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1. Introduction

Let (X,X+, ‖·‖) and (Y, Y+, ‖·‖) be ordered normed spaces, where the order is being
introduced by means of the cones X+ and Y+, respectively. Briefly, we will write X and Y
instead of (X,X+, ‖·‖) and Y for (Y, Y+, ‖·‖), respectively. Denote by L(X,Y ) the vector
space of all linear continous operators A : X → Y . We shall write L(X) for L(X,X). An
operator A ∈ L(X,Y ) is said to be positive if A(X+) ⊂ Y+, and is said to be positively

invertible (or, inverse-positive) if it is invertible and A−1(Y+) ⊂ X+. We write for these
properties simply A > 0 and A−1 > 0, respectively.

Many iterative methods for solving matrix equations Ax = b in numerical analysis are
based on splittings of the corresponding matrix A, see [22]. As usual, a splitting of the matrix
A into the difference of two matrices, say A = U − V with an invertible matrix U , is used to
associate to A the iteration method

Uxk+1 = V xk + b, k ∈ N0,

where N0 = N ∪ {0}. This procedure can be rewritten as

xk+1 = U−1V xk + U−1b, k ∈ N0.

c© 2013 Sivakumar K. C., Weber M. R.
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It is well known that several questions concerning the matrix A and the iteration method,
e. g. the convergence rate of iteration methods, can be answered by means of properties of
the operators involved in the splitting (see [21, 22]).

Positively invertible operators are also of interest in connection with the existence of
a positive solution for equations

Ax = y, y ∈ Y+,

where A : X → Y is an operator between the ordered normed spaces X and Y (see for
e. g. [9, 11, 13, 14, 20, 27]).

The positive invertibility of matrices was chacterized in [18] by what later has been called
B-splittings. This result has been generalized to operators in ordered normed spaces in [25–
27]. In the recent work [10] the positivity of generalized inverse matrices, such as Moore-
Penrose and group inverses, is studied by means of adapted B-splittings and, conditions are
given when such B-splittings exist.

The objective of the present article is to generalize certain results, up to now known only
for matrices, to the cases of operators and operator intervals in ordered normed spaces.

2. Preliminaries

Let (X,X+, ‖·‖) be an ordered normed space, where throughout the cone X+ is under-
stood to be closed. We need some additional properties of cones2 in ordered normed spaces,
which characterize further relations or the compatibility between the order and the norm in
such spaces. The cone X+ of an ordered vector space (X,X+) is reproducing (or generating),
if any x ∈ X has a representation x = u− v, where u, v ∈ X+. The cone X+ of the ordered
normed space (X,X+, ‖·‖) is said to be normal, if there exists a constant N (the constant
of normality) such that x, y ∈ X and 0 6 x 6 y imply ‖x‖ 6 N ‖y‖. In this case the norm
is called semi-monotone. A cone X+ is said to be regular, if each monotone increasing se-
quence of elements of X+ that is order bounded (from above), is norm-Cauchy. In a Hilbert
space any closed normal cone is regular (see [17]). If a cone in an ordered normed space
is regular and possesses interior points then it is normal and, the norm is order continuous
(see [24, Theorem I.5.2]). Each closed regular cone in a Banach space is normal (see [15,
Theorem 5.1]).

In the vector space L(X,Y ) of all linear continuous operators A : X → Y , where X is
an ordered normed space and Y stands for the ordered normed space (Y, Y+, ‖·‖), the subset
L+(X,Y ) = {A ∈ L(X,Y ) : A(X+) ⊂ Y+} is, in general, a closed wedge and, under the
assumption that the linear set X+ −X+ is dense in X, it is a cone in L(X,Y ) (see [23]).

If Y = R1 and Y+ = R1
+, then L+(X,Y ) is denoted by X ′

+ and is called the dual wedge
or cone, respectively.

If X = Y (this means also Y+ = X+ and the identity of the norms) then L(X,X) is
denoted by L(X) and L+(X,Y ) by L+(X).

There are known several conditions for the cone L+(X,Y ) to be reproducing, normal and
regular (see [2, 3, 5, 24]). We formulate them in the form we will use them later.

Theorem 2.1. 1. If the cones X+ and Y+ are both normal, int(Y+) 6= ∅ and (Y, Y+)
is a Dedekind complete vector lattice then the wedge L+(X,Y ) is reproducing, i. e., any

A ∈ L(X,Y ) can be represented as the difference of two positive operators: A = U − V,
where U, V ∈ L+(X,Y ).

2 In several cases the set X+ may be supposed to be a wedge.
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2. Let X+ 6= X. For the cone L+(X,Y ) to be normal it is necessary and sufficient that

Y+ is normal and X+ satisfies the condition: there exist a constant M > 0 such that for each

x ∈ X there are two sequences (un) and (vn) such that un, vn ∈ X+ with ‖un‖, ‖vn‖ 6 M ‖x‖
and x = lim(un−vn). In particular, if X is a Banach space then the cone L+(X,Y ) is normal

if and only if the cone X+ is reproducing and Y+ is normal.

3. If int(X+) 6= ∅ and Y+ is normal and regular, then L+(X,Y ) is normal and regular.

4. Let (X,X+, ‖·‖) and (Y, Y+, ‖·‖) be ordered normed spaces. For the wedge L+(X,Y )
to have nonempty interior it is necessary and sufficient that the cone X+ allows plastering

and the cone Y+ has interior points.

Definition 2.2. Let be A ∈ L(X,Y ). An operator T ∈ L(Y,X) is called the inverse of A
if AT = IY and TA = IX , where IX , IY are the identity operators in X and Y, respectively.
T is uniquely defined and denoted by A−1.

If the operator A ∈ L(X,Y ) is invertible then the continuity of A−1 follows either from
Banach’s theorem (if X and Y are Banach spaces) or, if A−1 > 0 is known, from continuity
theorems for positive operators3 (see [1, 24]).

For an operator A ∈ L(X) the spectrum is denoted by σ(A) and the spectral radius
is defined as r(A) = sup{|λ| : λ ∈ σ(A)}. For the spectral radius there holds the Gelfand
formula

r(A) = lim
n→∞

n
√

‖An‖ = inf
n

n
√
‖An‖.

It is well known (see e. g. [12, chapter V]) that r(A) < 1 for an operator A ∈ L(X) is a
sufficient condition for the convergence of the series

I +A+A2 + . . .+An + . . . (1)

The spectral radius of an invertible operator A is positive. Indeed 1 = r(I) 6 r(A)r(A−1)
implies r(A) > 0 and r(A−1) > 0. If an operator A is positively invertible then r(A−1) ∈
σ(A−1) (see [15, Theorem 8.1]). For two operators A, B with −B 6 A 6 B in a space X
with a reproducing and normal cone one has r(A) 6 r(B) (see [15, Theorem 16.5]). The last
inequality, in particular, holds for positive operators with 0 6 A 6 B.

The next theorem provides some well known conditions on an operator C in a Banach
space X to guarantee the invertibility of the operator I − C in L(X).

Theorem 2.3 [27, Theorem 2.1]. Let X be a Banach space and C : X → X be a contin-

uous linear operator on X. Consider the following properties:

(i) the spectral radius of C satisfies r(C) < 1;
(ii) C is quasinilpotent, i. e. lim

n→∞
‖Cn‖ = 0;

(iii) there exists the inverse operator (I − C)−1, where

(I − C)−1 = I + C + C2 + . . .+ Cn + . . . (2)

Then there hold the implications: (i) =⇒ (ii) =⇒ (iii).

If X = (X,X+, ‖·‖) is an ordered Banach space and the operator C is positive, i. e.
C ∈ L+(X), then from formula (2) it is easy to see, that (i) implies even (I − C)−1 > 0.

3 If X is an ordered Banach space such that each positive linear functional on X is continuous and Y
is an ordered Banach space with a closed cone then any linear positive operator A : X → Y is continuous
(Lozanovski’s Theorem). The condition for X holds e. g. if int(X+) 6= ∅ or if X+ is closed and reproducing.
The norm-completeness of Y can be removed if the cone Y+ in the ordered normed space Y is assumed to be
normal. Of course, in case of normed lattices the situation is much simpler: If X is a Banach lattice and Y
any normed lattice then each positive operator is continuous.
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The implication (iii) ⇒ (i) holds if the cone X+ in the ordered Banach space has addi-
tional properties. Moreover, if the operator C is compact and satisfies r(C) > 0 then the
number r(C) turns out to be an eigenvalue of C possessing a positive eigenvector4 . More
precisely, one has the following result (see [15, Theorem 9.2 and § 25]).

Theorem 2.4. Let (X,X+, ‖·‖) be an ordered Banach space and C : X → X a continuous

linear operator on X such that C > 0.

(i) Then r(C) < 1 implies (I −C)−1 > 0 and, if the cone X+ is normal and reproducing,

also vice versa, i. e. the existence of (I −C)−1 and (I − C)−1 > 0 imply r(C) < 1.

(ii) Let the cone X+ satisfy the condition X+ −X+ = X. If C is compact and r(C) > 0
then r(C) is an eigenvalue of C possessing a positive eigenvector. If additionally (I−C)−1 > 0
then r(C) < 1.

C (i): If r(C) < 1 and C > 0 then by Theorem 2.3 the operator (I − C)−1 exists and
(I−C)−1 > 0 immediately follows from (2). The converse statement is Theorem 25.1 of [15].

(ii): The compactness of the positive operator C implies the existence of a positive
eigenvector to the eigenvalue r(C), so there exists a nonzero vector x0 ∈ X+ such that
Cx0 = r(C)x0. If there would be r(C) = 1 then (I−C)x0 = 0 contradicts the invertibility of
I−C. Consequently, r(C) 6= 1 and (I−C)x0 = (1−r(C))x0 implies 1

1−r(C)x0 = (I−C)−1x0.

Since x0 > 0 and (I − C)−1 > 0 there must hold r(C) < 1. B

Let again X and Y be ordered normed spaces. For two operators B,C ∈ L(X,Y ) with
B 6 C the (order) interval [B,C] is defined as the subset of all operators “between” B and C,
i. e.

[B,C] =
{
A ∈ L(X,Y ) : B 6 A 6 C

}
.

An operator interval τ = [B,C] is said to be invertible (positively invertible), if each operator
A ∈ τ is invertible (positively invertible).

In the theory of positive operators the following question arises in several situations and
is studied by many authors: Assume the “endpoints” of an operator interval have some
property (P). Do all operators A ∈ [B,C] share this property too? If 0 6 A 6 C and the
property (P) holds for C then the “domination problem for positive operators” is equivalent
to the question: does A satisfy (P)? It turns out that under appropriate conditions on the
spacesX and Y the answer for many properties (P) is affirmative. In this regard, the following
result is pertinent and will also be used later.

Theorem 2.5 ([14, Theorem 1] and [15, Theorem 25.4]). Let be X = (X,X+, ‖·‖) an

ordered normed space and Y = (Y, Y+, ‖·‖) an ordered Banach space with a normal cone

Y+ that satisfies the condition int(Y+) 6= ∅. Let be B,C : X → Y two linear continuous

operators, where B 6 C and C is positively invertible. Then B is positively invertible if and

only if B(X+) ∩ int(Y+) 6= ∅.

3. Splittings and positive invertibility

In what follows X = (X,X+, ‖·‖) and Y = (Y, Y+, ‖·‖) will be two ordered normed spaces
and A ∈ L(X,Y ) is an arbitrary operator represented as a difference of two operators, i. e.,
A = U − V , where U, V ∈ L(X,Y ). We consider the following splittings5 of the operator A.

4 Such eigenvalues are called Perron-Frobenius-eigenvalues.
5 In former papers, e. g. in [27], splittings were called decompositions.
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U > 0 V > 0 U−1 > 0 U−1V > 0 V U−1 > 0 other condition

positive × ×
regular × ×
positively regular × × ×
weak regular × ×
B-splitting × × × (B)

where condition (B) is the following implication:
Ax > 0
Ux > 0

}
=⇒ x > 0.

These splittings are generalizations (to the infinite-dimensional case) of the corresponding
splittings known for square matrices, where X = Y = Rn (see [16, 18, 22, 27]).

As was mentioned in [27], the condition V U−1 > 0 is equivalent to the implication Ux > 0
=⇒ V x > 0.

If an operator A has a positive splitting A = U − V such that U−1 exists, then it can be
represented as

A = U − V = (IY − V U−1)U, with U, V > 0. (3)

Our first main result to follow is to prove a generalization of a result of Varga ([22,
Theorem 3.37]) to the operator case.

Theorem 3.1. Let be X an ordered Banach space and Y an ordered normed space such

that the cone L+(Y,X) is regular 6 . Suppose an operator A ∈ L(X,Y ) has a weak regular

splitting A = U − V , i. e., U−1 > 0 and U−1V > 0. Then the operator A is positively

invertible if and only if r(U−1V ) < 1.

C Let A = U − V be the given weak regular splitting of A. Set C = U−1V : X → X.
Then C > 0. Also

A = U(IX − U−1V ) = U(IX − C), so that U−1A = U−1(U − V ) = IX − C. (4)

If r(C) < 1 then by Theorem 2.4 (i) the operators IX − C and A are positively invertible,
and A−1 = (IX − C)−1U−1.

Conversely, if A−1 > 0 then the representation of U−1A in (4) gives U−1 = (IX −C)A−1

and (IX + C)U−1 = (IX + C)(IX − C)A−1 = (IX − C2)A−1. For any integer k define
Bk = (IX +C +C2 + · · ·Ck)U−1. Then Bk > 0, Bk = (IX −Ck+1)A−1 and (Bk+1 −Bk)U =
Ck+1. By taking into consideration Ck+1A−1 > 0, it then follows that 0 6 Bk 6 A−1.
Consequently, (Bk) is an order bounded increasing sequence in the ordered Banach space
L(Y,X) with a regular cone L+(Y,X). So, the sequence (Bk) converges in L(Y,X). Due to
‖Bk+1U −BkU‖ 6 ‖Bk+1 −Bk‖ ‖U‖ the sequence (BkU) converges in L(X). In particular,
‖Bk+1U −BkU‖ =

∥∥Ck+1
∥∥−→

k
0. Since

∥∥Ck
∥∥ < 1 for sufficiently large k, the Gelfand

formula shows that r(C) = infn
n
√
‖Cn‖ 6 k

√
‖Ck‖ < 1. B

The next two theorems are generalizations to the case Y 6= X of some results of [27].
Since the proofs are similar, they are omitted. In particular, the first could be viewed as an
extension of well-known characterizations of M -matrices (see [8, 22]).

Theorem 3.2 ([27, Theorem 3.4] and [25, Theorem 3 generalized]). LetX = (X,X+, ‖·‖)
and Y = (Y, Y+, ‖·‖) be ordered Banach spaces, where X+ and Y+ are normal cones and Y+

6 According to Theorem 2.1 this holds, e.g. if int(Y+) 6= ∅ and X+ is normal and regular.
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satisfies the condition int(Y+) 6= ∅. Let A : X → Y be a linear continuous operator. Consider

the conditions:

(i) A is positively invertible,

(ii) Y+ ⊂ A(X+),

(iii) there exists some x0 ∈ X+ such that Ax0 ∈ int(Y+).

Then we have the implications (i) ⇒ (ii) ⇒ (iii).

Consider the following condition under the assumption that A possesses a B-splitting:

(iv) r(V U−1) < 1.

Then ⇒ (iii) ⇒ (iv) ⇒ (i), i. e., in this case all conditions are equivalent.

The question of existence of a B-splitting is also settled in the affirmative in the next
result.

Theorem 3.3 ([27, Theorem 3.7 generalized]). Let X=(X,X+, ‖·‖) and Y =(Y, Y+, ‖·‖)
be ordered Banach spaces, where the cone X+ allows plastering and Y+ satisfies the condition

int(Y+) 6= ∅ . If the operator A ∈ L(X,Y ) is positively invertible then A possesses a B-split-

ting A = U − V such that r(V U−1) < 1.

Remark. 1. If the operator A is invertible then (ii) is a sufficient condition for the
positivity of its inverse. Indeed, apply A−1 to the inclusion (ii).

2. Only the proof of the implication (iv) ⇒ (i) requires the condition (B) of a B-splitting.

3. If A : X → Y is an invertible operator then A−1 > 0 if and only if Y+ ⊂ A(X+).
Indeed, A−1 > 0 means A−1(Y+) ⊂ X+. After applying A the required inclusion follows. If
A−1 exists, the application of the operator A−1 to Y+ ⊂ A(X+) yields A−1(Y+) ⊂ X+, i. e.
A−1 > 0.

In an ordered Hilbert space for a selfadjoint operator with a positive regular splitting the
first three conditions of Theorem 3.2 are equivalent to another spectral condition (vi):

Theorem 3.4. Let H = (H,H+, ‖·‖) be an ordered Hilbert spaces, where H+ is a closed,

normal cone such that int(H+) 6= ∅. Let A : H → H be a linear continuous selfadjoint

operator. Consider the conditions:

(i) A is positively invertible,

(ii) H+ ⊂ A(H+),

(iii) there exists some x0 ∈ H+ such that Ax0 ∈ int(H+).

Then we have the implications (i) ⇒ (ii) ⇒ (iii). Consider the following condition under

the assumption that A possesses a positive regular splitting: A = U − V with U > 0, V > 0,
U−1 > 0

(vi) r(U−1V ) < 1.

Then (iii) ⇒ (vi) ⇒ (i), i. e., in this case all four conditions are equivalent.

C The proof of the implications (i) ⇒ (ii) ⇒ (iii) follows as a particular case of the
corresponding parts of Theorem 3.2. We prove only the implications (iii)⇒(vi) and (vi)⇒(i).
Let A = U − V be a splitting of A such that U > 0, V > 0, U−1 > 0. Set C = U−1V . Then
C > 0 and, similar to (4), A = U(I − C). Moreover, A∗ = (I − C∗)U∗.

(iii) ⇒ (vi): From C > 0 it follows that C∗ > 0. So, I − C∗ 6 I. By assumption there
is a vector x0 ∈ H+ with Ax0 = A∗x0 ∈ int(H+), i. e. (I − C∗)U∗x0 ∈ int(H+). Since
U∗x0 ∈ H+, the positive invertibility of I −C∗ is now guaranteed by Theorem 2.5. Using (i)
of Theorem 2.4, it follows that r(C∗) < 1, i. e. r(C) < 1.

(vi) ⇒ (i): Since any positively regular splitting is weak regular, the proof follows from
Theorem 3.1 provided the cone L+(H) is regular. The last condition is guaranteed by Theo-
rem 2.1 (3), since the cone H+ is closed and normal, and therefore, by [17] it is regular. B
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Remark. Due to the previous Remark 2 under the assumptions of the Theorem the
condition (iv) r(V U−1) < 1 also holds.

4. On operator intervals

For operator intervals the following theorem is well known.

Theorem 4.1 ([13, Theorem 3], [14, Theorem 4]). Let (X,X+, ‖·‖) = X be ordered

normed space and (Y, Y+, ‖·‖) = Y an ordered Banach space, with closed cones X+ and Y+,

respectively. Let the cone Y+ be generating and normal. Let B,C ∈ L(X,Y ) such that

B 6 C. Then each operator A ∈ [B,C] is positively invertible if and only if the operators B,

C are both positively invertible.

This result was reproved for interval matrices later in [19], where the condition B−1 > 0
has been equivalently replaced either by a condition on the spectral radius r

(
C−1(C − B)

)

or the condition that all matrices of the interval [B,C] are invertible.
We prove now our second main result, the operator version of Rohn’s result, namely

Theorem 4.2. Let (X,X+, ‖·‖) and (Y, Y+, ‖·‖) be ordered normed spaces, where (Y, Y+)
is Dedekind complete. Assume the cones X+ and Y+ satisfy the conditions int(X+) 6= ∅, X+

is normal, int(Y+) 6= ∅, Y+ is normal and regular. Let be τ = [B,C] the operator interval

defined by two given operators B,C ∈ L(X,Y ) with B 6 C. Then the following assertions

are equivalent

(a) τ is positively invertible,

(b) C−1 > 0 and B−1 > 0,
(c) C−1 > 0 and r

(
C−1(C −B)

)
< 1.

C (a) =⇒ (b) is trivial.
(b) =⇒ (c): Put U = C and V = U − B. Then obviously, U−1V > 0. Notice that

B = U − V is a weak regular splitting. By Theorem 3.1 the inequality B−1 > 0 implies
r(U−1V ) = r

(
C−1(C −B)

)
< 1.

(c) =⇒ (a): Let A be an arbitrary operator in τ represented as A = U −V , where U = C
and V = C − A. Then U−1 = C−1 > 0 and V > 0 so that U−1V > 0. We also have
r(U−1V ) = r

(
C−1(C − A)

)
6 r

(
C−1(C − B)

)
< 1. By Theorem 3.1, it now follows that A

is positively invertible. B

Corollary 4.3. Denote by (d) the statement C−1 > 0 and assume that τ is invertible,

i. e., A−1 exists for each A ∈ τ . Under the conditions of Theorem 4.2 suppose that the

operator C −B is compact. Then (d) =⇒ (c) and, so all conditions (a)–(d) are equivalent.

C We use the same argument as in the finite dimensional setting (see [19]). If the identity
operator in X is denoted by I then C−1(C − B) = I − C−1B. Suppose the contrary,
i. e. r = r(I − C−1B) > 1. Since the operator I − C−1B is positive and compact (and
obviously, r > 0) by (ii) of Theorem 2.4 we have that r is an eigenvalue of the operator
I−C−1B. Consequently, for some nonzero vector x0 one has then C−1(C−B)x0 = r x0, i. e.(
(1− 1

r )C + 1
rB
)
x0 = 0. Set λ = 1

r and D = λB+ (1− λ)C. Then 0 < λ 6 1 and hence D is
a convex combination of the operators B and C. So, D ∈ τ . But Dx0 = 0 is a contradiction,
as τ is invertible. B

Corollary 4.4. Under the conditions of Theorem 4.2 suppose that one of the conditions

(a)–(c) holds. Then for A ∈ τ we have the following representation of its inverse:

A−1 =

( ∞∑

k=0

(
C−1(C −A)

)k
)
C−1.

It follows that A−1 > 0.
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C Denote the identity operator in X by I and represent A as A = C
(
I − C−1(C − A)

)
.

Then, by the hypotheses and by what has been mentioned in § 2 for the spectral radii of
positive operators, one has r

(
C−1(C −A)

)
6 r
(
C−1(C −B)

)
< 1. Therefore,

(
I − C−1(C −A)

)−1
> 0 and

(
I − C−1(C −A)

)−1
=

∞∑

k=0

(
C−1(C −A)

)k
.

It follows immediately that A−1 =
(∑∞

k=0

(
C−1(C −A)

)k)
C−1 > 0. B

Remark. 1. From (b) of the theorem also follows that r
(
IY − BC−1

)
< 1. Indeed,8

notice that the positive operator CB−1 = (C − B)B−1 + IY is the inverse of BC−1. Define
the operator A by A = IY − BC−1 then A = (C − B)C−1, what yields A > 0. Since
IY −A = BC−1, by (i) of Theorem 2.4 the positive invertibility of IY −A implies r(A) < 1,
i. e. r(IY −BC−1) < 1.

2. If for some operator B : X → Y there exist a positively invertible operator C such that
B 6 C, the interval [B,C] is invertible and the operator C − B is compact, then A−1 > 0
for any operator A ∈ [B,C]. This immediately follows from the implications (d) =⇒ (c) =⇒
(a).

3. Other conditions for a positive operator to possess non-zero positive eigenvalues are
studied in [4, 6, 7]. They also might be used to prove sufficient conditions for the positive
invertibility of appropriated operator intervals.

4. If B 6 C and C−1 > 0, B−1 > 0 then C−1 6 B−1. Indeed, B−1 > 0 implies
BB−1 6 CB−1, i. e. IY 6 CB−1. So C−1 > 0 gives C−1 6 C−1CB−1, i. e. C−1 6 B−1.

In general, even for matrices, the conditions B 6 C, C−1 > 0 and the existence of B−1

do not imply C−1 6 B−1.

Consider

B =

(
0 −1
−1 0

)
, B−1 =

(
0 −1

−1 0

)
and C =

( 2
3 −1

3

−1
3

2
3

)
, C−1 =

(
2 1
1 2

)
.

Then B 6 C, C−1 > 0 and B−1 6 C−1. The result C−1 6 B−1 holds for invertible M -mat-
rices B, C with B 6 C (see [22, § 3.5]).

5. The theorem remains true if Y is a Banach space and Y+ is assumed to be a closed
regular cone, since as was already mentioned, in this case the cone Y+ is normal.
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О ПОЛОЖИТЕЛЬНОЙ ОБРАТИМОСТИ И РАЗЛОЖЕНИИ ОПЕРАТОРОВ
В УПОРЯДОЧЕННЫХ ПРОСТРАНСТВАХ БАНАХА

Сивакумар К. Ч., Вебер М. Р.

Положительная обратимость операторов, действующих между упорядоченными пространствами Ба-
наха, характеризуется с помощью разложений операторов в разность двух операторов с подходящи-
ми спектральными свойствами. Некоторые результаты, известные до сих пор только для матриц,
обобщаются на операторный случай и на операторные интервалы.

Ключевые слова: упорядоченные пространства Банаха, конуса в упорядоченных пространствах,
положительная обратимость операторов, разложение операторов, операторные интервалы.


