
ISSN 1464-8997 (on line) 1464-8989 (printed) 181

Geometry & Topology Monographs
Volume 7: Proceedings of the Casson Fest
Pages 181–203

On Heegaard Floer homology and
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Abstract We explore certain restrictions on knots in the three–sphere
which admit non-trivial Seifert fibered surgeries. These restrictions stem
from the Heegaard Floer homology for Seifert fibered spaces, and hence
they have consequences for both the Alexander polynomial of such knots,
and also their knot Floer homology. In particular, we show that certain
polynomials are never the Alexander polynomials of knots which admit
homology three–sphere Seifert fibered surgeries. The knot Floer homology
restrictions, on the other hand, apply also in cases where the Alexander
polynomial gives no information, such as the Kinoshita–Terasaka knots.
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1 Introduction

It is an interesting open question to characterize knots K in the three–sphere
with the property that some (non-trivial) surgery on S3 along K is a Seifert
fibered space. This question has received considerable attention recently, cf
[2, 9, 3]. The aim of the present article is to present some obstructions for a
knot K to admitting such surgeries. These obstructions in turn come from the
Heegaard Floer homology of [19] and the related knot invariant defined in [21]
and [28].

1.1 Seifert fibered surgeries and the Alexander polynomial

For simplicity, throughout most of this paper we consider the case of homology
sphere surgeries, although other surgeries are accessible to Floer homology as
well (compare also [13, Subsection 8.1]). Specifically, given a rational number
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r and a knot K ⊂ S3 , let S3
r (K) denote the three–manifold obtained as Dehn

surgery on S3 along K . Writing r = p/q as a fraction in its lowest terms,
H1(S3

p/q(K);Z) ∼= Z/pZ. In particular, if S3
r (K) is an integer homology three–

sphere, then r has the form 1/q for a non-zero integer q .

We give a certain obstruction to Seifert fibered surgeries. The strongest form
of this result should be stated in terms of the Heegaard Floer homology of the
zero–surgery of S3 along K , HF+(S3

0(K)) cf Theorem 3.4 and Proposition
3.5 below. However, for the purposes of this introduction, we prefer to state a
weaker form in terms of its Euler characteristic, which can be expressed purely
in terms of the Alexander polynomial. (This result is proved in Section 3.)

Theorem 1.1 Let K ⊂ S3 be a knot in the three–sphere. Write its sym-
metrized Alexander polynomial as

∆K(T ) = a0 +
∑
i>0

ai(T i + T−i),

and let

ti(K) =
∞∑
j=1

ja|i|+j (1)

denote the torsion coefficients of the knot. Then, if there is an integer q 6= 0 for
which S3

1/q(K) is Seifert fibered, all the non-zero integers ti(K) have the same
sign.

For example, for 34 of the 54 non-alternating knots with fewer than eleven
crossings, there are both positive and negative torsion coefficients. It follows
from Theorem 1.1 that these knots admit no Seifert fibered 1/q–surgeries. (Of
course, there are other known techniques for ruling out Seifert fibered surgeries
for sufficiently small knots, cf [30].)

This result rules out many alternating knots, as well. In particular, there is an
interesting family which we describe below. But first, recall that the sign of the
ti(K) is governed by the following result, proved in [23]:

Theorem 1.2 (Corollary 1.6 of [23]) Let K be an alternating knot, and let

δ(m, i) = max
(

0,
⌈
|m| − 2|i|

4

⌉)
(note that this is the ith torsion coefficient of the (2, 2m+1) torus knot). Then,

(−1)i+
σ
2 (ti(K)− δ(σ, i)) ≤ 0,

where here σ denotes the signature of K .
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We now have the following result:

Corollary 1.3 If K is an alternating knot with genus g and whose signature
σ satisfies

g +
σ

2
≡ 1 (mod 2) and σ 6= 0,

then there is no non-zero integer q 6= 0 for which S3
1/q(K) is Seifert fibered.

Proof It is a classical result that the genus g of an alternating knot agrees with
the degree of its Alexander polynomial (cf [1, 15]). In particular, tg−1(K) 6= 0.

Recall that in general |σ| ≤ 2g , while our hypothesis on the parity of σ/2 forces
this inequality to be strict, and hence δ(σ, g − 1) = 0. Theorem 1.2, together
with the hypothesis on the parity of σ/2 again, gives

tg−1(K) < 0. (2)

On the other hand, letting i = |σ|
2 − 1, we have that δ(σ, i) = 1, and hence

another application of Theorem 1.2 gives

1 ≤ ti. (3)

Together, inequalities (2) and (3), combined with Theorem 1.1, give the claimed
result.

To elucidate the hypotheses of the above corollary, note that the figure–eight
knot satisfies the parity hypothesis, but σ = 0. However, +1–surgery on this
knot gives the Brieskorn sphere Σ(2, 3, 7). Moreover, for each integer n ≥ 1,
the (2, 2n+1) torus knot has non-zero signature (2n), but σ/2 = g . Of course,
+1 surgery on any of these knots is Seifert fibered.

The sign of the torsion coefficients as in Theorem 1.1 is dictated by the ori-
entation on the Seifert fibered space. Specifically, note that for any integral
homology Seifert fibered space Y different from S3 , Casson’s invariant λ(Y ) is
non-zero (cf [4, 16, 7]). Moreover, Casson’s surgery formula shows that

λ(S3
1/q(K)) = q ·

∑
i

ti(K).

Putting these two together, we see that the signs of the non-vanishing ti are
determined by Casson’s invariant of Y . We say that Y a Seifert fibered integral
homology three–sphere has a positive Seifert orientation if its Casson’s invariant
is positive (ie has the same sign as that of the Brieskorn sphere −Σ(2, 3, 5)).
In Section 3 we give a more direct description of this sign.
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1.2 Knot Floer homology

We have also a Seifert fibered surgery obstruction, which can be stated in terms
of the “knot Floer homology”. This invariant is a refinement of Heegaard Floer
homology of the three–manifold Y , in the presence of an oriented knot K in
Y , [21, 28]. We will say little about this invariant beyond its formal properties.
If K is a null-homologous knot in a three–manifold Y , then there is an induced
filtration of the Heegaard Floer complex, and the homology of the associated
graded object is this knot Floer homology.

For knots K in the three–sphere, the invariants ĤFK take the form of graded
Abelian groups indexed by integers i. According to a “skein exact sequence”
which these groups satisfy, it follows that if ∆K(T ) denotes the symmetrized
Alexander polynomial of K , then

∆K(T ) =
∑
i∈Z

χ(ĤFK(K, i)) · T i ∈ Z[T, T−1] (4)

(see [21, Proposition 4.2]).

Moreover, according to [26, Theorem 1.2], the knot Floer homology determines
the genus of the knot:

g(K) = max{i
∣∣ĤFK(K, i) 6= 0}. (5)

Knot Floer homology is difficult to calculate in general. However, there are
some families of knots for which the answer is known. For example, if K is
an alternating knot, then ĤFK(K, i) ∼= Z|ai| is supported in dimension i− σ

2 ,
where σ denotes the signature of K (cf [23, Theorem 1.4], see also [27] for
the two–bridge case). Here, of course, ai is the T i coefficient of the Alexander
polynomial of K .

1.3 Seifert fibered surgeries and knot Floer homology

Theorem 3.4, together with some additional properties of the knot Floer ho-
mology which we review in Section 4, give strong restrictions on ĤFK(K)
for knots which admit Seifert fibered surgeries. This restriction leads to the
following:

Theorem 1.4 Let K ⊂ S3 be a knot with genus g . If there is an inte-
ger q > 0 so that S3

1/q(K) is a positively oriented Seifert fibered space, then

ĤFK(S3,K, g) is trivial in odd degrees (and non-trivial in even degrees). If
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there is an integer q > 0 so that S3
1/q(K) is a negatively oriented Seifert fibered

space and g > 1, then ĤFK(S3,K, g) is trivial in even degrees (and non-trivial
in odd degrees).

This has the following corollary (compare also [13]):

Corollary 1.5 If deg ∆K < g(K), then for integers q ≥ 0, S3
1/q(K) is never a

positively oriented Seifert fibered space. Indeed, if in addition, g(K) > 1 then
no 1/q surgery along K is Seifert fibered.

Proof Note that S3
1/q(K) = −S3

−1/q(r(K)), where r(K) denotes the reflection
of K . Thus, the corollary follows immediately from the Euler characteristic
relation (equation (4)), together with Theorem 1.4.

As an illustration, we consider the family of Kinoshita–Terasaka knots KTr,n
(see [11]) with |r| ≥ 2 and n 6= 0 (to avoid the unknot). These knots all have
trivial Alexander polynomial. However, Gabai has shown [8] that KTr,n has
genus |r| (note that one could deduce this alternatively from the calculation
of ĤFK(Kr,n, r) from [24]). Thus, Corollary 1.5 applies: none of these knots
admits surgeries which are integral homology Seifert fibered spaces. See [24]
for other families of knots with these properties.

In this paper, we have dealt with restrictions on Seifert fibered surgeries which
are obtained with the use of Heegaard Floer homology. Further results on
Seifert fibered surgeries using monopole Floer homology can be found in [13,
Subsection 8.1].

1.4 Surgeries giving Σ(2, 3, 5) and Σ(2, 3, 7)

It is conjectured that if K is a knot in S3 which admits a surgery which is
Σ(2, 3, 5), then K is the trefoil (cf remarks following [12, Problem 3.6(D)], see
also [31]), and if K is a knot in S3 which admits a surgery which is Σ(2, 3, 7),
then K is the figure–eight or the trefoil. We use the surgery long exact sequence
to provide some evidence for this conjecture in the following form:

Theorem 1.6 Let K be a knot in S3 with the property that S3
r (K) ∼=

Σ(2, 3, 5) for some r ∈ Q, then r = −1, and the knot Floer homology of
K agrees with that of the left-handed trefoil. In particular, the Seifert genus
of K is one and its Alexander polynomial is T−1 − 1 + T .
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Theorem 1.7 Let K be a knot in S3 with the property that S3
r (K) ∼=

Σ(2, 3, 7) (as an oriented manifold) then there are two cases. Either r = −1,
in which case K has genus one and its Alexander polynomial agrees with that
of the trefoil. In the case where r = +1, K has genus one and its Alexander
polynomial is −T−1 + 3− T .
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2 A brief review of Heegaard Floer homology

Very briefly, the Heegaard Floer homology is a homology theory associated to a
closed, oriented three–manifold Y . For simplicity, we start with the case where
Y is an integral homology three–sphere. To define Heegaard Floer homology,
we start with a suitably generic Heegaard diagram (Σ, α, β , z), where here Σ
is an oriented Riemann surface, and α = {α1, ..., αg} and β = {β1, ...βg} are
g–tuples of (pairwise disjoint, embedded) attaching circles for the two handle-
bodies, and z is a point which does not lie on any of the attaching circles. We
now consider the g–fold symmetric product Symg(Σ), ie unordered g–tuples
of points (counted with multiplicity) on Σ, together with the pair of embedded
tori

Tα = α1 × ...× αg and Tβ = β1 × ...× βg.

Loosely speaking, Heegaard Floer homology measures an obstruction to pulling
apart these two tori. More precisely, we fix a complex structure on Σ, which in
turn induces a complex structure on its g–fold symmetric product (with respect
to which the two tori are totally real), and we consider the chain complex
CF∞(Y ) generated by [x, i] ∈ (Tα ∩ Tβ) × Z, and whose differential counts
holomorphic Whitney disks. That is, fix intersection points x,y ∈ Tα ∩ Tβ . A
Whitney disk u connecting x to y is a map

u : {z ∈ C
∣∣|z| ≤ 1} −→ Symg(Σ)
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satisfying the boundary conditions

u{ζ
∣∣Re(ζ) ≥ 0 and |ζ| = 1} ⊂ Tα, u{ζ

∣∣Re(ζ) ≤ 0 and |ζ| = 1} ⊂ Tβ,
u(−
√
−1) = x, u(

√
−1) = y.

The space of homotopy classes of Whitney disks connecting x to y is denoted
π2(x,y). For a fixed Whitney disk u, let nz(u) denote the algebraic intersection
number of u with the submanifold {z} × Symg−1(Σ) ⊂ Symg(Σ). Note that
nz(u) depends only on the homotopy class φ of u.

With these preliminaries in place, we can define a map

∂[x, i] =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

∣∣µ(φ)=1

c(φ) · [y, i− nz(φ)],

where here µ(φ) denotes the expected dimension of the moduli space of pseudo-
holomorphic representatives for the homotopy class φ, and c(φ) denotes an
appropriate signed count of points in this moduli space, modulo the natural
automorphism group. Here the term “pseudo-holomorphic” means a sufficiently
generic perturbation of the notion of holomorphic disks. By adapting arguments
from Lagrangian Floer homology (which in turn rest on Gromov’s compactness
theorem [10]), one can show that ∂2 = 0. It is simplest to think of c(φ) as an
element of a field (rather than working over Z), which we fix now to be the
field Q of rational numbers.

In fact, since {z} × Symg−1(Σ) is a subvariety of Symg(Σ) which is disjoint
from Tα and Tβ , it follows that if a given homotopy class φ has holomorphic
representatives, then nz(φ) ≥ 0. In particular, it follows that the subset of
CF−(Y ) ⊂ CF∞(Y ) generated by pairs [x, i] with i < 0 is actually a subcom-
plex. Indeed, we have a short exact sequence of complexes

0 −→ CF−(Y ) −→ CF∞(Y ) π−→ CF+(Y ) −→ 0, (6)

where here CF+(Y ) is defined to make the sequence exact; it is generated by
pairs [x, i] with i ≥ 0. All three complexes are endowed with an endomorphism,
defined by U [x, i] = [x, i− 1], which can be used to construct a fourth variant:

0 −→ ĈF (Y ) −→ CF+(Y ) U−→ CF+(Y ) −→ 0, (7)

where here ĈF (Y ) is, by definition, the kernel of the induced endomorphism.
According to [19], the homology groups of the complexes CF−(Y ), CF∞(Y ),
CF+(Y ), and ĈF (Y ), denoted HF−(Y ), HF∞(Y ), HF+(Y ), and ĤF (Y ),
are topological invariants of the three–manifold Y . In particular, they are
independent of the perturbations, complex structures, and Heegaard diagrams
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which go into their definitions. In addition, the complexes can be given a
canonical Z/2Z–grading, characterized by the properties that it is preserved by
the maps in the short exact sequences (6) and (7), and also that χ(ĤF (Y )) = 1,
bearing in mind that we have assumed that H1(Y ;Z) = 0. Sometimes, we write
ĤF ev(Y ) (respectively ĤF odd(Y )) for the subgroup of ĤF (Y ) generated by
elements with even (respectively odd) Z/2Z–grading (and the corresponding
notation for the other types of Heegaard Floer homology).

As a special case, consider S3 . For this manifold, ĤF (S3) ∼= Q, HF−(S3) ∼=
Q[U ], HF∞(S3)
∼= Q[U,U−1], and HF+(S3) ∼= Q[U,U−1]/U · Q[U ] (thought of as a Q[U ]–
module). We denote this latter module by T + . It is interesting to note that,
according to [18, Theorem 10.1],

HF∞(Y ) ∼= Q[U,U−1]

(supported in even parity) for any integer homology three–sphere Y .

In the case of a general closed, oriented three–manifold the same construc-
tions work, except that when b1(Y ) > 0, we use a restricted class of Hee-
gaard diagram, a technical point which we will not pursue here (cf [19, Section
5]). But there is some additional structure which is important to us here: the
chain complex splits into summands indexed by Spinc structures over Y . For
example, consider the case where Y is obtained by p–framed surgery on a
knot K ⊂ S3 , where p is an integer. In this case, there is an identification
H1(S3

p(K);Z) ∼= Z/pZ. And indeed, we have a corresponding identification
Spinc(S3

p(K)) ∼= Z/pZ. In this case, there is a splitting of all three of the
Heegaard Floer homologies indexed by integers i ∈ Z/pZ; we write

HF+(S3
p(K)) ∼=

⊕
i∈Z/pZ

HF+(S3
p(K), i). (8)

(The canonical Z/2Z–grading is slightly more complicated when b1(Y ) > 0,
but can still be defined, cf [18, Section 10.4], see also equation (13) below.)

In general, HF+(Y ) is infinitely generated. However the quotient HF+
red(Y ) =

HF+(Y )/HF∞(Y ) is finitely generated. The link between Heegaard Floer
homology and the Alexander polynomial is provided by the following result,
which can be seen as an analogoue of the Meng–Taubes theorem in Seiberg–
Witten theory [14, 29].

Theorem 2.1 Let K ⊂ S3 be a knot, and let S3
0(K) denote the three–

manifold obtained by performing 0–framed surgery on S3 along K . Then,
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HF+(S3
0(K), i) is finitely generated when i 6= 0, with Euler characteristic given

by
χ(HF+(S3

0(K), i)) = −ti(K).

In the case where i = 0,

χ(HF+
red(S3

0(K), i)) ≥ −t0(K).

The above theorem is stated and proved in [18, Theorem 5.2] in the case where
i 6= 0, while in the case where i = 0, it is [18, Theorem 10.17].

A key calculational device we will use here is the following integer surgeries long
exact sequence, which is a restatement of [18, Theorem 9.19]:

Theorem 2.2 Let K ⊂ S3 , and fix an integer p > 0. Then, there is an long
exact sequence

. . . −→ HF+(S3) a−→
⊕

j≡i (mod p)

HF+(S3
0(K), j) b−→ HF+(S3

p(K), [i]) −→ . . . ,

where here a and c preserves the canonical Z/2Z degree, while b reverses it.

There are many variants of this sequence. The case where p = 1 generalizes
to the case of arbitrary framed knots in an arbitrary closed, oriented three–
manifold (though the statements about the Z/2Z degree have to be suitably
modified). (We say little about the maps on Floer homology in the exact
sequence, except that they are induced from cobordisms. For more on this, see
[20].)

Another variant uses fractional surgeries. The term associated to the zero–
surgery is slightly different in this case. Specifically, suppose that Y is a three–
manifold with H1(Y ;Z) ∼= Z, fix a homomorphism H1(Y ;Z) −→ Z/pZ. Then,
there is a notion of Floer homology with coefficients in Q[Z/pZ], written

HF+(Y ;Q[Z/pZ]) ∼=
⊕
i∈Z

HF+(Y, i;Q[Z/pZ]).

In fact, this theory is obtained from a “universal” case of coefficients twisted by
Q[H1(Y ;Z)] = Q[Z] which, of course, can be thought of as the ring of Laurent
polynomials with coefficients in Q over a formal variable T . In this case, the
universal coefficients theorem applies, to show that

HF+
i (Y ;Q) ∼=

(
HF+

i (Y ;Q[Z])⊗Q
)
⊕
(
Q ? HF+

i+1(Y ;Q[Z/pZ]))
)
,

where here i denotes the parity i ∈ Z/2Z, tensor products are taken over the
base ring Q[Z], where here Q is viewed as a module over Q[Z] with trivial
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action by Z, and A ? B denotes the torsion product over the principal ideal
domain Q[Z]. More generally (ie generalizing from the case where p = 1), we
have

HF+
i (Y ;Q[Z/pZ]) ∼=(

HF+
i (Y ;Q[Z])⊗Q[Z/pZ]

)
⊕
(
Q[Z/pZ] ? HF+

i+1(Y ;Q[Z/pZ]))
)
,

where here Q[Z/pZ] is a module over Q[Z] using our given homomorphism
Z ∼= H1(Y ;Z) −→ Z/pZ. Note that all of the groups ĤF , HF− , HF∞ , and
HF+ have their analogues with twisted coefficients, and they are related by
exact sequences analogous to equations (6) and (7). In particular, we can once
again form the group

HF+
red(Y ;Q[Z/pZ]) = HF+(Y ;Q[Z/pZ])/HF∞(Y ;Q[Z/pZ]).

Again the canonical Z/2Z–grading gives a decomposition

HF+
red(Y ;Q[Z/pZ]) = HF+

red,ev(Y ;Q[Z/pZ])⊕HF+
red,odd(Y ;Q[Z/pZ]).

The Euler characteristic of HF+ with coefficients in Q[Z/pZ] is related to the
untwisted case by the relation

χ
(
HF+(Y, i,Q[Z/pZ])

)
= p · χ

(
HF+(Y, i)

)
(9)

for all i 6= 0 (cf [18, Lemma 11.1]).

We use twisted coefficients for the following variant of the surgery long exact
sequence, which is a restatement of [18, Theorem 9.14]

Theorem 2.3 Let K ⊂ S3 be a knot. For each integer p > 0, there is
a homomorphism H1(S3

0(K);Z) −→ Z/pZ for which we have a long exact
sequence

. . . −→ HF+(S3) a−→ HF+(S3
0(K),Q[Z/pZ]) b−→ HF+(S3

1/p(K)) −→ . . . ,

where once again a and c preserve Z/2Z degree and b reverses it.

2.1 Absolute gradings

In the case where Y is an integral homology three–sphere, the Z/2Z–grading
can be lifted to a Z–grading on the Floer homology of HF+(Y ), cf [20, Sec-
tion 7.1]. This provides at once a numerical invariant for integer homology
three–spheres, the correction term denoted d(Y ), which is the minimal dimen-
sion of any homogeneous element in HF+(Y ) coming from HF∞(Y ), cf [22].
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This invariant restricts the intersection forms of smooth four–manifolds which
bound Y , according to the following result (compare also the analogous gauge-
theoretic results of Frøyshov, cf [6, 5]):

Theorem 2.4 (Corollary 9.8 of [22]) If Y is an integer homology three–sphere
which bounds a smooth, negative-definite four–manifold, then d(Y ) ≥ 0.

In the case where Y is not an integer homology three–sphere, the absolute
grading can be defined only for the summands of the Floer homology which
belong to Spinc structures over Y whose first Chern class is torsion. Moreover,
the absolute grading is no longer a Z–grading in general, but rather, it gives
a grading by rational numbers [22]. We do not discuss this in great generality,
but rather content ourselves with the situation of three–manifolds Y0 with first
homology isomorphic to Z.

In this case, let HF+(Y0, 0) ⊂ HF+(Y0) denote the summand corresponding to
the Spinc structure with vanishing first Chern class. In this case, the absolute
grading takes its values in rational numbers of the form 1

2 +Z. The relationship
between this absolute grading and the Z/2Z–grading referred to earlier is given
by the relation that elements whose absolute Q–grading lies in −1

2 + 2Z have
even parity, while those whose absolute Q–grading lies in 1

2 + 2Z have odd
parity.

For such three–manifolds, HF∞ is determined by [18, Theorem 10.1] to have
the form

HF∞(Y0, 0) ∼= Q[U,U−1]⊕Q[U,U−1],

where here the two summands have different parity. Correspondingly, there are
now two numerical invariants analogous to the earlier correction term, d±1/2(Y0)
– the maximal Q–grading of any element in HF+(Y0) contained in the image
of HF∞(Y0) whose parity is given by ±1

2 + 2Z.

These numerical invariants can be used to give a more precise form of Theorem
2.1 in the case where i = 0. Specifically, we get the following straightforward
combination of Theorem 10.17 with the discussion from [22, Section 4]:

χ(HF+
red(S3

0(K), 0)) −
(
d−1/2(S3

0(K))− d1/2(S3
0(K)) + 1

2

)
= −t0(K) (10)

Note that it follows from the algebraic structure of HF∞ (specifically, an action
of H1(Y0;Z) on HF∞(Y0;Z)) that

d1/2(Y0)− 1 ≤ d−1/2(Y0) (11)

(cf [22, Proposition 4.10]).
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2.2 More on twisted coefficients

Throughout this section, Y0 will denote a three–manifold with H1(Y0;Z) ∼= Z,
and indeed we implicitly fix such an identification. This at once gives rise
to an isomorphism Spinc(Y0) ∼= Z (via the map s 7→ c1(s)/2, followed by
the identification H2(Y0;Z) ∼= Z induced by Poincaré duality), and we write
HF+(Y0, i) for the summand of HF+(Y0) in the Spinc structure correspond-
ing to the integer i. Similarly, there is an induced surjective homomorphism
H1(Y0;Z) −→ Z/pZ.

The following fact will be useful in the applications of Section 4.

Proposition 2.5 The rank of HF+
red,ev(Y0;Q[Z/pZ]), and respectively that

of HF+
red,odd(Y0;Q[Z/pZ]), is a non-decreasing function of p. In fact, there is

there is a short exact sequence

0 −→ C −→ HF+
red(Y0)⊗Q[T,T−1] Q[Z/pZ] −→ HF+

red(Y0;Q[Z/pZ]) −→ 0,
(12)

where C is a Z/2Z–graded group of rank (d−1/2−d1/2+1)/2 supported entirely
in odd parity.

Before giving the proof, we prove another useful lemma (which ensures that the
Q–rank of the vector space in the middle of Equation (12) grows linearly with
p). Note HF+(Y0;Q[T, T−1]) is a direct sum of cyclic Q[T, T−1]–modules. As
such, it has a canonical torsion submodule whose quotient is a free Q[T, T−1]–
module.

Lemma 2.6 The torsion submodule of HF+(Y0;Q[T, T−1]) is in fact anni-
hilated by 1 − T . Indeed, this torsion submodule is identified with the im-
age of HF∞(Y0;Q[T, T−1]) in HF+(Y0;Q[T, T−1]), and hence its quotient
HF+

red(Y0;Q[T, T−1]) is a free Q[T, T−1]–module.

Proof This can be seen, for example, from the twisted long exact sequence.
First, note that we can realize Y0 as 0–framed surgery along a knot K in an
integer homology three–sphere Y . This gives rise to an integral surgeries long
exact sequence with twisted coefficients [18, Theorem 9.23], generalizing Theo-
rem 2.2. In particular, when p is sufficiently large, we get an exact sequence

. . .
a−→ HF+(Y0, i;Q[Z/pZ])

b−→ HF+(Yp, [i])⊗Q Q[Z/pZ]
c−→ HF+(Y )⊗Q Q[Z/pZ] −→ . . .
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Note that [18, Theorem 9.23] is stated for the zero–surgery in its “universally
twisted” case, i.e. with coefficients in Z[Z], but this can be readily specialized
to Q[Z/pZ] as above; also, in general, the group corresponding to the zero–
surgery consists of a direct sum of groups HF+(Y0, j;Q[Z/pZ]) over all j ≡ i
(mod p), but here we apply this in the case where p is sufficiently large that
each of these terms has only one non-zero summand.

The image of a is easily seen to coincide with the image of HF∞(Y0;Q[Z/pZ])
inside HF+(Y0;Q[Z/pZ]); while the image of b is a free Q[Z/pZ]–module (since
it is a submodule of a free Q[Z/pZ]–module).

According to [18, Theorem 10.12],

HF∞(Y0, 0;Q[Z]) ∼= Q[U,U−1], (13)

thought of as a Q[Z]–module with trivial action by Z. (Indeed, a result of
this type holds for all three–manifolds and this is what is used to define the
canonical Z/2Z–grading in general.) From the universal coefficients theorem,
it follows readily now that

HF∞(Y0, 0;Q[Z/pZ]) ∼= Q[U,U−1]⊕Q[U,U−1]

for all p > 0, where here the two summands have different parity. It might
appear that this gives a new pair of correction terms d±1/2(Y0;Q[Z/pZ]). How-
ever, we have the following:

Lemma 2.7 The correction term d±1/2(Y ;Q[Z/pZ]) is independent of p (ie
it agrees with the correction term d±1/2(Y )).

Proof We have Q[T, T−1]–module maps

Q η−→ Q[Z/pZ] ε−→ Q

where η(1) =
∑p−1

i=0 T
i and ε(T i) = 1, so that ε ◦ η is multiplication by p

(ie an isomorphism). In the notation, we use here an identification Q[Z/pZ] ∼=
Q[T ]/T p−1. These homomorphisms induce maps on the Floer homologies with
twisted coefficients; and indeed we get a diagram:

HF∞(Y )
η∞−−−−→∼= HF∞(Y ;Q[Z/pZ]) ε∞−−−−→∼= HF∞(Y )

π

y π

y π

y
HF+(Y )

η+

−−−−→ HF+(Y ;Q[Z/pZ]) ε+−−−−→ HF+(Y ).

(14)
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On the chain level, ε+◦η+ is multiplication by p, and hence the induced maps on
homology compose to give an isomorphism. Indeed, by the universal coefficients
theorem, both η∞ and ε∞ induce isomorphisms. The statement about the
correction terms now follows from a diagram chase of Equation (14).

Now, we prove Proposition 2.5.

Proof of Proposition 2.5 The universal coefficients theorem gives a diagram

0 −→ HF∞(Y0;Q[Z])⊗ Q[Z/pZ] −−−−−−→ HF∞(Y0;Q[Z/pZ]) −−−−−−→ Q[Z/pZ] ? HF∞(Y0;Q[Z]) −→ 0

α

y β

y yγ
0 −→ HF+(Y0;Q[Z])⊗ Q[Z/pZ] −−−−−−→ HF+(Y0;Q[Z/pZ]) −−−−−−→ Q[Z/pZ] ? HF+(Y0;Q[Z]) −→ 0

y y
HF+

red(Y0)⊗ Q[Z/pZ] f−−−−−−→ HF+
red(Y0;Q[Z/pZ])

We claim first that f is surjective. This follows from the fact that γ is surjective,
a fact which we establish using the following diagram

0 −−−−−−→ Q[Z/pZ] ? HF∞(Y0;Q[Z]) −−−−−−→ HF∞(Y0;Q[Z]) 1−Tp≡0−−−−−−−→ HF∞(Y0;Q[Z])

γ
y yπ y

0 −−−−−−→ Q[Z/pZ] ? HF+(Y0;Q[Z])) −−−−−−→ HF+(Y0;Q[Z]) 1−Tp−−−−−−→ HF+(Y0;Q[Z/pZ]),

since according to Lemma 2.6, the kernel of 1 − T (on the bottom row) is
contained in the image of π .

Now, the kernels of α, β , and γ and the maps between them are independent
of p: they are determined by d±1/2(Y0;Q[Z/pZ]), which we saw in Lemma 2.7
to be independent of p. In particular, the cokernel of the induced map from
kerβ to ker γ (which in turn is identified with the kernel of f ) is a group
supported entirely in odd parity, whose rank is independent of f . Indeed, it is
not hard to see that this rank is given by (d−1/2(Y0) − d1/2(Y0) + 1)/2. This
provides us with the claimed exact sequence from equation (12), establishing
the proposition.

It is worth noting the following quick consequence of the above proposition:

χ(HF+
red(Y0, 0;Q[Z/pZ]))

−
(
d−1/2(Y0;Q[Z/pZ])− d1/2(Y0;Q[Z/pZ]) + 1

2

)
= −p · t0(K). (15)
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3 Relationship with Heegaard Floer homology for
the zero–surgery

Let Y be a Seifert fibered space with b1(Y ) = 0 or 1. Such a manifold can
be realized as the boundary of a four–manifold W (Γ) obtained by plumbing
two–spheres according to a weighted tree Γ. Here, the weights are thought of
as a map m from the set of vertices of Γ to Z.

Definition 3.1 Suppose that Γ is a weighted tree which has either negative-
definite or negative-semi-definite intersection form. Then, we say that the in-
duced orientation −∂W (Γ) is a positive Seifert orientation.

Note that if Y is a Seifert fibered space with b1(Y ) = 0 then at least one of
+Y or −Y has a positive Seifert orientation. Moreover, either orientation on
any lens space is a positive Seifert orientation; similarly, either orientation on
a Seifert fibered space with b1(Y ) = 1 is a positive Seifert orientation. Finally,
if Y is the quotient of a circle bundle π : N −→ Σ over a Riemann surface by
a finite group of orientation-preserving automorphisms G, and if N is oriented
as a circle bundle with positive degree, then the induced orientation on Y is a
positive Seifert orientation. An integral homology Seifert fibered space Y has
positive Seifert orientation if and only if its Casson invariant is positive, cf [4].

Following [25], we work with the following convenient generalization of the
notion of positively oriented Seifert fibered spaces:

Definition 3.2 Let Γ be a weighted graph which is a disjoint union of trees.
The degree of a vertex d(v) is the number of edges which contain v . We say that
Γ is a negative-definite (respectively negative-semi-definite) graph with at most
one bad point if the intersection form for Γ is negative-definite (respectively
negative-semi-definite), and there is at most one vertex v ∈ Γ whose weight
m(v) is larger than −d(v).

For three–manifolds Y = −∂W (Γ)), where Γ is a negative-definite graph with
at most one bad point, HF+(Y ) can be explitly calculated in terms of the
graph Γ, see [25]. Indeed, the part of that calculation which we will use in the
present paper can be summarized as follows:

Theorem 3.3 Let Γ be a negative-definite graph with at most one bad point.
Then, HF+(−∂W (Γ)) is supported in even dimensions. Moreover, if Γ has no
bad points, then HF+

red(−∂W (Γ)) = 0.
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Proof These statements are Corollary 1.4 and Lemma 2.6 respectively from
[25].

We state the following result in the case of either integral surgeries or 1/q
surgeries for integral q . However, a corresponding statement can also be proved
for p/q surgeries by adapting arguments from [13], where an analogous result
is proved using the Seiberg–Witten monopole equations. We do not pursue this
generalization here, however.

Theorem 3.4 Let K ⊂ S3 be a knot in the three–sphere, and suppose that
there is an integer p ≥ 0 and a negative definite or semi-definite graph Γ with
only one bad point with the property that

S3
p(K) ∼= −∂W (Γ),

then all the elements of HF+
red(S3

0(K)) have odd Z/2Z–grading. Similarly, if
p > 0 and

S3
1/p(K) ∼= −∂W (Γ),

all the elements of a twisted Floer homology group HF+
red(S3

0(K),Q[Z/pZ])
have odd Z/2Z–grading. In particular, in either case, all the torsion coefficients
ti(K) (cf equation (1)) are non-negative.

Proof If Γ is a weighted graph, we let Y (Γ) denote the oriented three–
manifold obtained as ∂W (Γ).

Assume first that p 6= 0, and S3
p(K) ∼= −Y (Γ). Consider now the integer

surgeries long exact sequence, Theorem 2.2 (cf [18, Theorem 9.19]), according
to which for each i ∈ Z/pZ, we have the long exact sequence

. . .
c−→ HF+(S3) a−→

⊕
{j∈Z

∣∣j≡i (mod p)}

HF+(S3
0(K), j)

b−→ HF+(S3
p(K), i) c−→ . . .

where the maps a and c preserve the absolute Z/2Z–grading, and b reverses
it. We assume that S3

p(K) ∼= −Y (Γ). Consider an element ξ ∈ HF+(S3
0(K))

whose absolute Z/2Z–grading is even. Then it follows from Theorem 3.3
that b(ξ) = 0, hence that ξ ∈ Im a, from which it follows at once that ξ
comes from HF∞(S3

0(K)), in particular, it maps trivially to HF+
red(S3

0(K)) =
HF+(S3

0(K))/HF∞(S3
0(K)). Thus, HF+

red(S3
0(K)) is supported in odd grad-

ing, as claimed.
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For 1/p–surgeries with p 6= 0, we can repeat the above argument, only now
using the fractional surgeries long exact sequence, Theorem 2.3 (cf [18, Theorem
9.14]), which now reads

. . .
c−→ HF+(S3) a−→ HF+(S3

0(K),Q[Z/pZ]) b−→ HF+(−Y (Γ)) c−→ . . .

For the statement of the result where p = 0, we extend the methods of [25,
Section 2] to prove that for negative semi-definite graphs Γ with at most one
bad point, HF+

red(−Y (Γ)) is supported in odd degrees. To this end, if v is
a vertex in a marked graph Γ, we let Γ−1(v) denote the marked graph which
agrees with Γ, except that the weight of v for Γ−1(v) is one less than the weight
of v for Γ. Now, the surgery long exact sequence, in the form it is used in [25,
Proposition 2.8], gives:

. . .
c−→ HF+(−Y (Γ− v)) a−→ HF+(−Y (Γ)) b−→ HF+(−Y (Γ−1(v)) c−→ . . .

and again, a and c preserve Z/2Z–grading while b reverses it. It is straightfor-
ward to see now that Γ−1(v) is a negative-definite graph with at most one bad
point, and hence Theorem 3.3 applies to it. Thus, if ξ ∈ HF+

ev(S3
0(K)), then its

image under b is trivial, and hence ξ = a(η) ∈ HF+(−Y (Γ−v)). Indeed, since
Γ − v has no bad points, Theorem 3.3 ensures that HF+

red(−Y (Γ − v)) = 0,
ie η comes from HF∞(−Y (Γ − v)), and hence ξ comes from HF∞(−Y (Γ)),
proving the claim.

For the statement about the Alexander polynomial we appeal to Theorem 2.1,
according to which when i 6= 0,

χ(HF+(S3
0(K), i)) = −ti(K)

(in this case HF+(S3
0(K), i) = HF+

red(S3
0(K), i)); while in the case where i = 0,

we still have that
χ(HF+

red(S3
0(K), 0)) ≥ −t0(K).

For the fractional surgeries case, we use the fact that

χ(HF+(Y0, i,Q[Z/pZ])) = −p · ti(K)

when i 6= 0 (this is a combination of equation (9) and Theorem 2.1), and

χ(HF+
red(S3

0(K), 0,Q[Z/pZ])) ≥ −p · t0(K)

(this follows from equation (15), together with inequality (11)).

In the case of negative Seifert orientation, we have the following:
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198 Peter Ozsváth and Zoltán Szabó

Proposition 3.5 Let q > 0 be an integer, and suppose that S3
1/q(K) is a

Seifert fibered space with negative Seifert orientation. Then all the elements of
HF+

red(S3
0(K),Q[Z/qZ]) have even Z/2Z–grading. Moreover,

d1/2(S3
0(K)) =

1
2

and d−1/2(S3
0(K)) = −1

2
.

Proof Consider first for notational simplicity the case where q = 1.

According to [18, Proposition 2.5], if Y is any rational homology three–sphere,
then HF+

red(Y )
∼= HF+

red(−Y ), under a map which reverses the Z/2Z–grading. Combining The-
orem 3.3 with the surgery long exact sequence we see that HF+

red,ev(S3
1(K)) = 0.

It follows in turn from this together with the surgery long exact sequence that
HF+(S3) injects into HF+(S3

0(K)) and hence again by the exact sequence that
the natural map from HF+

odd(S3
0(K)) to HF+

ev(S3
1(K)) induces an isomorphism

and in particular that HF+
red,odd(S3

0(K)) = 0.

For all i 6= 0, HF+
red(S3

0(K), i) = HF+(S3
0(K)). Thus, we can conclude from

Theorem 2.1 that for all i 6= 0, ti(K) < 0.

Indeed, the injectivity of HF+(S3) in HF+(S3
0(K)) ensures d−1/2(S3

0(K)) =
−1/2. This implies that

d1/2(S3
0(K)) ≤ 1/2, (16)

according to inequality (11). Now, since the map from HF+
odd(S3

0(K), 0) to
HF+

ev(S3
1(K)) drops degree by 1/2 we see that d(S3

1 (K)) ≤ d1/2(S3
0(K))− 1/2.

But a negatively oriented Seifert fibered space bounds a smooth, negative-
definite four–manifold (given by its plumbing description), so we can apply
Theorem 2.4 to conclude that d1/2(S3

0(K)) ≥ 1/2. Putting this together with
equation (16), we conclude that d1/2(S3

0(K)) = 1/2.

In the case where q > 1, we use the long exact sequence for fractional surgeries
(Theorem 2.3) to obtain the corresponding statement for twisted coefficients.
Note that the correction terms are independent of the choice of q , according to
Lemma 2.7.

Proof of Theorem 1.1 Assume S3
1/q(K) is Seifert fibered. By reflecting K

if necessary, we can assume that q > 0.

When S3
1/q(K) is a positively oriented Seifert space, Theorem 3.4 shows that

HF+
red(S3

0(K)) has odd parity. We then use Theorem 2.1 to conclude that all the
torsion coefficients of K are non-negative (equation (9) for i 6= 0 and equation
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(15) for i = 0). In the case where S3
1/q(K) is a negatively oriented Seifert fibered

space, we use Proposition 3.5, to conclude that HF+
red(S3

0(K),Q[Z/pZ]) is sup-
ported in even parity. From Proposition 2.5 we conclude that HF+

red(S3
0(K))

is supported in even parity as well. The Euler characteristic relations (Theo-
rem 2.1, together with equations (9) and (15)) now imply that all the torsion
coefficients are non-positive in this case.

4 Relationship with the knot Floer homology

Theorem 1.4 follows from Theorem 3.4, together with the relationship between
ĤFK(S3,K) and the Heegaard Floer homology of surgeries along K developed
in [21, Section 4], see also [28].

In [21, Corollary 4.5], it is shown that if ĤFK(S3,K, i) = 0 for all i > d,
then ĤFK(S3,K, d) ∼= HF+(S3

0(K), d−1) as relatively Z/2Z–graded Abelian
groups. (With the conventions of [18], the isomorphism here reverses the Z/2Z–
grading.) In the following lemma, we give the relevant statement when d = 1.

Lemma 4.1 If ĤFK(S3,K, i) = 0 for all |i| > 1, then

HF+
red,ev(S3

0(K), 0) ∼= ĤFKodd(S3,K, 1).

Proof We use [21, Theorem 4.4]. According to that theorem, we have a Z⊕Z–
filtered complex C = CFK∞(S3,K, 0), which admits quotient complexes

C{i ≥ 0 or j ≥ d− 1} ∼ CF+(S3
p(K), [d − 1]),

C{i ≥ 0} ∼ CF+(S3)

where here ∼ denotes relatively graded, absolutely Z/2Z–graded chain homo-
topy equivalence, C{i ≥ 0, j ≥ 0} denotes the quotient complex of C by all
elements whose filtration level (i, j) has both i < 0 and j < 0, p is any suf-
ficiently large positive integer, and [d − 1] is a Spinc structure over S3

p(K),
which is naturally Spinc–cobordant to a Spinc structure over S3

0(K) whose
first Chern class is 2(d − 1) times a generator of H2(S3

0(K);Z). For more on
this, see [21, Section 4]. Clearly, we have the short exact sequence

0 −→ C{i < 0 and j ≥ d− 1} −→ C{i ≥ 0 or j ≥ d− 1} −→ C{i ≥ 0} −→ 0

The hypothesis that ĤFK(S3,K, j) = 0 for all j > d ensures, by taking
filtrations, that

H∗(C{i < 0 and j ≥ d− 1}) ∼= ĤFK(S3,K, d).
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Thus, we obtain the long exact sequence

. . . −→ ĤFK(S3,K, d) −→ HF+(S3
p(K), [d− 1]) −→ HF+(S3) δ−→ . . .

As the above maps are U –equivariant, it is easy to see (from the Z[U ]–module
structure of HF+(S3)) that δ is the trivial map, thus HF+(S3

p(K), [d − 1])

contains a Z[U ]–submodule isomorphic to ĤFK(S3,K, d). In fact, we have
that

ĤFKodd(S3,K, d) ∼= HF+
odd(S3

p(K), [d− 1]).

Specializing to the case where d = 1, we consider the integral surgeries long
exact sequence. This gives exactness for

HF+
ev(S3) −→ HF+

ev(S3
0(K), 0) −→ HF+

odd(S3
p(K), [0]) −→ 0.

It is easy to see that the image of HF+
ev(S3) inside HF+

ev(S3
0(K), 0) coincides

with the image of HF∞ev (S3
0(K), 0) inside HF+

ev(S3
0(K), 0). Thus,

HF+
red,ev(S3

0(K), 0) ∼= HF+
red,odd(S3

p(K), [0]) = HF+
odd(S3

p(K), [0])

Proof of Theorem 1.4. According to [21, Corollary 4.5], if ĤFK(S3,K, i) =
0 for all i > d > 1, then

ĤFK(S3,K, d) ∼= HF+(S3
0(K), d− 1) (17)

under an isomorphism which reverses parity.

Suppose that S3
1/p(K) is a positively oriented Seifert fibered space. According

to Theorem 3.4, HF+
red(S3

0(K);Q[Z/pZ]) is supported in odd degrees. From
this and Proposition 2.5, we can conclude the same for HF+

red(S3
0(K)). When

the genus of K is greater than one, we have that

HF+(S3
0(K), g − 1) = HF+

red(S3
0(K), g − 1),

and hence all its elements have odd parity. Thus, in view of equation (17),
ĤFK(S3,K, g) is supported in even degrees (and it is non-trivial, cf equation
(5)). The case where g = 1 follows from a similar argument, using Lemma 4.1
in place of equation (17)

Suppose that g > 1 and S3
1/p(K) is a negatively oriented Seifert fibered space.

Now, according to Proposition 3.5, we conclude that HF+
red(S3

0(K);Q[Z/pZ])
is supported entirely in even degrees, and hence according to Proposition 2.5, it
follows that HF+

red(S3
0(K)) is supported entirely in even degrees. Since g > 1,

the same can be said about HF+(S3
0(K), g − 1). From equation (17) it now

follows that ĤFK(K, g) is supported in odd degrees (and it is again non-trivial
according to equation (5)).
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5 Surgeries giving Σ(2, 3, 5) and Σ(2, 3, 7)

In general, if Y is a three–manifold and K ⊂ S3 is a knot with the property
that S3

r (K) ∼= Y , then the exact sequences determine the Floer homology of the
zero–surgery only up to some indeterminacy. However, in cases where the Floer
homology of Y has sufficiently small rank, this indeterminacy is eliminated.

Proof of Theorem 1.6 From Casson’s invariant, it follows that if S3
1/q(K) =

Σ(2, 3, 5), then q = ±1. Indeed, by reversing orientation if necessary, we have
a knot with S3

±1(K) = −Σ(2, 3, 5). It follows from Donaldson’s diagonalization
theorem that the surgery coefficient must be +1. Next, we apply the long exact
sequence for +1 surgeries, together with the fact that HF+(−Σ(2, 3, 5)) ∼= T + ,
with d(Σ(2, 3, 5)) = −2. It follows easily that HF+(S3

0(K)) is uniquely deter-
mined from the fact that S3

1(K) = −Σ(2, 3, 5) (compare also [22, Proposition
8.1]). Indeed, we see that HF+(S3

0(K)) ∼= T + ⊕ T + , with d−1/2(S3
0(K)) =

−1/2 and d1/2(S3
0(K)) = −3/2. In particular, for all i 6= 0, HF+(S3

0(K), i) =
0. This establishes that the Floer homology of S3

0(K) is the same as the
Floer homology of S3

0(T2,3), where T2,3 denotes the right-handed trefoil, and
in particular, so is its Alexander polynomial. The fact that the knot Floer ho-
mology coincides with that of the trefoil follows from the main result of [17] (cf
[17, Theorem 1.2]), according to which if K ⊂ S3 satisfies the property that
HF+

red(S3
p(K)) = 0 for some integer p, then ĤFK is uniquely determined by

the Alexander polynomial of K . The remark about the Seifert genus follows
from equation (5) ([26, Theorem 1.2]).

Proof of Theorem 1.7 Again, from Casson’s invariant it follows at once that
if S3

r (K) = Σ(2, 3, 7), then r = ±1. In the case where S3
−1(K) ∼= Σ(2, 3, 7),

a chase of the surgery long exact sequence shows that HF+(S3
0(K)) coincides

with that for the the right-handed trefoil; and in particular HF+(S3
0(K), i) = 0

for all i 6= 0. Now, by equation (17), it follows that ĤFK(S3,K, d) = 0 for all
d > 1, and hence, by equation (5), the genus of K is one.

In the case where S3
+1(K) ∼= Σ(2, 3, 7), a chase of the surgery long exact se-

quence once again yields that HF+(S3
0(K)) is uniquely determined, in partic-

ular, it is isomorphic to HF+(S3
0(K0)), where here K0 is the figure eight knot.

More explicitly, HF+(S3
0(K)) =

⊕
i∈ZHF

+(S3
0(K), i) ∼= T +⊕T +⊕Q, (where

the last summand has even parity) and d±1/2(S3
0(K)) = ±1/2. We complete

the argument as before.
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[19] P S Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed
three–manifolds, arXiv:math.SG/0101206, to appear in Ann. of Math.
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