УДК 517.95

BANACH–STEINHAUS TYPE THEOREM IN LOCALLY CONVEX SPACES FOR σ -LOCALLY LIPSCHITZIAN CONVEX PROCESSES

S. Lahrech, A. Jaddar, J. Hlal, A. Ouahab, A. Mbarki

The main purpose of this paper is to generalize the Banach–Steinhaus theorem in locally convex spaces for σ -locally Lipschitzian operators established by S. Lahrech in [1] to σ -locally Lipschitzian convex processes.

Mathematics Subject Classification: 49J52, 49J50, 47B37, 46A45.

Key words: σ -Locally Lipschitzian convex processes, locally convex spaces, Banach–Steinhaus theorem.

1. Introduction

Let (X, λ) and (Y, μ) be two locally convex spaces. Assume that the locally convex topology μ is generated by the family $(q_{\beta})_{\beta \in I}$ of semi norms on Y. Let $\beta(X_{\lambda})$ denote the family of bounded sets in (X, λ) and let $\sigma \subset \beta(X_{\lambda})$. For a linear mapping $T : X \to Y$, a semi norm p on Y, and $\in \sigma$ set $L(p, C)(T) = \sup_{h \in C} p(Th)$. According to [1], T is said to be σ -locally Lipschitzian if

$$\forall C \in \sigma, \quad \forall \beta \in I : L(\beta, C) \equiv L(q_{\beta}, C)(T) < +\infty.$$

By $\operatorname{Lip}(X_{\lambda}, Y_{\mu}, \sigma)$ we denote the vector space of σ -locally Lipschitzian operators. Note that $\operatorname{Lip}(X_{\lambda}, Y_{\mu}, \sigma)$ is a locally convex space under the locally convex topology $\tau(\lambda, \mu, \sigma)$ generated by the family of semi norms $L(\beta, C), \beta \in I, C \in \sigma$.

The operator $T: (X, \lambda) \to (Y, \mu)$ is said to be sequentially continuous if for every sequence (x_n) of X and every $x \in X$ such that $x_n \xrightarrow{\lambda} x$ one has $Tx_n \xrightarrow{\mu} Tx$. T is said to be bounded if T sends bounded sets in (X, λ) into bounded sets in (Y, μ) . Clearly, continuous operators are sequentially continuous, sequentially continuous operators are bounded, and linear bounded operators are σ -locally Lipschitzian; but in general, converse implications fail. Let X', X^s, X^b and X_{σ}^L denote respectively the family of continuous linear functionals sequentially continuous linear functionals on (X, λ) . In general, the inclusions $X' \subset X^s \subset b \subset \frac{L}{\sigma}$ are strict.

Let $\theta(X, X_{\sigma}^{L})$ denote the topology of uniform convergence on $\sigma(X_{\sigma}^{L}, X)$ -Cauchy sequences of X_{σ}^{L} . Note that if $\sigma = \beta(X_{\lambda})$, then $X^{b} = X_{\sigma}^{L}$ and consequently, $\theta(X, X_{\sigma}^{L}) = \theta(X, X^{b})$.

It has been show in [1] that, if $T_n : (X, \lambda) \to (Y, \mu), n \in \mathbb{N}$ is a sequence of σ -locally Lipschitzian operators admitting for each $x \in X$ a weak limit $\lim T_n x = Tx$, then the limit operator T maps $\theta(X, X_{\sigma}^L)$ -bounded sets into bounded sets.

Our objective in this paper is to generalize the above result to σ -locally Lipschitzian convex processes.

^{© 2008} Lahrech S., Jaddar A., Hlal J., Ouahab A., Mbarki A.

These are multifunctions which maps every set C of σ into bounded set in (Y, μ) and whose graphs are convex cones.

Recall that a multifunction (or set-valued map) $\Phi: X \to Y$ is a map from X to the set of subsets of Y. The domain of Φ is the set

$$D(\Phi) = \{ x \in X : \Phi(x) \neq \emptyset \}.$$

We say Φ has nonempty images if its domain is X. For any subset C of X we write $\Phi(C)$ for the image $\bigcup_{x \in C} \Phi(x)$ and the range of Φ is the set $R(\Phi) = \Phi(X)$. We say Φ is surjective if its range is Y. The graph of Φ is the set

$$G(\Phi) = \{(x, y) \in X \times Y : y \in \Phi(x)\}$$

and we define the inverse multifunction $\Phi^{-1}: Y \to X$ by the relationship

 $x \in \Phi^{-1}(y) \Leftrightarrow y \in \Phi(x)$ for $x \in X$ and $y \in Y$.

A multifunction is convex, or closed if its graph is likewise. A process is a multifunction whose graph is a cone. For example, we can interpret linear closed operators as closed convex processes in the obvious way. If λ -bounded sets have μ bounded images, then we say that Φ is (λ, μ) bounded.

A convex process $\Phi : (X, \lambda) \to (Y, \mu)$ is said to be σ -locally Lipschitzian if it maps every set C of σ into bounded set in (Y, μ) . Clearly, bounded convex processes are σ -locally Lipschitzian. Note also that σ -locally Lipschitzian operators can be interpreted as σ -locally Lipschitzian convex processes. Our next step is to generalize all the results established by S. Lahrech in [1] to σ -locally Lipschitzian convex processes. But before proving the main results, we pause to recall some terminologies and definitions which will be used later.

2. Banach–Steinhaus theorem for σ -locally Lipschitzian convex processes in locally convex spaces

Let (X, λ) and Y, μ be two locally convex spaces. If $\Phi : (X, \lambda) \to R$ is a σ -locally Lipschitzian convex process, then we say that Φ is a real σ -locally Lipschitzian convex process with respect to the topology λ .

Denote by $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$ the class of σ -locally Lipschitzian convex processes acting from X, λ into \mathbb{R} .

Let (Φ_n) be a sequence of multifunctions acting from X into Y such that $\bigcap_n D(\Phi_n) \neq \emptyset$. We say that (Φ_n) is a Cauchy sequence along the topology μ , if $\forall x \in X$ satisfying $x \in \bigcap_n D(\Phi_n) \exists (\Phi_{n_k})$ a subsequence of $(\Phi_n), \exists x_k \in \Phi_{n_k}(x), k = 1, 2, \ldots$ such that (x_{n_k}) is a Cauchy sequence for the weak topology $\sigma(Y, Y') \equiv \sigma(Y, (Y, \mu)')$. Denote by $\operatorname{Lip}_c((X, \sigma, \lambda), (Y, \mu))$ the class of σ -locally Lipschitzian convex processes acting from (X, λ) into (Y, μ) .

Let $B \subset X$, $B \neq \emptyset$. We say that B is bounded along the class $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$, if for every Cauchy sequence Φ_n along the topology μ satisfying: $\Phi_n \in \operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R}), B \subset \bigcap D(\Phi_n)$, and for every sequence $(x_k)_k$ of elements of B and for every double sequence $y_n^k \in \Phi_n(x_k)$, $k = 1, 2, \ldots, n = 1, 2, \ldots$, the double sequence $(y_n^k)_{n,k}$ is bounded in R.

Let (Φ_n) be a sequence of multifunctions acting from X into Y such that $\bigcap_n D(\Phi_n) \neq \emptyset$. We define the upper limit $(\limsup \Phi_n)$ of Φ_n with respect to the topology μ by:

$$\forall x \in X \quad \limsup \Phi_n(x) = \{ y \in Y : \exists (\Phi_{n_k}) \text{ a subsequence of } (\Phi_n), \exists y_{n_k} \in \Phi_{n_k}(x) \quad (\forall k) \\ \text{ such that } y_{n_k} \to y \text{ for the weak topology } \sigma(Y, (Y, \mu)') \}.$$

Let $\Phi : X \to Y$ be a multifunction. We say that Φ_n converges to Φ along the topology μ , if the following conditions holds:

l) $\limsup \Phi_n = \Phi$,

2) $\forall x \in X, \bigcup_n \Phi_n(x)$ is conditionally sequentially compact in $(Y, \sigma(Y, (Y, \mu)'))$. In this case, we set $\lim \Phi_n = \limsup \Phi_n = \Phi$.

Proposition 1. Assume that (Φ_n) is a sequence of convex processes converging to a some multifunction Φ along the topology μ . Then:

1) $\bigcap_n D(\Phi_n) \subset D(\Phi),$

2) Φ is a convex process.

 \triangleleft Let $x \in \bigcap_n D(\Phi_n)$. Then, there is a sequence $x_n \in \Phi_n(x)$ $(n \in \mathbb{N})$. On the other hand, $\bigcup_n \Phi_n(x)$ is conditionally sequentially compact in $(Y, \sigma(Y, Y'))$. Hence, there exists a subsequence $(x_{n_k}) \in \Phi_{n_k}(x)$ of (x_n) converging to some y for the weak topology $\sigma(Y, Y')$. Consequently, $y \in \lim \Phi_n(x) = \Phi(x)$. This implies that $\Phi(x) \neq \emptyset$. Thus, $x \in D(\Phi)$, and the desired inclusion follows.

Let now $(x, y) \in G(\Phi)$ and $\lambda \geq 0$. Then, there is a subsequence (Φ_{n_k}) of (Φ_n) and $y_{n_k} \in \Phi_{n_k}(x)$ such that $y_{n_k} \xrightarrow{\sigma(Y,Y')} y$. Therefore, $\lambda y \in \Phi(\lambda x)$. Hence, $\lambda(x, y) \in G(\Phi)$. So, using the same argument, we prove that $G(\Phi)$ is convex. Thus, we achieve the proof. \triangleright

It follows from the above proposition that if $\lim \Phi_n$ exists, then (Φ) is a Cauchy sequence.

Let us remark also that if the topology μ , is separated and if (A_n) is a sequence of linear operators converging to some operator A acting from X into Y at each $x \in X$ for the weak topology $\sigma(Y, Y')$, then (Φ_n) converge to Φ in our sense, where (Φ_n) and Φ are the convex processes defined by $\Phi_n(x) = \{A_n x\}$, and $\Phi(x) = \{Ax\}$.

For a multifunction $\Phi : X \to Y$ and $y' \in Y' \equiv (Y, \mu)'$, we define $y' \circ \Phi$ to be the multifunction $\Phi_1 : X \to \mathbb{R}$ defined by $\Phi_1(x) = y'(\Phi(x))$.

Now we are ready to prove the main results of our paper.

Theorem 2 (Banach–Steinhaus theorem for σ -locally Lipschitzian convex processes). Let $\Phi_n : (X, \lambda) \to (Y, \mu), n = 1, 2, ...$ be a sequence of σ -locally Lipschitzian convex processes converging along the topology μ to some multifunction $\Phi : X \to Y$. Then the limit convex process Φ is (Lip_c($(X, \sigma, \lambda), \mathbb{R}$), μ)-bounded. That is for any $B \subset X$ such that B is bounded along the class Lip_c($(X, \sigma, \lambda), \mathbb{R}$), $\Phi(B)$ is bounded in (Y, μ) .

 \triangleleft Let $y' \in Y' \equiv (Y, \mu)'$. Then, $y' \circ \Phi_n$ converge to y' along the topology μ . Therefore, $(y' \circ \Phi_n)$ is a Cauchy sequence along the topology μ . Assume that B is a bounded set along the class $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$. Let (x_k) be a sequence of elements of B and let $y_k \in \Phi(x_k)$, $k = 1, 2, \ldots$

Since $y_k \in \Phi(x_k)$, then without loss of generality we can assume that there is a sequence $y_k^n \in \Phi_n(x_k), k, n \in \mathbb{N}$ such that, for any k, y_k^n converges to y_k with respect to the weak topology $\sigma(Y, Y')$. On the other hand, B is bounded along the class $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$. Consequently, the sequence $(\langle y', y_k^n \rangle)_{n,k}$ is bounded in \mathbb{R} . Therefore, $\lim_{k,s\to+\infty} \frac{1}{s} \langle y', y_k^n \rangle = 0$ uniformly in $n \in \mathbb{N}$.

Now fix $\varepsilon > 0$. Then, there is an integer k_0 such that $|\langle y', y_k^n \rangle| < \frac{\varepsilon}{2}k_0$ for all $n \in \mathbb{N}$ and all $k \ge k_0$. Fix a $k \ge k_0$. Since $y_k^n \to y_k$ as $n \to +\infty$, then there is an $n_0 \in \mathbb{N}$ such that $|\langle y', y_k^{n_0} \rangle - \langle y', y_k \rangle| < \frac{\varepsilon}{2}$. Therefore, $|\langle y', y_k \rangle| \le |\langle y', y_k \rangle - \langle y', y_k^{n_0} \rangle| + |\langle y', y_k^{n_0} \rangle| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}k_0$. This shows that the set $\{\langle y', y \rangle : x \in B, y \in \Phi(x)\}$ is bounded. Since $y' \in (Y, \mu)'$ is arbitrary, $\Phi(B)$ is μ -bounded by the classical Mackey theorem. Thus, we achieve the proof. \triangleright

The next result give us a sufficient conditions to guarantee that the limit convex process Φ in the above theorem is σ -locally Lipschitzian.

We say that $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$ is sequentially complete, if every Cauchy sequence in $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$ converges in $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$.

Theorem 3. Let $\Phi_n : (X, \lambda) \to (Y, \mu), n = 1, 2, ...$ be a sequence of σ -locally Lipschitzian convex processes converging along the topology μ to some multifunction $\Phi : X \to Y$. Assume that $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$ is sequentially complete. Then the limit convex process Φ is σ -locally Lipschitzian from (X, λ) into (Y, μ) .

 \triangleleft Let $C \in \sigma$. We must prove that the set $\Phi(C)$ is bounded in (Y,μ) . Let $y' \in (Y,\mu)'$. Then $y' \circ \Phi_n \to y' \circ \Phi$ along the topology μ . Consequently, $(y' \circ \Phi_n)$ is a Cauchy sequence in $\operatorname{Lip}_c((X,\sigma,\lambda),\mathbb{R})$.

On the other hand, $\operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$ is sequentially complete. Therefore, $y' \circ \Phi \in \operatorname{Lip}_c((X, \sigma, \lambda), \mathbb{R})$. Thus, $y'(\Phi(C))$ is bounded. Hence, $\Phi(C)$ is μ -bounded by the classical Mackey theorem. \triangleright

REMARK 4. Let us remark that if $A_n : X \to Y$ is a sequence of linear σ -locally Lipschitzian operators converging to A at each $x \in X$ with respect to the weak topology $\sigma(Y, Y')$, and if moreover, the topology μ is separated, then the multifunction $\Phi_n : X \to Y$ defined by $\Phi_n(x) = \{A_n x\}$ is σ -locally Lipschitzian convex process converging to the convex process Φ defined by $\Phi(x) = \{Ax\}$. Therefore, we recapture all the results given by S. Lahrech in [1] using our theorems.

References

- Lahrech S. Banach–Steinhaus type theorem in locally convex spaces for linear σ-locally Lipschitzian operators // Miskolc Mathematical Notes.—2005.—V. 6.—P. 43–45.
- 2. Rockafellar R. T. Monotone processes of Convex and Concave type // Memoirs of the Amer. Math. Soc.—1967.—№ 77.
- 3. Rockafellar R. T. Convex Analysis.-Princeton: Princeton Univ. press, 1970.
- Borwein J. M., Lewis A. S. Convex Analysis and Nonlinear Optimization // CMS Books in Mathematics.—Gargnano, 1999.
- 5. Wilansky A. Modem Methods in TVS, McGraw-Hill, 1978.
- 6. Kothe G. Toplogical vector spaces, I.-Berlin etc.: Springer, 1983.
- 7. Brezis H. Analyse fonctionnelle, Theorie et applications.-Masson, 1983.

Received October 26, 2006.

LAHRECH S. Mohamed first university Oujda, Morocco (GAFO Laboratory) E-mail: lahrech@sciences.univ-oujda.ac.ma JADDAR A. National School of Managment Oujda, Morocco (GAFO Laboratory) E-mail: jaddar@sciences.univ-oujda.ac.ma HLAL J. Mohamed first university Oujda, Morocco (GAFO Laboratory) E-mail: hlal@sciences.univ-oujda.ac.ma Ouahab A. Mohamed first university Oujda, Morocco (GAFO Laboratory) E-mail: ouahab@sciences.univ-oujda.ac.ma MBARKI A. National School of Applied Sciences Oujda, Morocco (GAFO Laboratory) E-mail: ambarki@ensa.univ-oujda.ac.ma