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ON RIESZ SPACES WITH b-PROPERTY AND
b-WEAKLY COMPACT OPERATORS
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An operator T : E → X between a Banach lattice E and a Banach space X is called b-weakly compact
if T (B) is relatively weakly compact for each b-bounded set B in E. We characterize b-weakly compact
operators among o-weakly compact operators. We show summing operators are b-weakly compact and
discuss relation between Dunford–Pettis and b-weakly compact operators. We give necessary conditions
for b-weakly compact operators to be compact and give characterizations of KB-spaces in terms of b-weakly
compact operators defined on them.
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Introduction

Riesz spaces considered in this note are assumed to have separating order duals. The
order dual of a Riesz space E is denoted by E∼. E∼∼ will denote the order bidual of E. The
order continuous dual of E is denoted by E∼n , while E′ will denote the topological dual of a
topological Riesz space. E+ will denote the cone of positive elements of E. The letters E,F
will denote Banach lattices, X,Y will denote Banach spaces. BX will denote the closed unit
ball of X. We use without further explanation the basic terminology and results from the
theory of Riesz spaces as set out in [1, 2, 14, 17].

Let E be a Riesz subspace of a Riesz space F . A subset of E which is order bounded in
F is said to be b-bounded in E. If every b-bounded subset of E remains to be order bounded
in E then E is said to have b-property in F . If a Riesz space E has b-property in its order
bidual E∼n then it is said to have b-property.

Riesz spaces with b-property were introduced in [3] and studied in [3–6].
A normed Riesz space E has the weak Fatou property for directed sets if every norm

bounded upwards directed set of positive elements in E has a supremum. Riesz spaces with
weak Fatou Property for directed sets have b-property. If a Banach lattice has order continuous
norm then it has the weak Fatou property for directed sets if and only if it has the b-
property [6]. A locally solid Riesz space is said to have Levi property if every topologically
bounded set in E+ has a supremum. If E is a Frechet lattice with Levi property then E has
the b-property [6]. If E is a Dedekind complete locally solid Riesz space with E ′ = E∼ then E
has b-property if and only if E has the Levi property [6]. Thus a Dedekind complete Frechet
lattice has Levi property if and only if it has the b-property.

Let E be a Riesz subspace of a Riesz space F . If E is the range of a positive projection
defined on F then E has b-property in F . If E is a Banach lattice then every sublattice of
E isomorphic to l1 has b-property in E [14, Proposition 2.3.11]. Similarly if the norm of E
is order continuous then every sublattice Riesz isomorphic to c0 has b-property in E [14,
Proposition 2.4.3].

Further examples of Riesz spaces with b-property are given in the following example.
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Example. A Banach lattice E is called a KB-space if every increasing norm bounded
sequence in E+ is norm convergent. KB-spaces have b-property. Perfect Riesz spaces have
b-property and hence, every order dual has b-property [4]. If K is a compact Hausdorff space
and C(K) is the Riesz space of real valued continuous functions on K under pointwise order
and algebraic operations then C(K) has b-property[4]. On the other hand c0 real sequences
which converge to zero does not have b-property.

An element e > 0 in a Riesz space E is called discrete if the ideal generated by e coincides
with the subspace generated by e. A Riesz space E is called discrete if and only if there exists
a discrete element v with 0 < v < e for every 0 < e in E.

Example. Discrete elements give rise to ideals with b-property in a Riesz space E. Because
if x is a discrete element then the principal ideal Ix generated by x is projection band in E
and therefore Ix has b-property in E.

T : E → F is called b-bounded if T maps b-order bounded subsets of E into b-bounded
subsets of F .

T : E → X is called b-weakly compact if T maps b-order bounded subsets of E into
relatively weakly compact subsets of X.

Although the authors were not aware of this fact until quite recently, much later then the
Bolu meeting in fact, b-weakly compact operators were introduced in [15] for the first time
under a different name.These operators were studied in [4–11] and in [13–15]. Among b-weakly
compact operators T : E → X those that map the band B generated by E in E ′′ into X are
called strong type B in [15]. To describe the operators of strong type B, we refer the reader
to [13].

A continuous operator T : E → X is called order weakly (o-weakly ) compact whenever
T [0, x] is a relatively weakly compact subset of X for each x ∈ E+.

A continuous operator T : E → X is called AM -compact if T [−x, x] is relatively norm
compact in X for each x ∈ E+.

A continuous operator T from a Banach lattice E into a Banach lattice F is called
semicompact if for every ε > 0, there exists some u ∈ E+ such that T (BE) ⊆ [−u, u] + εBF .

A continuous operator T : X → Y is called a Dunford-Pettis operator if xn → 0 in
σ(X,X ′) implies limn ‖T (xn)‖ = 0.

A b-weakly compact operator is continuous and ifW (E,X) is the space of weakly compact,
Wb(E,X) is the space of b-weakly compact andW0(E,X) is the space of order weakly compact
operators we have the following relations between these classes of operators:

W (E,X) ⊆Wb(E,X) ⊆W0(E,X).

The inclusions may be proper. The identity on L1[0, 1] is b-weakly compact but not weakly
compact. The identity on c0 is o-weakly compact but not a b-weakly operator.

If E is an AM -space then W (E,X) =Wb(E,X). On the other hand Theorem 2.2. in [10]
shows that if E ′ is a KB-space or X is reflexive then W (E,X) =Wb(E,X). A Banach lattice
E is a KB-space if and only if L(E,X) = Wb(E,X) for each Banach space X [5]. If F is a
KB-space then again L(E,F ) = Wb(E,F ) for each Banach lattice E [5]. To generalize, we
know that if a Banach space X does not contain c0, then L(E,X) =Wb(E,X).

We need the following characterization of b-weakly compact operators which is a
combination of results in [3, 5].

Proposition 1. Let T : E → X be an operator. The following are equivalent:
1) T is b-weakly compact.
2) For each b-bounded disjoint sequence (xn) in E+, limn qT (x) = 0 where qT (x) is the

Riesz seminorm defined as sup{‖T (y)‖ : |y| 6 |x|} for each x ∈ E.
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3) T (xn) is norm convergent for each b-bounded increasing sequence (xn) in E+.

4) For each b-bounded disjoint sequence (xn) in E, we have limn ‖T (xn)‖ = 0.

b-weakly compact operators satisfy the domination property. That is, if 0 6 S 6 T and T is
b-weakly compact then S is also b-weakly compact which can be seen from the characterization
given in Proposition 1(4).

Main results

A Riesz space E is called σ-laterally complete if the supremum of every disjoint sequence
of E+ exists in E. A Riesz space that is both σ-laterally and σ-Dedekind complete is called
σ-universally complete. There exists a universally complete Riesz space Eu which contains E
as an order dense Riesz subspace. Eu is called the universal completion of E.

The next result exhibits the relation between b-property and σ-lateral completeness. It is
actually Theorem 23.23 in [1]. Restated for our purposes it reads as follows.

Proposition 2. Let E be a σ-Dedekind complete Riesz space. Then E is σ-laterally
complete if and only if E has b-property in its universal completion Eu.

The following is Theorem 23.24 in [1].

Corollary. Let E be a Dedekind complete Riesz space. Then E is universally complete
if and only if E has countable b-property in Eu and has a weak order unit.

C As E is order dense in the universal completion Eu, E is an order ideal of Eu by Theo-
rem 2.2 in [1]. Suppose E has b-property in Eu and has a weak order unit e. Let 0 < u′ ∈ Eu

be that arbitrary. As e is also a weak order unit of Eu, we have 0 6 u′∧ne ↑ u′. Since E is an
ideal, {u′ ∧ ne} ⊆ E and since E has b-property in Eu, {u′ ∧ ne} is an order bounded subset
of E and therefore u′ ∈ E. Hence E = Eu. B

Examples in [1] show that Dedekind completeness of E and existence of a weak order unit
can not be omitted. Theorem 23.32 in [1] shows that among σ-laterally complete Riesz spaces
those admitting a Riesz norm or an order unit are those which are Riesz isomorphic to Rn.
Thus if E is σ-Dedekind complete and has countable b-property in Eu which either has an
order unit or admits a Riesz norm then E is isomorphic to Rn.

Each order weakly compact operator T : E → X factors over a Banach lattice F with order
continuous norm as T = SQ where Q is an almost interval preserving lattice homomorphism
which is the quotient map E → E/q−1T (0) in fact, F is the completion of E/q−1T (0), where
qT (x) is the Riesz seminorm defined as sup{‖T (y)‖ : |y| 6 |x|} for each x ∈ E and S
is the operator mapping the equivalence class [x] in E/q−1T (0) to T (x) [14,Theorem 3.4.6].
As b-weakly compact operators are order weakly compact every b-weakly compact operator
T : E → X has a factorization T = SQ over a Banach lattice with order continuous norm.
Let us note that if E has order continuous norm then the factorization can be made over a
KB-space as if was shown in [7].

This factorization yields a characterization of b-weakly compact operators among order
weakly compact operators.

Proposition 3. Let T : E → F . T is b-weakly compact if and only if the quotient map
Q : E → F is b-weakly compact.

C Let F be the completion of F0 = E/q−1T (0) and Q be the quotient map Q : E → F0.
Since Q is onto, the corresponding operator Q : E → F is an almost interval preserving
lattice homomorphism.



22 Alpay Ş., Altin B.

Suppose T is b-weakly compact and let (xn) ⊆ E+ be an b-order bounded disjoint sequence.
In view of ‖Q(xn)‖ = qT (xn), we see that limn ‖Q(xn)‖ = 0. Thus Q is b-weakly compact by
Proposition 1(4).

On the other hand if Q is b-weakly compact then it is easily seen that SQ is also b-weakly
compact for each continuous operator S, and thus T = SQ is b-weakly compact. B

This leads us to recapture a result of [5].

Corollary. Suppose that T : E → F is b-weakly compact where F is a Dedekind complete
AM -space with order unit.Then |T | is a b-weakly compact operator.

C T has a factorization over a Banach lattice H with order continuous norm as SQ where
Q : E → H is b-weakly compact and S : H → F is continuous. Thus |S| exists. The operator
|S|Q is b-weakly compact and 0 6 |T | = |SQ| 6 |S|Q. Thus |T | is a b-weakly compact as
b-weakly compact operators satisfy the domination property. B

A deficiency of b-weakly compact operators is that they do not satisfy the duality property.
For example, the identity I on l1 is b-weakly compact but its adjoint, the identity on l∞, is
not b-weakly compact. On the other hand the identity on c0 is not b-weakly compact but its
adjoint, the identity on l1, is certainly b-weakly compact. For recent developments on duality
of b-weakly compact operators we refer the reader to [9].

One of the sufficients conditions for an operator to be b-weakly compact is that for each
b-bounded disjoint sequence (xn) in the domain we have limn ‖T (xn)‖ = 0. Utilizing this it
is easy to see that b-weakly compact operators are norm closed in L(E,X). A result in [12]
shows that strong limit of o-weakly compact operators is also o-weakly compact under certain
conditions. The following example shows that b-weakly compact operators behave differently
in this respect.

Example.For each n, let Tn : c0 → c0 be defined as Tn(y) = (y1, . . . , yn, 0, . . .). Then the
finite rank operators (Tn) are b-weakly compact for each n and we have Tn(y)→ I(y) for each
y in c0. However the identity operator I on c0 is not a b-weakly compact operator.

We will call an operator T : E → X summing if T maps weakly summable sequences in
E to summable sequences in X.

Proposition 4. Let T : E → X be a summing operator between a Banach lattice E and
a Banach space X. Then T is b-weakly compact.

C Let (en) be a b-bounded disjoint sequence in E+. It suffices to show that (T (xn)) is
norm convergent to 0. There exists an e in E ′′+ such that 0 6

∑
ek 6 e for each partial sum.

It follows that the sequence (ek) is a weakly summable sequence in E. As T is summing, we
have

∑
Tek <∞, and hence ‖Tek‖ → 0 in X. B

It is easy to see that an operator T : E → X is b-weakly compact if and only if the
operator jXT : E → X ′′ is b-weakly compact where jX is the canonical embedding of X into
X ′′. Let us recall that an operator T : E → X is called injective if T is one-to-one and has
closed range. Generalizing the previous observation slightly we show that for an operator to
be b-weakly compact the size of the target space does not matter.

Proposition 5. Let T : E → X and j : X → Y be operators where j is an injection.
Then T is b-weakly compact if and only if jT is b-weakly compact.

Using the characterization of b-weakly compact operators given in Proposition 1(4) it
follows immediately that every Dunford-Pettis operator T : E → X is actually a b-weakly
compact operator. On the other hand the result in [11] shows that if E has weakly sequentially
continuous lattice operations and has an order unit then every positive order weakly compact,
in particular every b-weakly compact operator T : E → X is a Dunford-Pettis operator. Let
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us note however that weak sequential continuity of the lattice operations only is not sufficient.
Indeed, the identity operator on c0 is o-weakly compact but not a Dunford-Pettis operator
although c0 has weakly continuous lattice operations.

In opposite direction we have the following result which is a slight improvement of theorem
2.1 in [11].

Proposition 6. If each positive b-weakly compact operator T : E → F is a Dunford-
Pettis operator then either E has weakly sequentially continuous lattice operations or F has
order continuous norm.

C Let S and T be two operators from E into F satisfying 0 6 S 6 T and T be a Dunford-
Pettis operator.Then T is a b-weakly compact operator. As b-weakly compact operators satisfy
the domination property S is also a b-weakly compact operator. By the assumption S is a
Dunford-Pettis operator. The result now follows from Theorem 3.1 in [16]. B

Now we investigate the relation between b-weakly compact operators and AM -compact
operators. The natural embedding j : L∞[0, 1] → Lp[0, 1], 1 6 p < ∞ is a b-weakly compact
operator which is not AM -compact.

Proposition 7. Let E, F be Banach lattices with E ′ discrete. Then every o-weakly
compact (and therefore every b-weakly compact) operator from E into F is AM -compact.

C It suffices to show that T [0, x] is relatively norm compact for each x ∈ E+. Let S be
the restriction of T to the principal order ideal Ix generated by x. Then S : Ix → F and
S′ : F ′ → I ′x are both weakly compact operators. Therefore S ′(BF ′) is relatively compact in
σ(Ix, I

′′
x). I

′
x is an AL-space. Let A be the solid hull of S ′(BF ′) in I ′x. Every disjoint sequence

in A is convergent for the norm in I ′x by Theorem 21.10 in [1]. Since E ′ is assumed to be
discrete, A is contained in the band generated by discrete elements of I ′x. Employing Theorem
21.15 in [1], we see that A is relatively compact for the norm of I ′x. Therefore S ′ : F ′ → I ′x is
a compact operator. Consequently, T : Ix → F is also compact and thus T [0, x] is relatively
compact in F . B

If T : E → E is a b-weakly compact operator then T 2 is also a b-weakly compact but
not necessarily a weakly compact operator. For example the identity I on L1[0, 1] is b-weakly
compact as L1[0, 1] is a KB-space [3], but I2 is not a weakly compact operator. It has recently
been shown that for a positive b-weakly compact operator T : E → E, T 2 is weakly compact
if and only if each positive b-weakly compact operator T : E → E is weakly compact [10,
Theorem 2.8].

Now we will now study compactness of b-weakly compact operators.

Proposition 8. Suppose that every positive b-weakly compact operator is compact. Then
one of the following holds:

1) E′ and F have order continuous norms.
2) E′ is discrete and has order continuous norm.
3) F is discrete and has order continuous norm.

C Let S, T : E → F be such that 0 6 S 6 T where T is compact. Then T and S are b-
weakly compact operators. Thus S is compact by the hypothesis. The conclusion now follows
from Theorem 2.1 in [16]. B

On the compactness of squares of b-weakly compact operators we have the following. The
proof is very similar to the proof of the preceding proposition. Therefore it is omitted.

Proposition 9 . Let E be a Banach lattice with the property that for each positive
b-weakly compact operator S : E → E, S2 is compact. Then one of the following holds.

1) E has order continuous norm.
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2) E′ has order continuous norm.
3) E′ is discrete.
b-property has been very useful in characterizing KB-spaces. For example a Banach lattice

E is a KB-space if and only if E has order continuous norm and b-property or if and only if
the identity operator on E is b-weakly compact [3–4].

We now present another characterization of KB-spaces.

Proposition 10. A Banach lattice F is a KB-space if and only if for each Banach lattice
E and positive disjointness preserving operator T : E → F , T is b-weakly compact.

C If the hypothesis on F is true then taking E = F , we see that the identity on E is
b-weakly compact and thus E is a KB-space [3]. On the other hand if (xn) is a b-bounded
disjoint sequence in E+, then (Txn) is an order bounded disjoint sequence in F as there exists
a positive projection of F ′′ onto F . Then ‖T (xn)‖ → 0 as a KB-space has order continuous
norm. It follows from Proposition 1(4) that T is b-weakly compact. B

Proposition 11. Consider operators T : E → F and S : F → G. Suppose S is strong
type B and T ′ is b-weakly compact. Then ST is a weakly compact operator.

C It suffices to show (ST )′′(E′′) ⊆ G. Since order dual of a Banach lattice has b-property,
T ′ is o-weakly compact and being so, T has factorization over a Banach lattice H with order
continuous dual norm as T = T1T0 where T0 : E → H is continuous and T1 : H → F is
an interval preserving lattice homomorphism by Theorem 3.5.6 in [14]. Since H ′ has order
continuous norm, we have (H ′)′n = H ′′ and T ′′1 ((H

′)′n) ⊆ (F ′)′n as T ′′1 is order continuous.
Now the weak compactness of ST follows from

(ST )′′(E′′) = S′′(T ′′1 (T
′′
0 (E

′′))) ⊆ S′′(T ′′1 (H
′′)) ⊆ S′′(T ′′1 (H

′)′n) ⊆ S′′(F ′)′n ⊆ G

where the last inclusion follows from the fact that S is of strong type B and therefore S ′′ maps
the band (F ′)′n generated by F in F ′′ into G. B

As order duals have b-property, assuming T ′ to be b-weakly compact is the same as
assuming it to be o-weakly compact. Also, we could have taken T to be semicompact as
T ′ is o-weakly compact whenever T is semicompact [14, Theorem 3.6.18].

Corollary. Let T be an operator on a Banach lattice such that both T and T ′ are strong
type B. Then T 2 is weakly compact.

Finally we study the relationship between semicompact and b-weakly compact operators.
It is immediate from the definitions and Theorem 14.17 in [2] that if the range has order
continuous norm, thus ensuring weak compactness of order intervals, each semicompact
operator is weakly and therefore b-weakly compact.

On the other hand the identity I on l1 is a b-weakly compact operator which is not
semicompact. Theorem 127.4 in [17] shows that if E ′ and F have order continuous norms
then every order bounded semicompact operator T : E → F is b-weakly compact.

The next result gives necessary and sufficient conditions for a Banach lattice to be a
KB-space as well as illuminates the relation between semicompact and b-weakly compact
operators.

First we need a Lemma which was first proved in [9].

Lemma. Let E be a Banach lattice. If (en) is a positive disjoint sequence in E such that
‖en‖ = 1 for all n, then there exists a positive disjoint sequence (gn) in E′ with ‖gn‖ 6 1 and
satisfying gn(en) = 1 and gn(em) = 0 for all n 6= m.

C Let (en) be a disjoint sequence in E+ with ‖en‖ = 1 for all n. By Hahn-Banach Theorem
there exists fn ∈ E′+ such that ‖fn‖ = 1 and fn(en) = ‖en‖ = 1. Considering E in (E ′)′n, we
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see that carriers Cen of en are mutually disjoint bands in E ′. If gn is the projection of fn onto
Cen , then the sequence (gn) has the desired properties. B

Let us recall that a Banach lattice E is said to have the Levi Property if every increasing
norm bounded net in E+ has a supremum in E+. It is well-known that a Banach lattice with
Levi Property is Dedekind complete.

The following result gives a necessary and sufficient conditions for a Banach lattice to be
a KB-space.

Proposition 12. Let E and F be Banach lattices and assume that F has the Levi
property. Then the following are equivalent:

1) Each continuous operator T : E → F is b-weakly compact.
2) Each continuous semicompact operator T : E → F is b-weakly compact.
3) Each positive semicompact operator T : E → F is b-weakly compact.
4) Either E or F is a KB-space.

C It is clear that 1) implies 2) and 2) implies 3). The implication 4) ⇒ 2) was proved in
[5]. We will prove that 3) implies 4).

Let us assume that neither E nor F is a KB-space. To finish the proof we construct a
positive semicompact operator T : E → F which is not b-weakly compact. Recall that a
Banach lattice is a KB-space if and only if the identity operator on it is b-weakly compact[3].
Thus if E is not a KB-space, there exists a b-bounded disjoint sequence (en) in E+ with
‖en‖ = 1 for all n. Hence by the Lemma, there exists a positive disjoint sequence (gn) in E′

with ‖gn‖ 6 1 such that gn(en) = 1, gn(em) = 0 for all n 6= m.
We define a positive operator T1 : E → l∞ as follows:

x→ T1(x) = (g1(x), g2(x), . . .)

for each x in E. Let us note that T1(BE) ⊆ Bl∞ .
On the other hand, since F is not a KB-space, we can find a b-bounded disjoint sequence

in F+ such that 0 6 fn 6 f for some f in F ′′ and satisfying ‖fn‖ = 1 for all n. Let (αn) be a
positive sequence in l∞. Then,

0 6

n∑

i=1

αifi 6

n+1∑

i=1

αifi 6 sup(αi)f

shows that the sequence (
∑n

i=1 αifi)n is an increasing norm bounded sequence in F . As F is
assumed to have the Levi Property, supremum of (

∑n
i=1 αifi)n exists in F . We denote this

supremum by
∑∞

i=1 αifi. This enables us to define an operator T2 : l+∞ → F by T2(αi) =∑∞
i=1 αifi.
T2 has an extension to l∞ which we will also denote by T2.
Since (fi) is a disjoint sequence, it follows from

0 6

n∑

i=1

fi =
∨
fi 6 f

that 0 6 (
∑n

i=1 fi)n is also an increasing norm bounded sequence in F+. Therefore the
supremum of this sequence exists in F and will be denoted by f0. Then T2(Bl∞) ⊆ [−f0, f0].
Now we consider the operator T = T2T1 defined as

x→
∞∑

i=1

gi(x)fi
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T is well-defined and is positive. It follows from

T (BE) = T2T1(BE) ⊆ T2(Bl∞) ⊆ [−f0, f0]

that T is semicompact. However, the operator T is not b-weakly compact as

T (en) =
∞∑

i=1

gi(en)fi = fn

for all n and ‖T (en)‖ = ‖fn‖ = 1 for all n. Recall that if T were b-weakly compact then we
would have T (en)→ 0 in norm. B

The assumption that F has Levi Property is essential. In fact, if we take E = l∞, F = c0,
then each operator from E into F is weakly compact and therefore b-weakly compact. However
neither E nor F is a KB-space.
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