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We study topological structures of the sets (0,1/2)> N and (0,1/2)%\ Q, where § is one special algebraic
surface defined by a symmetric polynomial of degree 12. These problems arise in studying of general
properties of degenerate singular points of dynamical systems obtained from the normalized Ricci flow on
generalized Wallach spaces. Our main goal is to prove the connectedness of (0,1/2)> N and to determine
the number of connected components of (0,1/2)% \ Q.

Mathematics Subject Classification (2010): 53C30, 53C44, 37C10, 34C05, 14P05, 14Q10.

Key words: Riemannian metric, generalized Wallach space, normalized Ricci flow, dynamical system,
degenerate singular point of dynamical system, real algebraic surface, singular point of real algebraic
surface.

1. Introduction and the Main Result

It is known that determining the connectedness (or the number of connected components)
of real algebraic surfaces is a very hard classical problem in algebraic geometry (see
e.g. [4, 13]). In this paper we deal with similar problems relating to the normalized Ricci
flow on generalized Wallach spaces. The importance of these problems is due to the need to
develop a special apparatus for studying general properties of degenerate singular points of
Ricci flows initiated in [1-3]. More concretely, in the above papers, the authors considered
some problems concerning the topological structure of the sets (0,1/2)3 N and (0,1/2)3\ €,
where

Q= {(a1,a2,a3) € R*: Q(ay,a2,a3) =0}
is an algebraic surface (see Fig. 1 and 2) in R3 defined by a symmetric polynomial Q (a1, az,as)
in a1, as,as of degree 12:

Q(a1,az,a3) = (251 + 4s3 — 1)(64851) — 6457 + 855 + 1257 — 657 + 1
+240s357 — 2408351 — 15365351 — 409653 + 60s3 + 76853 )
—851(2s1 + 4s3 — 1)(2s; — 3253 — 1)(10s; + 32583 — 5)s2 (1)
— 1657 (13 — 5251 + 6408351 + 102453 — 320s3 + 5257 ) 53
+64(251 — 1)(251 — 3253 — 1)s5 + 204851 (251 — 1)s3,

s1=a1+az+ a3, So2=aia2+ ajaz+ asas, S3 = a1a20a3.
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Fig. 1. Singular points of the surface (0,1/2)%* N Q.

Fig. 2. The surface (0,1/2)° N Q.

The surface ) naturally arises in studying of general properties of degenerate singular
points of the following dynamical system (see [1-3]):

dxy dza dzs
E :f(l'l,xg,w,?,), E :g($1,$2,$3), E :h(wlaw%w?))’ (2)
where x; = z;(t) > 0,i=1,2,3,
T T2 T3
f(w1,$2,$3):—1—a1$1 ( - - ) +wlB,
23 173 T1X2
T2 T3 4o
g(x1,22,23) = =1 — agwy ( — - ) + 9B,
Tr1x3 T1X9 T3

I3 I T2
h(z1,z2,23) = —1 — azxs ( — — ) + 238,
T1T2  T2T3  T1X3
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a1 ag 9 asxrs o3 13 12 al a9 as

a; € (0,1/2], i=1,2,3.

It should be noted that the system (2) can be obtained from the normalized Ricci flow
equation

0

ag
where g(t) means a 1-parameter family of Riemannian metrics, Ricg is the Ricci tensor and Sg
is the scalar curvature of the Riemannian metric g, considered on one special class of compact
homogeneous spaces called three-locally-symmetric or generalized Wallach spaces, see [9, 12].
In the recent papers [7] and [11], the complete classification of these spaces was obtained.

A more detailed information concerning geometric aspects of this problem and the Ricci
flows could be found in [8-10] and [14].

In [1], the authors noted that the set (0,1/2)3 N Q is connected, and the set (0,1/2)3\ Q
consists of three connected components O1, Oy and Os (see Fig. 1) containing the points
(1/6,1/6,1/6), (7/15,7/15,7/15) and (1/6,1/4,1/3) respectively.

The present work is devoted to detailed proof of this observation. The main result is the
following

S,
(t) = —2Ricg +2g(t)7g,

Theorem 1. The following assertions hold with respect to the standard topology of R :
(1) The set (0,1/2)% N Q is connected.
(2) The set (0,1/2)3 \ Q consists of three connected components.

We note also the following

Corollary 1. The assertions of Theorem 1 are preserved if (0,1/2)3 is replaced by (0,1/2]3.

REMARK 1. The symmetry of (Q with respect to a1, ao, ag implies the invariance of €2
under the permutation a1 — as — ag — ay.

REMARK 2. Proof of Theorem 1 is based on the idea of Remark 8 in [2]: One should
consider a segment I with one endpoint at (0,0,0) and with the second endpoint at an
arbitrary point of any facet of the cube (0,1/2)% containing (1/2,1/2,1/2). According to
Remark 1, we can assume without loss of generality that I is defined by the following
parametric equations

ay :=at, ag:=0bt, asz:=1t/2, (3)

where ¢t € [0,1], a,b € (0,1/2). Substituting (3) into (1) we obtain some polynomial p(t) :=
Q(at,bt,t/2) in t of degree 12. Thus the problems under consideration could be reduced to the
problem of determining the possible number of roots of p(t) in [0, 1] when (a,b) € (0,1/2)2.
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2. Proof of the Main Result
Using Maple we have the following explicit expression for p(t):

p(t) = —256b%a%(2a + 1)%(2b + 1)%(b + a)?t'% + 32(166%a® + 4b>a® + 2b%a + 20°
+ 8b%a? + b?a + 4b%a® + 2ba® + ba® + 2a%)(2a + 1)(2b + 1)(2b 4 1 + 2a) (b + a)t'°
—32(2a 4+ 1)(2b +1)(b + a)(16b%a® + 4b3a® + 2b3a + 26% + 8b%a? + b?a + 4b*a®
+2ba® + ba® + 2a3)t° — (720%a* 4 104ba® + 208b3a® + 104b%a + 208b%a> + 52b*
+176ab 4 208b*a? + 176b*a + 52ba® + 52b%a + 208a*b* + 52a* + 352b%a® + 1312
+13a® + 440> + 440> + 22ba)(2b + 1 + 2a)*t® + 2(2b + 1 + 2a)(72b%a* + 104ba’
4 208b3%a® 4 104b%a + 208b%a3 + 52b* + 176a*b 4 208b%a? + 176b*a + 52ba?
+52b%a 4 208a1b? + 52a* + 352b%a® + 1302 + 13a® + 44a® + 44b° + 22ba)t”

+ (600b%a? + 392ba® + 784b3a* + 392b%a + 784b%a> + 108b" + 14b + 14a + 12848
+ 448ba® + 224a° + 528a*b 4 432b%a? + 528b%a + 196ba® + 196b%a + 432a1b? + 108a*
+ 2883 4 224b° + 448b°a + 128b° 4 2 + 27b% 4 27a* + 364> 4 36b° + 66ba)t’
— 6(80% + 4b%a + 2b* + 8ba + b + 4ba® + 2a* 4 8a® + 1 + a)(2b + 1 + 2a)*t°
+ (2b+ 1 + 2a)(40b® 4 24ba + 5 + 40a®)t* + (22b + 22a + 88ba® + 88b%a + 2
+ 44b% 4 44a® + 164> 4 160 + 80ba)t> — 6(2b + 1 + 2a)*t* + (Sa + 8b + 4)t — 1.

(4)

Consider the following set

K :={(a,b) eR*: a,be (0,1/2)}.

1T

1L

Fig. 3. The curve 7.

Lemma 1. If (a,b) € K then the discriminant D of the polynomial p(t) equals to zero if
and only if a = b.

<1 Easy calculations show that D is non-negative, moreover, D has the same zeroes as the

following polynomial:
(2b = 1)*(2a — 1)"*(a — )"*(F(a,))", (5)
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where
F(a,b) := 400> — 24a%b — 24ab® + 400> — 12a* + 12ba — 120> — 6a — 6b + 5.

Denote by v the curve determined by F(a,b) = 0 (see Fig. 3). We will prove that v has
no common point with the square K.
Changing the variables by the formula

r—y=av2, z+y=>bv2,
we get a new equation for v, from that we can express y explicitely:
F(z,y) == 36(8c — v2)y? + (82 +5v2) 2z — v2)* = 0. (6)

Note that the point (z/,5') = (v/2/2,0) belongs to 7, moreover, this is an unique singular
point of . Since o B
FooFyy — F2, = 3888 >0
at («/,y'), then (2,1) is isolated according to the well-known result in differential geometry
of planar curves. It is clear that the point (a,b) = (1/2,1/2) ¢ K corresponds to (2/,y') in
the initial variables.

It is obvious that every regular point of v satisfies the condition < x¢ := v/2/8. Hence
only we need is to show that v can not intersect the part of K, described by the conditions
x € (0,20), —r < y < z. In fact, it suffices to prove the inequality = < ¢(x), where

V2 —2c |8z +5V2
pla) = — V\f—Sx

is a function determining a part of the curve « in (6). Note that lim,_,,,—0 @(z) = +00.
It is easy to show that the inequality x < ¢(x) is equivalent to the inequality

Y(z) = 32023 — 48v22% — 24z +10v/2 > 0,
which holds for all z € (0, ), since ¥ (z) is positive at x = ¢ and decreases:
¥ (z0) = 27V2/4 >0, o/ (z) = 96022 — 96v/2x — 24 < 0.

Therefore, F'(a,b) # 0 for (a,b) € K. Hence there is a unique possibility a = b in order to
D =0in K by (5). >

Lemma 2. Let (a,b) € K. Then a point of local extremum of p(t) can not be a multiple
root of p(t).

< Multiple roots of p(t) are possible only for a = b by Lemma 1. Therefore, we may
assume that b = a. Then (4) takes the following form

p(t) = —(t + 1) p2(t) P5(1),
po(t) := (2 4 4a)t* — 2(1 + 2a)t + 1,
p3(t) := 8a?(2a + 1)t3 — (1 + 4a)t + 1.
Denote by Do and D3 the discriminants of po(t) and p3(t) respectively:
Dy :=4(2a +1)(2a — 1),
D3 := —32(2a + 1)(2a — 1)(22a® + 14a + 1)a®.



10 Abiev N. A.

Since Dy < 0, D3 > 0 for a € (0,1/2), then it is clear that the polynomial p(t) has exactly
three distinct real roots (each of multiplicity 3) for every such a. It follows from this fact that
there is no points of local extrema of p(t) among the roots of p(t). >

Further we need the curve I' (see Fig. 4), which can be obtained as a result of the
intersection {2 with the plane ag = 1/2 for 0 < a1, as < 1/2. Recall some properties of I" (see
details in [2]): T determined by the equality G(ai,a2) = 0, where

G(al, ag) = 4(a1 + ag)(4a1a2 — 1)(4a1a2 —a1 —as + 1)(404@2 + a1 +ag + 1)

7
+ (16a%a2 4 1)(13a? 4 22a1as + 13a3) — 4(a? + a3)(11a? + 18ayas + 11a3), ™)

I is homeomorphic to the segment [0, 1] with the endpoints (v/2/4,1/2), (1/2,+/2/4) and with
the unique singular point (a cusp) at (a1, az) = (@,a), where @ := (v/5—1)/4 ~ 0.3090169942.

It is easy to check that I' separates K into disjoint connected components K; and Ko
containing the points

(d', ) := (3/10,3/10) and (a”,b") := (31/100,31,/100)

respectively.

0 0.1 0.2 0.3 0.4 0.5
a

Fig. 4. The intersection Q with the plane az = 1/2 for 0 < a1,a2 < 1/2.

Lemma 3. In the segment [0, 1], the polynomial p(t) has

(1) one root, if (a,b) € Ky;

(2) two distinct roots, if (a,b) € Ko UT.

< Let t* € [0,1] be a root of p(t) given by (4). We say that t* is a robust root of p(t)
in [0,1], if small perturbations of the parameters a and b imply a small perturbation of ¢*
keeping it in (t* —e,t* + &) C [0,1] for some small € > 0 (see e. g. [6] for more details on
singularities of curves and some related problems).

Now, assume that ¢* is a non-robust root of p(t). Then there exist exactly two possibility
(recall that t* € [0, 1]):

Case 1. t* =0or t* =1;

Case 2. t* belongs to the interval (0,1) and provides p(t) a local extremum.

Now, we consider these cases separately.
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Case 2. Assume that t* is a point of local extremum of p(¢). Then ¢* is a multiple root
of p(t). This contradicts to Lemma 2, hence, the case 2 is impossible.

Case 1. Since p(0) = —1 then there exists no pair (a,b) such that ¢ = 0 is a root of p(t).

Suppose that ¢ =1 is a root of p(t). Since

p(1) = —4(a + b)2G(a, b),

where G is given by (7), then the equality p(1) = 0 is possible if and only if G(a,b) = 0.
Recall that the curve I' is determined by G(a,b) = 0. Since p(t) has only robust roots for
every pair (a,b) € Ky U Ky by our construction, then the number of roots of p(t) in [0, 1] is
constant both in K7 and in K. Hence, it is sufficient to calculate the number of such roots
only for the representative points (a’,0') € K and (a”,b") € Ks.
(1) Suppose that (a,b) = (a/,b’) € K;. Then (4) takes the following form

1

- (t+1)(16t> — 16t 14413 — 275t + 125)3.
9765625( +1)(16 6t + 5)( 75t + 125)

p(t) =

Taking into account Lemma 2, we conclude that p(¢) has three distinct real roots of
multiplicity 3 besides the root ¢t = —1. Since we does not need exact values of these roots
then their approximated values are:

—1.569348118, 0.5345099430, 1.034838175.

(2) Now, suppose that (a,b) = (a”,b"”) € K3. Then in (4) we obtain

(t + 1)(81t% — 81t + 25)(77841t> — 140000t + 62500)3,

t) = —
P() = ~ 5103515625000000

with the following real roots (of multiplicity 3):
—1.524828329..., 0.5285082631..., 0.9963200660 ...

It is easy to see that for (a,b) € I" the polynomial (4) has two roots in [0, 1], one of which
is 1 by the definition of T'.

Hence, in the segment [0, 1], the polynomial (4) has one root for (a,b) € K; and two roots
for (a,b) € Ko UT. >

< PROOF OF THEOREM 1 is based on Lemma 3 and Remark 2. Let (a,b) € K. Then
the number of intersection points of {2 with the segment I equals to 1 or 2 depending on the
number of roots of the polynomial p(t) (see (4)) containing in [0, 1].

(1) Connectedness of the set (0,1/2)3 N Q. Let t1,t2 be roots of p(t) such that 0 < #; <
to < 1. Then, obviously, t; and t9 correspond to the “lower” and “upper” (see Fig. 2) parts
of the surface QN (0,1/2)3 respectively. These parts of € have a unique common point
(a1,a2,a3) = (1/4,1/4,1/4) (an elliptic umbilic of £ according to [1]).

(2) The number of the connected components of the set (0,1/2)3 \ Q. Since the maximal
number of roots of p(t) in [0,1] is equal to 2 and QN (0,1/2)3 is the union of two surfaces
with one common point, then the number of connected components of (0,1/2)3 \ Q equals
to 3. Theorem 1 is proved. >

In order to prove Corollary 1 we need the following

Lemma 4. Let b = 1/2. Then in the segment [0,1], the polynomial p(t) has
(1) one root for a € (0,v/2/4);
(2) two roots for a € [vV2/4,1/2) ;
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(3) one root (of multiplicity 8) for a = 1/2.
< (1), (2) Atb=1/2, a € (0,1/2) we have

p(t) = —(2ta +1) pa(t) p5(t)

in (4), where
p2(t) :=4a(2a + 1)t* — 2(1 + 2a)t + 1,

p3(t) := 2(1 4 2a)t® — 2(a + 1)t + 1.
For the discriminants Dy and Ds of the polynomials ps(t) and p3(t) we have

Dy := —4(2a —1)(2a + 1) > 0,

D3 := 4(2a + 1)(2a — 1)(8a® + 28a + 11) < 0.

Since the cubic polynomial ps(t) achieves a positive local maximum at the point ¢t =

—% < 0, then its unique real root must be a negative number. Therefore, the

required roots of p(t) can be provided only by ps(t), moreover, first of them belongs to [0, 1]
for all a € (0,1/2); the second of them — only for a € [v2/4,1/2).
(3) The case b =a =1/2 leads (4) to the polynomial

p(t) = —(t+1)"(2t - 1)°

with the unique root ¢ = 1/2 of multiplicity 8 on [0,1]. It should be noted that we get an
elliptic umbilic (a1, ag,a3) = (1/4,1/4,1/4) of the surface € in this case. >

<1 PROOF OF COROLLARY 1. According to Theorem 1 it is sufficient to consider the case
when a = 1/2 or b = 1/2. Taking into account Remark 1, assume without loss of generality
that b = 1/2. Then the proof of Corollary 1 follows from Lemma 4 and Remark 2. >

REMARK 3. When this paper had been written the author was informed about the recent
paper [5], where a more detailed description of the surface 2 was obtained without the
restriction (a1, ag,a3) € (0,1/2)3.

The author is indebted to Prof. Yu. G. Nikonorov and to Prof. A. Arvanitoyeorgos for helpful
discussions concerning this paper.
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O TOIMOJIOT'MYECKO! CTPYKTYPE HEKOTOPHLIX MHOYKECTB,
[TOJIYVHAEMBIX 13 HOPMAJIM3OBAHHBIX [TIOTOKOB PUYYN1
HA OBOBIITEHHBIX ITPOCTPAHCTBAX YOJIJTAXA

Aobues H. A.

B paBore m3yuaercs Tomosorutueckas cTpykrypa muoxects (0,1/2)2 N Q u (0,1/2)%\ Q, rae Q — anre6-
pandeckas IOBEPXHOCTD, OIpPe/eJIeHHAsd CAMMEeTPpUYecKuM MHOrowieHoM crernenu 12. ITomobGubie 3amaun
BO3HUKAIOT MPU U3YUYEHUN OOMIUX CBOWCTB BBIPOYKIEHHBIX OCOOBIX TOUEK AUHAMUYECKUX CUCTEM, TIOJIyda-
€MBIX W3 HOPMAJM30BAHHBIX MOTOKOB Pruym Ha 0000IIEHHBIX MPOCTPAaHCTBAX Yosnaxa. OCHOBHAsS IEh
paborTsr — moKa3aTh cBaE3HOCTH MHOKecTBa (0,1/2)° N Q 1 OmpemeNITh KOMMIECTBO CBA3HBIX KOMIIOHEHT
mroxectsa (0,1/2)% \ Q.

KitroueBblie cjioBa: puMaHOBa METPUKA, 0OOOIEHHOE TPOCTPAHCTBO YOJ/I/Iaxa, HOPMAJIM30BAHHBIN TOTOK
Puuyn, nuHaMudeckasi CHCTEMA, BBHIPOXKIEHHAsS 0CODast TOYKA MUHAMWYECKON CHCTEMBI, HeHCTBUTE/THHAS
asrebpanteckast MOBEPXHOCTH, 0CO0asT TOYKA TeHCTBUTEIHHON aIrebpanTecKoil MOBEePXHOCTH.



