliitely:

F̃ (x, y) := 36
(
8x−

√
2
)
y2 +

(
8x+ 5

√
2
)(
2x−

√
2
)2

= 0. (6)

Note that the point (x′, y′) = (
√
2/2, 0) belongs to γ, moreover, this is an unique singular

point of γ. Sine
F̃xxF̃yy − F̃ 2

xy = 3888 > 0

at (x′, y′), then (x′, y′) is isolated aording to the well-known result in di�erential geometry

of planar urves. It is lear that the point (a, b) = (1/2, 1/2) /∈ K orresponds to (x′, y′) in
the initial variables.

It is obvious that every regular point of γ satis�es the ondition x < x0 :=
√
2/8. Hene

only we need is to show that γ an not interset the part of K, desribed by the onditions

x ∈ (0, x0), −x < y < x. In fat, it su�es to prove the inequality x < ϕ(x), where

ϕ(x) :=

√
2− 2x

6

√
8x+ 5

√
2√

2− 8x

is a funtion determining a part of the urve γ in (6). Note that limx→x0−0 ϕ(x) = +∞.

It is easy to show that the inequality x < ϕ(x) is equivalent to the inequality

ψ(x) := 320x3 − 48
√
2x2 − 24x+ 10

√
2 > 0,

whih holds for all x ∈ (0, x0), sine ψ(x) is positive at x = x0 and dereases:

ψ (x0) = 27
√
2/4 > 0, ψ′(x) = 960x2 − 96

√
2x− 24 < 0.

Therefore, F (a, b) 6= 0 for (a, b) ∈ K. Hene there is a unique possibility a = b in order to
D = 0 in K by (5). ⊲

Lemma 2. Let (a, b) ∈ K. Then a point of loal extremum of p(t) an not be a multiple

root of p(t).

⊳ Multiple roots of p(t) are possible only for a = b by Lemma 1. Therefore, we may

assume that b = a. Then (4) takes the following form

p(t) = −(t+ 1) p2(t) p
3
3(t),

p2(t) := (2 + 4a)t2 − 2(1 + 2a)t+ 1,

p3(t) := 8a2(2a+ 1)t3 − (1 + 4a)t+ 1.

Denote by D2 and D3 the disriminants of p2(t) and p3(t) respetively:

D2 := 4(2a + 1)(2a − 1),

D3 := −32(2a + 1)(2a − 1)(22a2 + 14a + 1)a2.
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Sine D2 < 0, D3 > 0 for a ∈ (0, 1/2), then it is lear that the polynomial p(t) has exatly
three distint real roots (eah of multipliity 3) for every suh a. It follows from this fat that

there is no points of loal extrema of p(t) among the roots of p(t). ⊲
Further we need the urve Γ (see Fig. 4), whih an be obtained as a result of the

intersetion Ω with the plane a3 = 1/2 for 0 < a1, a2 6 1/2. Reall some properties of Γ (see

details in [2℄): Γ determined by the equality G(a1, a2) = 0, where

G(a1, a2) := 4(a1 + a2)(4a1a2 − 1)(4a1a2 − a1 − a2 + 1)(4a1a2 + a1 + a2 + 1)

+ (16a21a
2
2 + 1)(13a21 + 22a1a2 + 13a22)− 4(a21 + a22)(11a

2
1 + 18a1a2 + 11a22),

(7)

Γ is homeomorphi to the segment [0, 1] with the endpoints (
√
2/4, 1/2), (1/2,

√
2/4) and with

the unique singular point (a usp) at (a1, a2) = (ã, ã), where ã := (
√
5−1)/4 ≈ 0.3090169942.

It is easy to hek that Γ separates K into disjoint onneted omponents K1 and K2

ontaining the points

(a′, b′) := (3/10, 3/10) and (a′′, b′′) := (31/100, 31/100)

respetively.

Fig. 4. The intersetion Ω with the plane a3 = 1/2 for 0 < a1, a2 6 1/2.

Lemma 3. In the segment [0, 1], the polynomial p(t) has
(1) one root, if (a, b) ∈ K1;

(2) two distint roots, if (a, b) ∈ K2 ∪ Γ.

⊳ Let t∗ ∈ [0, 1] be a root of p(t) given by (4). We say that t∗ is a robust root of p(t)
in [0, 1], if small perturbations of the parameters a and b imply a small perturbation of t∗

keeping it in (t∗ − ε, t∗ + ε) ⊂ [0, 1] for some small ε > 0 (see e. g. [6℄ for more details on

singularities of urves and some related problems).

Now, assume that t∗ is a non-robust root of p(t). Then there exist exatly two possibility
(reall that t∗ ∈ [0, 1]):

Case 1. t∗ = 0 or t∗ = 1;
Case 2. t∗ belongs to the interval (0, 1) and provides p(t) a loal extremum.
Now, we onsider these ases separately.
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Case 2. Assume that t∗ is a point of loal extremum of p(t). Then t∗ is a multiple root
of p(t). This ontradits to Lemma 2, hene, the ase 2 is impossible.

Case 1. Sine p(0) = −1 then there exists no pair (a, b) suh that t = 0 is a root of p(t).
Suppose that t = 1 is a root of p(t). Sine

p(1) = −4(a+ b)2G(a, b),

where G is given by (7), then the equality p(1) = 0 is possible if and only if G(a, b) = 0.
Reall that the urve Γ is determined by G(a, b) = 0. Sine p(t) has only robust roots for

every pair (a, b) ∈ K1 ∪K2 by our onstrution, then the number of roots of p(t) in [0, 1] is
onstant both in K1 and in K2. Hene, it is su�ient to alulate the number of suh roots

only for the representative points (a′, b′) ∈ K1 and (a′′, b′′) ∈ K2.

(1) Suppose that (a, b) = (a′, b′) ∈ K1. Then (4) takes the following form

p(t) = − 1

9765625
(t+ 1)(16t2 − 16t+ 5)(144t3 − 275t+ 125)3.

Taking into aount Lemma 2, we onlude that p(t) has three distint real roots of

multipliity 3 besides the root t = −1. Sine we does not need exat values of these roots

then their approximated values are:

−1.569348118, 0.5345099430, 1.034838175.

(2) Now, suppose that (a, b) = (a′′, b′′) ∈ K2. Then in (4) we obtain

p(t) = − 1

6103515625000000
(t+ 1)(81t2 − 81t+ 25)(77841t3 − 140000t + 62500)3 ,

with the following real roots (of multipliity 3):

−1.524828329 . . . , 0.5285082631 . . . , 0.9963200660 . . .

It is easy to see that for (a, b) ∈ Γ the polynomial (4) has two roots in [0, 1], one of whih
is 1 by the de�nition of Γ.

Hene, in the segment [0, 1], the polynomial (4) has one root for (a, b) ∈ K1 and two roots

for (a, b) ∈ K2 ∪ Γ. ⊲

⊳ Proof of Theorem 1 is based on Lemma 3 and Remark 2. Let (a, b) ∈ K. Then

the number of intersetion points of Ω with the segment I equals to 1 or 2 depending on the

number of roots of the polynomial p(t) (see (4)) ontaining in [0, 1].
(1) Connetedness of the set (0, 1/2)3 ∩ Ω. Let t1, t2 be roots of p(t) suh that 0 < t1 <

t2 6 1. Then, obviously, t1 and t2 orrespond to the �lower� and �upper� (see Fig. 2) parts

of the surfae Ω ∩ (0, 1/2)3 respetively. These parts of Ω have a unique ommon point

(a1, a2, a3) = (1/4, 1/4, 1/4) (an ellipti umbili of Ω aording to [1℄).

(2) The number of the onneted omponents of the set (0, 1/2)3 \ Ω. Sine the maximal
number of roots of p(t) in [0, 1] is equal to 2 and Ω ∩ (0, 1/2)3 is the union of two surfaes

with one ommon point, then the number of onneted omponents of (0, 1/2)3 \ Ω equals

to 3. Theorem 1 is proved. ⊲

In order to prove Corollary 1 we need the following

Lemma 4. Let b = 1/2. Then in the segment [0, 1], the polynomial p(t) has
(1) one root for a ∈

(
0,
√
2/4

)
;

(2) two roots for a ∈
[√

2/4, 1/2
)
;
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(3) one root (of multipliity 8) for a = 1/2.

⊳ (1), (2) At b = 1/2, a ∈ (0, 1/2) we have

p(t) = −(2ta+ 1) p2(t) p
3
3(t)

in (4), where

p2(t) := 4a(2a + 1)t2 − 2(1 + 2a)t+ 1,

p3(t) := 2(1 + 2a)t3 − 2(a+ 1)t+ 1.

For the disriminants D2 and D3 of the polynomials p2(t) and p3(t) we have

D2 := −4(2a− 1)(2a + 1) > 0,

D3 := 4(2a + 1)(2a− 1)(8a2 + 28a+ 11) < 0.

Sine the ubi polynomial p3(t) ahieves a positive loal maximum at the point t =

− (6a+3)(a+1)
6a+3 < 0, then its unique real root must be a negative number. Therefore, the

required roots of p(t) an be provided only by p2(t), moreover, �rst of them belongs to [0, 1]
for all a ∈ (0, 1/2); the seond of them � only for a ∈

[√
2/4, 1/2

)
.

(3) The ase b = a = 1/2 leads (4) to the polynomial

p(t) = −(t+ 1)4(2t− 1)8

with the unique root t = 1/2 of multipliity 8 on [0, 1]. It should be noted that we get an

ellipti umbili (a1, a2, a3) = (1/4, 1/4, 1/4) of the surfae Ω in this ase. ⊲

⊳ Proof of Corollary 1. Aording to Theorem 1 it is su�ient to onsider the ase

when a = 1/2 or b = 1/2. Taking into aount Remark 1, assume without loss of generality
that b = 1/2. Then the proof of Corollary 1 follows from Lemma 4 and Remark 2. ⊲

Remark 3.When this paper had been written the author was informed about the reent

paper [5℄, where a more detailed desription of the surfae Ω was obtained without the

restrition (a1, a2, a3) ∈ (0, 1/2)3.

The author is indebted to Prof. Yu. G. Nikonorov and to Prof. A. Arvanitoyeorgos for helpful

disussions onerning this paper.
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Î ÒÎÏÎËÎ�È×ÅÑÊÎÉ ÑÒ�ÓÊÒÓ�Å ÍÅÊÎÒÎ�ÛÕ ÌÍÎÆÅÑÒÂ,

ÏÎËÓ×ÀÅÌÛÕ ÈÇ ÍÎ�ÌÀËÈÇÎÂÀÍÍÛÕ ÏÎÒÎÊÎÂ �È××È

ÍÀ ÎÁÎÁÙÅÍÍÛÕ Ï�ÎÑÒ�ÀÍÑÒÂÀÕ ÓÎËËÀÕÀ

Àáèåâ Í. À.

Â ðàáîòå èçó÷àåòñÿ òîïîëîãè÷åñêàÿ ñòðóêòóðà ìíîæåñòâ (0, 1/2)3 ∩ Ω è (0, 1/2)3 \ Ω, ãäå Ω � àëãåá-

ðàè÷åñêàÿ ïîâåðõíîñòü, îïðåäåëåííàÿ ñèììåòðè÷åñêèì ìíîãî÷ëåíîì ñòåïåíè 12. Ïîäîáíûå çàäà÷è

âîçíèêàþò ïðè èçó÷åíèè îáùèõ ñâîéñòâ âûðîæäåííûõ îñîáûõ òî÷åê äèíàìè÷åñêèõ ñèñòåì, ïîëó÷à-

åìûõ èç íîðìàëèçîâàííûõ ïîòîêîâ �è÷÷è íà îáîáùåííûõ ïðîñòðàíñòâàõ Óîëëàõà. Îñíîâíàÿ öåëü

ðàáîòû � äîêàçàòü ñâÿçíîñòü ìíîæåñòâà (0, 1/2)3 ∩ Ω è îïðåäåëèòü êîëè÷åñòâî ñâÿçíûõ êîìïîíåíò

ìíîæåñòâà (0, 1/2)3 \ Ω.

Êëþ÷åâûå ñëîâà: ðèìàíîâà ìåòðèêà, îáîáùåííîå ïðîñòðàíñòâî Óîëëàõà, íîðìàëèçîâàííûé ïîòîê

�è÷÷è, äèíàìè÷åñêàÿ ñèñòåìà, âûðîæäåííàÿ îñîáàÿ òî÷êà äèíàìè÷åñêîé ñèñòåìû, äåéñòâèòåëüíàÿ

àëãåáðàè÷åñêàÿ ïîâåðõíîñòü, îñîáàÿ òî÷êà äåéñòâèòåëüíîé àëãåáðàè÷åñêîé ïîâåðõíîñòè.


