Geometry & Topology Monographs Volume 3: Invitation to higher local fields Part II, section 5, pages 255–262

5. Harmonic analysis on algebraic groups over two-dimensional local fields of equal characteristic

Mikhail Kapranov

In this section we review the main parts of a recent work [4] on harmonic analysis on algebraic groups over two-dimensional local fields.

5.1. Groups and buildings

Let K ($K = K_2$ whose residue field is K_1 whose residue field is K_0 , see the notation in section 1 of Part I) be a two-dimensional local field of equal characteristic. Thus K_2 is isomorphic to the Laurent series field $K_1((t_2))$ over K_1 . It is convenient to think of elements of K_2 as (formal) loops over K_1 . Even in the case where $\operatorname{char}(K_1) = 0$, it is still convenient to think of elements of K_1 as (generalized) loops over K_0 so that K_2 consists of double loops.

Denote the residue map $\mathcal{O}_{K_2} \to K_1$ by p_2 and the residue map $\mathcal{O}_{K_1} \to K_0$ by p_1 . Then the ring of integers O_K of K as of a two-dimensional local field (see subsection 1.1 of Part I) coincides with $p_2^{-1}(\mathcal{O}_{K_1})$.

Let G be a split simple simply connected algebraic group over \mathbb{Z} (e.g. $G=SL_2$). Let $T\subset B\subset G$ be a fixed maximal torus and Borel subgroup of G; put N=[B,B], and let W be the Weyl group of G. All of them are viewed as group schemes.

Let $L = \text{Hom}(\mathbb{G}_m, T)$ be the coweight lattice of G; the Weyl group acts on L.

Recall that $I(K_1) = p_1^{-1}(B(\mathbb{F}_q))$ is called an Iwahori subgroup of $G(K_1)$ and $T(\mathcal{O}_{K_1})N(K_1)$ can be seen as the "connected component of unity" in $B(K_1)$. The latter name is explained naturally if we think of elements of $B(K_1)$ as being loops with values in B.

Published 10 December 2000: (c) Geometry & Topology Publications

Definition. Put

$$\begin{split} D_0 &= p_2^{-1} p_1^{-1}(B(\mathbb{F}_q)) \subset G(O_K), \\ D_1 &= p_2^{-1}(T(\mathfrak{O}_{K_1})N(K_1)) \subset G(O_K), \\ D_2 &= T(\mathfrak{O}_{K_2})N(K_2) \subset G(K). \end{split}$$

Then D_2 can be seen as the "connected component of unity" of B(K) when K is viewed as a two-dimensional local field, D_1 is a (similarly understood) connected component of an Iwahori subgroup of $G(K_2)$, and D_0 is called a double Iwahori subgroup of G(K).

A choice of a system of local parameters t_1, t_2 of K determines the identification of the group K^*/O_K^* with $\mathbb{Z} \oplus \mathbb{Z}$ and identification $L \oplus L$ with $L \otimes (K^*/O_K^*)$.

We have an embedding of $L \otimes (K^*/O_K^*)$ into T(K) which takes $a \otimes (t_1^j t_2^j)$, $i, j \in \mathbb{Z}$, to the value on $t_1^i t_2^j$ of the 1-parameter subgroup in T corresponding to a.

Define the action of W on $L \otimes (K^*/O_K^*)$ as the product of the standard action on L and the trivial action on K^*/O_K^* . The semidirect product

$$\widehat{\widehat{W}} = (L \otimes K^*/O_K^*) \rtimes W$$

is called the double affine Weyl group of G.

A (set-theoretical) lifting of W into $G(O_K)$ determines a lifting of \widehat{W} into G(K).

Proposition. For every $i, j \in \{0, 1, 2\}$ there is a disjoint decomposition

$$G(K) = \bigcup_{w \in \widehat{\widehat{W}}} D_i w D_j.$$

The identification $D_i\backslash G(K)/D_j$ with $\widehat{\widehat{W}}$ doesn't depend on the choice of liftings.

Proof. Iterated application of the Bruhat, Bruhat–Tits and Iwasawa decompositions to the local fields K_2 , K_1 .

For the Iwahori subgroup $I(K_2) = p_2^{-1}(B(K_1))$ of $G(K_2)$ the homogeneous space $G(K)/I(K_2)$ is the "affine flag variety" of G, see [5]. It has a canonical structure of an ind-scheme, in fact, it is an inductive limit of projective algebraic varieties over K_1 (the closures of the affine Schubert cells).

Let $B(G,K_2/K_1)$ be the Bruhat-Tits building associated to G and the field K_2 . Then the space $G(K)/I(K_2)$ is a G(K)-orbit on the set of flags of type (vertex, maximal cell) in the building. For every vertex v of $B(G,K_2/K_1)$ its locally finite Bruhat-Tits building β_v isomorphic to $B(G,K_1/K_0)$ can be viewed as a "microbuilding" of the double Bruhat-Tits building $B(G,K_2/K_1/K_0)$ of K as a two-dimensional local field constructed by Parshin ([7], see also section 3 of Part II). Then the set $G(K)/D_1$ is identified naturally with the set of all the horocycles $\{w \in \beta_v : d(z,w) = r\}, z \in \partial \beta_v$ of the microbuildings β_v (where the "distance" d(z,v) is viewed as an element of

a natural L-torsor). The fibres of the projection $G(K)/D_1 \to G(K)/I(K_2)$ are L-torsors.

5.2. The central extension and the affine Heisenberg-Weyl group

According to the work of Steinberg, Moore and Matsumoto [6] developed by Brylinski and Deligne [1] there is a central extension

$$1 \to K_1^* \to \Gamma \to G(K_2) \to 1$$

associated to the tame symbol $K_2^* \times K_2^* \to K_1^*$ for the couple (K_2, K_1) (see subsection 6.4.2 of Part I for the general definition of the tame symbol).

Proposition. This extension splits over every D_i , $0 \le i \le 2$.

Proof. Use Matsumoto's explicit construction of the central extension.

Thus, there are identifications of every D_i with a subgroup of Γ . Put

$$\Delta_i = \mathcal{O}_{K_1}^* D_i \subset \Gamma, \qquad \Xi = \Gamma/\Delta_1.$$

The minimal integer scalar product Ψ on L and the composite of the tame symbol $K_2^* \times K_2^* \to K_1^*$ and the discrete valuation $v_{K_1} \colon K^* \to \mathbb{Z}$ induces a W-invariant skew-symmetric pairing $L \otimes K^*/O_K^* \times L \otimes K^*/O_K^* \to \mathbb{Z}$. Let

$$1 \to \mathbb{Z} \to \mathcal{L} \to L \otimes K^*/O_K^* \to 1$$

be the central extension whose commutator pairing corresponds to the latter skew-symmetric pairing. The group \mathcal{L} is called the *Heisenberg group*.

Definition. The semidirect product

$$\widetilde{W} = \mathcal{L} \rtimes W$$

is called the *double affine Heisenberg–Weyl* group of G.

Theorem. The group \widetilde{W} is isomorphic to $L_{\text{aff}} \rtimes \widehat{W}$ where $L_{\text{aff}} = \mathbb{Z} \oplus L$, $\widehat{W} = L \rtimes W$ and

$$w \circ (a, l') = (a, w(l)), \quad l \circ (a, l') = (a + \Psi(l, l'), l'), \qquad w \in W, \quad l, l' \in L, \quad a \in \mathbb{Z}.$$
 For every $i, j \in \{0, 1, 2\}$ there is a disjoint union

$$\Gamma = \bigcup_{w \in \widetilde{W}} \Delta_i w \Delta_j$$

and the identification $\Delta_i \backslash \Gamma / \Delta_j$ with \widetilde{W} is canonical.

258 M. Kapranov

5.3. Hecke algebras in the classical setting

Recall that for a locally compact group Γ and its compact subgroup Δ the Hecke algebra $\mathcal{H}(\Gamma, \Delta)$ can be defined as the algebra of compactly supported double Δ -invariant continuous functions of Γ with the operation given by the convolution with respect to the Haar measure on Γ . For $C = \Delta\gamma\Delta \in \Delta\backslash\Gamma/\Delta$ the Hecke correspondence $\Sigma_C = \{(\alpha\Delta, \beta\Delta) : \alpha\beta^{-1} \in C\}$ is a Γ -orbit of $(\Gamma/\Delta) \times (\Gamma/\Delta)$.

For $x \in \Gamma/\Delta$ put $\Sigma_C(x) = \Sigma_C \cap (\Gamma/\Delta) \times \{x\}$. Denote the projections of Σ_C to the first and second component by π_1 and π_2 .

Let $\mathfrak{F}(\Gamma/\Delta)$ be the space of continuous functions $\Gamma/\Delta \to \mathbb{C}$. The operator

$$\tau_C : \mathfrak{F}(\Gamma/\Delta) \to \mathfrak{F}(\Gamma/\Delta), \quad f \to {\pi_2}_* \pi_1^*(f)$$

is called the $Hecke\ operator$ associated to C. Explicitly,

$$(\tau_C f)(x) = \int_{y \in \Sigma_C(x)} f(y) d\mu_{C,x},$$

where $\mu_{C,x}$ is the Stab(x)-invariant measure induced by the Haar measure. Elements of the Hecke algebra $\mathcal{H}(\Gamma,\Delta)$ can be viewed as "continuous" linear combinations of the operators τ_C , i.e., integrals of the form $\int \phi(C)\tau_C dC$ where dC is some measure on $\Delta \backslash \Gamma / \Delta$ and ϕ is a continuous function with compact support. If the group Δ is also open (as is usually the case in the p-adic situation), then $\Delta \backslash \Gamma / \Delta$ is discrete and $\mathcal{H}(\Gamma,\Delta)$ consists of finite linear combinations of the τ_C .

5.4. The regularized Hecke algebra $\mathcal{H}(\Gamma, \Delta_1)$

Since the two-dimensional local field K and the ring O_K are not locally compact, the approach of the previous subsection would work only after a new appropriate integration theory is available.

The aim of this subsection is to make sense of the Hecke algebra $\mathcal{H}(\Gamma, \Delta_1)$.

Note that the fibres of the projection $\Xi = \Gamma/\Delta_1 \to G(K)/I(K_2)$ are $L_{\rm aff}$ -torsors and $G(K)/I(K_2)$ is the inductive limit of compact (profinite) spaces, so Ξ can be considered as an object of the category \mathcal{F}_1 defined in subsection 1.2 of the paper of Kato in this volume.

Using Theorem of 5.2 for i = j = 1 we introduce:

Definition. For $(w,l) \in \widetilde{W} = L_{\mathrm{aff}} \rtimes \widehat{W}$ denote by $\Sigma_{w,l}$ the Hecke correspondence (i.e., the Γ -orbit of $\Xi \times \Xi$) associated to (w,l). For $\xi \in \Xi$ put

$$\Sigma_{w,l}(\xi) = \{ \xi' : (\xi, \xi') \in \Sigma_{w,l} \}.$$

The stabilizer $\operatorname{Stab}(\xi) \leqslant \Gamma$ acts transitively on $\Sigma_{w,l}(\xi)$.

Proposition. $\Sigma_{w,l}(\xi)$ is an affine space over K_1 of dimension equal to the length of $w \in \widehat{W}$. The space of compex valued Borel measures on $\Sigma_{w,l}(\xi)$ is 1-dimensional. A choice of a $\operatorname{Stab}(\xi)$ -invariant measure $\mu_{w,l,\xi}$ on $\Sigma_{w,l}(\xi)$ determines a measure $\mu_{w,l,\xi'}$ on $\Sigma_{w,l}(\xi')$ for every ξ' .

Definition. For a continuous function $f:\Xi\to\mathbb{C}$ put

$$(\tau_{w,l}f)(\xi) = \int_{\eta \in \Sigma_{w,l}(\xi)} f(\eta) d\mu_{w,l,\xi}.$$

Since the domain of the integration is not compact, the integral may diverge. As a first step, we define the space of functions on which the integral makes sense. Note that Ξ can be regarded as an $L_{\rm aff}$ -torsor over the ind-object $G(K)/I(K_2)$ in the category $\operatorname{pro}(C_0)$, i.e., a compatible system of $L_{\rm aff}$ -torsors Ξ_{ν} over the affine Schubert varieties Z_{ν} forming an exhaustion of $G(K)/I(K_1)$. Each Ξ_{ν} is a locally compact space and Z_{ν} is a compact space. In particular, we can form the space $\mathcal{F}_0(\Xi_{\nu})$ of locally constant complex valued functions on Ξ_{ν} whose support is compact (or, what is the same, proper with respect to the projection to Z_{ν}). Let $\mathcal{F}(\Xi_{\nu})$ be the space of all locally constant complex functions on Ξ_{ν} . Then we define $\mathcal{F}_0(\Xi) = \lim_{n \to \infty} \mathcal{F}_0(\Xi_{\nu})$ and $\mathcal{F}(\Xi) = \lim_{n \to \infty} \mathcal{F}(\Xi_{\nu})$. They are pro-objects in the category of vector spaces. In fact, because of the action of $L_{\rm aff}$ and its group algebra $\mathbb{C}[L_{\rm aff}]$ on Ξ , the spaces $\mathcal{F}_0(\Xi)$, $\mathcal{F}(\Xi)$ are naturally pro-objects in the category of $\mathbb{C}[L_{\rm aff}]$ -modules.

Proposition. If $f = (f_{\nu}) \in \mathcal{F}_0(X)$ then $\operatorname{Supp}(f_{\nu}) \cap \Sigma_{w,l}(\xi)$ is compact for every w, l, ξ, ν and the integral above converges. Thus, there is a well defined Hecke operator

$$\tau_{w,l} \colon \mathcal{F}_0(\Xi) \to \mathcal{F}(\Xi)$$

which is an element of $\operatorname{Mor}(\operatorname{pro}(\operatorname{Mod}_{\mathbb{C}[L_{\operatorname{aff}}]}))$. In particular, $\tau_{w,l}$ is the shift by l and $\tau_{w,l+l'} = \tau_{w,l'}\tau_{e,l}$.

Thus we get Hecke operators as operators from one (pro-)vector space to another, bigger one. This does not yet allow to compose the $\tau_{w,l}$. Our next step is to consider certain infinite linear combinations of the $\tau_{w,l}$.

Let $T_{\mathrm{aff}}^{\vee} = \mathrm{Spec}(\mathbb{C}[L_{\mathrm{aff}}])$ be the "dual affine torus" of G. A function with finite support on L_{aff} can be viewed as the collection of coefficients of a polynomial, i.e., of an element of $\mathbb{C}[L_{\mathrm{aff}}]$ as a regular function on T_{aff}^{\vee} . Further, let $Q \subset L_{\mathrm{aff}} \otimes \mathbb{R}$ be a strictly convex cone with apex 0. A function on L_{aff} with support in Q can be viewed as the collection of coefficients of a formal power series, and such series form a ring containing $\mathbb{C}[L_{\mathrm{aff}}]$. On the level of functions the ring operation is the convolution. Let $\mathcal{F}_Q(L_{\mathrm{aff}})$ be the space of functions whose support is contained in some translation of Q. It is a ring with respect to convolution.

260 M. Kapranov

Let $\mathbb{C}(L_{\mathrm{aff}})$ be the field of rational functions on T_{aff}^{\vee} . Denote by $F_Q^{\mathrm{rat}}(L_{\mathrm{aff}})$ the subspace in $F_Q(L_{\mathrm{aff}})$ consisting of functions whose corresponding formal power series are expansions of rational functions on T_{aff}^{\vee} .

If A is any $L_{\rm aff}$ -torsor (over a point), then $\mathcal{F}_0(A)$ is an (invertible) module over $\mathcal{F}_0(L_{\rm aff}) = \mathbb{C}[L_{\rm aff}]$ and we can define the spaces $\mathcal{F}_Q(A)$ and $\mathcal{F}_Q^{\rm rat}(A)$ which will be modules over the corresponding rings for $L_{\rm aff}$. We also write $\mathcal{F}^{\rm rat}(A) = \mathcal{F}_0(A) \otimes_{\mathbb{C}[L_{\rm aff}]} \mathbb{C}(L_{\rm aff})$.

We then extend the above concepts "fiberwise" to torsors over compact spaces (objects of $pro(C_0)$) and to torsors over objects of $ind(pro(C_0))$ such as Ξ .

Let $w \in \widehat{W}$. We denote by Q(w) the image under w of the cone of dominant affine coweights in $L_{\rm aff}$.

Theorem. The action of the Hecke operator $\tau_{w,l}$ takes $\mathfrak{F}_0(\Xi)$ into $\mathfrak{F}^{\mathrm{rat}}_{Q(w)}(\Xi)$. These operators extend to operators

$$\tau_{w,l}^{\mathrm{rat}}:\mathfrak{F}^{\mathrm{rat}}(\Xi)\to\mathfrak{F}^{\mathrm{rat}}(\Xi).$$

Note that the action of $\tau_{w,l}^{\rm rat}$ involves a kind of regularization procedure, which is hidden in the identification of the $\mathcal{F}^{\rm rat}_{Q(w)}(\Xi)$ for different w, with subspaces of the same space $\mathcal{F}^{\rm rat}(\Xi)$. In practical terms, this involves summation of a series to a rational function and re-expansion in a different domain.

Let \mathcal{H}_{pre} be the space of finite linear combinations $\sum_{w,l} a_{w,l} \tau_{w,l}$. This is not yet an algebra, but only a $\mathbb{C}[L_{aff}]$ -module. Note that elements of \mathcal{H}_{pre} can be written as finite linear combinations $\sum_{w \in \widehat{W}} f_w(t) \tau_w$ where $f_w(t) = \sum_l a_{w,l} t^l$, $t \in T_{aff}^\vee$, is the polynomial in $\mathbb{C}[L_{aff}]$ corresponding to the collection of the $a_{w,l}$. This makes the $\mathbb{C}[L_{aff}]$ -module structure clear. Consider the tensor product

$$\mathcal{H}_{\text{rat}} = \mathcal{H}_{\text{pre}} \otimes_{\mathbb{C}[L_{\text{aff}}]} \mathbb{C}(L_{\text{aff}}).$$

Elements of this space can be considered as finite linear combinations $\sum_{w \in \widehat{W}} f_w(t) \tau_w$ where $f_w(t)$ are now rational functions. By expanding rational functions in power series, we can consider the above elements as certain infinite linear combinations of the $\tau_{w,l}$.

Theorem. The space \mathcal{H}_{rat} has a natural algebra structure and this algebra acts in the space $\mathcal{F}^{rat}(\Xi)$, extending the action of the $\tau_{w,l}$ defined above.

The operators associated to \mathcal{H}_{rat} can be viewed as certain integro-difference operators, because their action involves integration (as in the definition of the $\tau_{w,l}$) as well as inverses of linear combinations of shifts by elements of L (these combinations act as difference operators).

Definition. The regularized Hecke algebra $\mathcal{H}(\Gamma, \Delta_1)$ is, by definition, the subalgebra in \mathcal{H}_{rat} consisting of elements whose action in $\mathcal{F}_{rat}(\Xi)$ preserves the subspace $\mathcal{F}_0(\Xi)$.

5.5. The Hecke algebra and the Cherednik algebra

In [2] I. Cherednik introduced the so-called double affine Hecke algebra Cher_q associated to the root system of G. As shown by V. Ginzburg, E. Vasserot and the author [3], Cher_q can be thought as consisting of finite linear combinations $\sum_{w \in \widehat{W}_{\operatorname{ad}}} f_w(t)[w]$ where W_{ad} is the affine Weyl group of the adjoint quotient G_{ad} of G (it contains \widehat{W}) and $f_w(t)$ are rational functions on $T_{\operatorname{aff}}^\vee$ satisfying certain residue conditions. We define the modified Cherednik algebra H_q to be the subalgebra in Cher_q consisting of linear combinations as above, but going over $\widehat{W} \subset \widehat{W}_{\operatorname{ad}}$.

Theorem. The regularized Hecke algebra $\mathcal{H}(\Gamma, \Delta_1)$ is isomorphic to the modified Cherednik algebra \ddot{H}_q . In particular, there is a natural action of \ddot{H}_q on $\mathfrak{F}_0(\Xi)$ by integro-difference operators.

Proof. Use the principal series intertwiners and a version of Mellin transform. The information on the poles of the intertwiners matches exactly the residue conditions introduced in [3].

Remark. The only reason we needed to assume that the 2-dimensional local field K has equal characteristic was because we used the fact that the quotient $G(K)/I(K_2)$ has a structure of an inductive limit of projective algebraic varieties over K_1 . In fact, we really use only a weaker structure: that of an inductive limit of profinite topological spaces (which are, in this case, the sets of K_1 -points of affine Schubert varieties over K_1). This structure is available for any 2-dimensional local field, although there seems to be no reference for it in the literature. Once this foundational matter is established, all the constructions will go through for any 2-dimensional local field.

References

- [1] J.-L. Brylinski and P. Deligne, Central extensions of reductive groups by \mathcal{K}_2 , preprint of IAS, Princeton, available from P. Deligne's home page at < www.math.ias.edu >.
- [2] I. Cherednik, Double affine Hecke algebras and Macdonald's conjectures, Ann. Math. 141 (1995), 191–216.
- [3] V. Ginzburg and M. Kapranov and E. Vasserot, Residue construction of Hecke algebras, Adv. in Math. 128 (1997), 1–19.
- [4] M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields, preprint math.AG/9812021, to appear in Journal of the AMS.

262 M. Kapranov

[5] G. Lusztig, Singularities, character formula and q-analog of weight multiplicity, Asterisque 101-102 (1983), 208–222.

- [6] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. ENS, 2 (1969), 1–62.
- [7] A. N. Parshin, Vector bundles and arithmetic groups I: The higher Bruhat-Tits tree, Proc. Steklov Inst. Math. 208 (1995), 212–233, preprint alg-geom/9605001.

Department of Mathematics University of Toronto Toronto M5S 3G3 Canada E-mail: kapranov@math.toronto.edu