Geometry & Topology Monographs Volume 3: Invitation to higher local fields Part I, section 13, pages 113–116

13. Abelian extensions of absolutely unramified complete discrete valuation fields

Masato Kurihara

In this section we discuss results of [K]. We assume that p is an odd prime and K is an absolutely unramified complete discrete valuation field of mixed characteristics (0, p), so p is a prime element of the valuation ring \mathcal{O}_K . We denote by F the residue field of K.

13.1. The Milnor *K*-groups and differential forms

For q > 0 we consider the Milnor K-group $K_q(K)$, and its *p*-adic completion $\widehat{K}_q(K)$ as in section 9. Let $U_1\widehat{K}_q(K)$ be the subgroup generated by $\{1+p\mathcal{O}_K, K^*, \ldots, K^*\}$. Then we have:

Theorem. Let K be as above. Then the exponential map \exp_p for the element p, defined in section 9, induces an isomorphism

$$\exp_p: \widehat{\Omega}^{q-1}_{\mathcal{O}_K}/pd\widehat{\Omega}^{q-2}_{\mathcal{O}_K} \xrightarrow{\sim} U_1\widehat{K}_q(K).$$

The group $\hat{K}_q(K)$ carries arithmetic information of K, and the essential part of $\hat{K}_q(K)$ is $U_1\hat{K}_q(K)$. Since the left hand side $\hat{\Omega}_{\mathcal{O}_K}^{q-1}/pd\hat{\Omega}_{\mathcal{O}_K}^{q-2}$ can be described explicitly (for example, if F has a finite p-base I, $\hat{\Omega}_{\mathcal{O}_K}^1$ is a free \mathcal{O}_K -module generated by $\{dt_i\}$ where $\{t_i\}$ are a lifting of elements of I), we know the structure of $U_1\hat{K}_q(K)$ completely from the theorem.

In particular, for subquotients of $\widehat{K}_q(K)$ we have:

Corollary. The map $\rho_m: \Omega_F^{q-1} \oplus \Omega_F^{q-2} \longrightarrow \operatorname{gr}_m K_q(K)$ defined in section 4 induces an isomorphism

$$\Omega_F^{q-1}/B_{m-1}\Omega_F^{q-1} \xrightarrow{\sim} \operatorname{gr}_m K_q(K)$$

Published 10 December 2000: (c) Geometry & Topology Publications

where $B_{m-1}\Omega_F^{q-1}$ is the subgroup of Ω_F^{q-1} generated by the elements $a^{p^j}d\log a \wedge d\log b_1 \wedge \cdots \wedge d\log b_{q-2}$ with $0 \leq j \leq m-1$ and $a, b_i \in F^*$.

13.2. Cyclic *p*-extensions of *K*

As in section 12, using some class field theoretic argument we get arithmetic information from the structure of the Milnor K-groups.

Theorem. Let $W_n(F)$ be the ring of Witt vectors of length n over F. Then there exists a homomorphism

$$\Phi_n: H^1(K, \mathbb{Z}/p^n) = \operatorname{Hom}_{\operatorname{cont}}(\operatorname{Gal}(\overline{K}/K), \mathbb{Z}/p^n) \longrightarrow W_n(F)$$

for any $n \ge 1$ such that:

(1) The sequence

$$0 \to H^1(K_{\mathrm{ur}}/K, \mathbb{Z}/p^n) \to H^1(K, \mathbb{Z}/p^n) \xrightarrow{\Phi_n} W_n(F) \to 0$$

is exact where K_{ur} is the maximal unramified extension of K.

 $(2) \ \ The \ diagram$

$$\begin{array}{cccc} H^{1}(K, \mathbb{Z}/p^{n+1}) & \stackrel{p}{\longrightarrow} & H^{1}(K, \mathbb{Z}/p^{n}) \\ & & & & \downarrow \Phi_{n} \\ & & & & \downarrow \Phi_{n} \\ & & & & & & \downarrow \Phi_{n} \\ & & & & & & & W_{n}(F) \end{array}$$

is commutative where \mathbf{F} is the Frobenius map.

(3) The diagram

$$\begin{array}{cccc} H^{1}(K, \mathbb{Z}/p^{n}) & \longrightarrow & H^{1}(K, \mathbb{Z}/p^{n+1}) \\ & & & & & \downarrow \Phi_{n} \\ & & & & & \downarrow \Phi_{n+1} \\ & & & & W_{n}(F) & \xrightarrow{\mathbf{V}} & & W_{n+1}(F) \end{array}$$

is commutative where $\mathbf{V}((a_0, \ldots, a_{n-1})) = (0, a_0, \ldots, a_{n-1})$ is the Verschiebung map.

(4) Let E be the fraction field of the completion of the localization $O_K[T]_{(p)}$ (so the residue field of E is F(T)). Let

$$\lambda: W_n(F) \times W_n(F(T)) \xrightarrow{\rho} {}_{p^n} \operatorname{Br}(F(T)) \oplus H^1(F(T), \mathbb{Z}/p^n)$$

be the map defined by $\lambda(w, w') = (i_2(p^{n-1}wdw'), i_1(ww'))$ where p^n Br(F(T)) is the p^n -torsion of the Brauer group of F(T), and we consider $p^{n-1}wdw'$ as an element of $W_n \Omega^1_{F(T)}$ ($W_n \Omega^{\cdot}_{F(T)}$) is the de Rham Witt complex). Let

$$i_1: W_n(F(T)) \longrightarrow H^1(F(T), \mathbb{Z}/p^n)$$

Geometry & Topology Monographs, Volume 3 (2000) - Invitation to higher local fields

be the map defined by Artin-Schreier-Witt theory, and let

$$i_2: W_n \Omega^1_{F(T)} \longrightarrow {}_{p^n} \operatorname{Br}(F(T))$$

be the map obtained by taking Galois cohomology from an exact sequence

$$0 \longrightarrow (F(T)^{\operatorname{sep}})^* / ((F(T)^{\operatorname{sep}})^*)^{p^n} \longrightarrow W_n \Omega^1_{F(T)^{\operatorname{sep}}} \longrightarrow W_n \Omega^1_{F(T)^{\operatorname{sep}}} \longrightarrow 0.$$

Then we have a commutative diagram

$$\begin{array}{cccc} H^{1}(K,\mathbb{Z}/p^{n})\times E^{*}/(E^{*})^{p^{n}} & \stackrel{\cup}{\longrightarrow} & \operatorname{Br}(E) \\ & & & & \uparrow \psi_{n} & & \uparrow i \\ & & & & W_{n}(F) & \times W_{n}(F(T)) & \stackrel{\lambda}{\longrightarrow} & _{p^{n}}\operatorname{Br}(F(T)) \oplus H^{1}(F(T),\mathbb{Z}/p^{n}) \end{array}$$

where i is the map in subsection 5.1, and

$$\psi_n((a_0, \dots, a_{n-1})) = \exp\left(\sum_{i=0}^{n-1} \sum_{j=1}^{n-i} p^{i+j} \widetilde{a_i}^{p^{n-i-j}}\right)$$

 $(\widetilde{a}_i \text{ is a lifting of } a_i \text{ to } \mathfrak{O}_K).$

(5) Suppose that n = 1 and F is separably closed. Then we have an isomorphism

$$\Phi_1: H^1(K, \mathbb{Z}/p) \simeq F$$

Suppose that $\Phi_1(\chi) = a$. Then the extension L/K which corresponds to the character χ can be described as follows. Let \tilde{a} be a lifting of a to \mathcal{O}_K . Then L = K(x) where x is a solution of the equation

$$X^p - X = \widetilde{a}/p.$$

The property (4) characterizes Φ_n .

Corollary (Miki). Let L = K(x) where $x^p - x = a/p$ with some $a \in \mathcal{O}_K$. L is contained in a cyclic extension of K of degree p^n if and only if

$$a \mod p \in F^{p^{n-1}}$$

This follows from parts (2) and (5) of the theorem. More generally:

Corollary. Let χ be a character corresponding to the extension L/K of degree p^n , and $\Phi_n(\chi) = (a_0, \ldots, a_{n-1})$. Then for m > n, L is contained in a cyclic extension of K of degree p^m if and only if $a_i \in F^{p^{m-n}}$ for all i such that $0 \le i \le n-1$.

Remarks.

(1) Fesenko gave a new and simple proof of this theorem from his general theory on totally ramified extensions (cf. subsection 16.4).

Geometry & Topology Monographs, Volume 3 (2000) - Invitation to higher local fields

M. Kurihara

(2) For any q > 0 we can construct a homomorphism

$$\Phi_n: H^q(K, \mathbb{Z}/p^n(q-1)) \longrightarrow W_n \Omega_F^{q-1}$$

by the same method. By using this homomorphism, we can study the Brauer group of K, for example.

Problems.

- (1) Let $\chi_{\mathfrak{K}}$ be the character of the extension constructed in 14.1. Calculate $\Phi_n(\chi_{\mathfrak{K}})$.
- (2) Assume that F is separably closed. Then we have an isomorphism

$$\Phi_n: H^1(K, \mathbb{Z}/p^n) \simeq W_n(F).$$

This isomorphism is reminiscent of the isomorphism of Artin–Schreier–Witt theory. For $w = (a_0, \ldots, a_{n-1}) \in W_n(F)$, can one give an explicit equation of the corresponding extension L/K using a_0, \ldots, a_{n-1} for $n \ge 2$ (where L/K corresponds to the character χ such that $\Phi_n(\chi) = w$)?

References

[K] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field, Invent. math., 93 (1988), 451–480.

Department of Mathematics Tokyo Metropolitan University Minami-Osawa 1-1, Hachioji, Tokyo 192-03, Japan E-mail: m-kuri@comp.metro-u.ac.jp

116