ISSN 1464-8997

Geometry & Topology Monographs Volume 2: Proceedings of the Kirbyfest Pages 103{111

Nondi eomorphic Symplectic 4{Manifolds with the same Seiberg{Witten Invariants

Ronald Fintushel Ronald J Stern

Abstract The goal of this paper is to demonstrate that, at least for nonsimply connected 4{manifolds, the Seiberg{Witten invariant alone does not determine di eomorphism type within the same homeomorphism type.

AMS Classi cation 57N13; 57MXX

Keywords Seiberg{Witten invariants, 4{manifold, symplectic 4{manifold

Dedicated to Robion C Kirby on the occasion of his 60th birthday

1 Introduction

The goal of this paper is to demonstrate that, at least for nonsimply connected 4{manifolds, the Seiberg{Witten invariant alone does not determine di eomorphism type within the same homeomorphism type. The rst examples which demonstrate this phenomenon were constructed by Shuguang Wang [13]. These are examples of two homeomorphic 4{manifolds with $_1 = \mathbb{Z}_2$ and trivial Seiberg{Witten invariants. One of these manifolds is irreducible and the other splits as a connected sum. It is our goal here to exhibit examples among symplectic 4{manifolds, where the Seiberg{Witten invariants are known to be nontrivial. We shall construct symplectic 4{manifolds with $_1 = \mathbb{Z}_p$ which have the same nontrivial Seiberg{Witten invariant but whose universal covers have di erent Seiberg{Witten invariants. Thus, at the very least, in order to determine di eomorphism type, one needs to consider the Seiberg{Witten invariants of nite covers.

Recall that the Seiberg{Witten invariant of a smooth closed oriented 4{manifold X with $b_2^+(X) > 1$ is an integer-valued function which is defined on the set of $spin^c$ structures over X (cf [14]). In case $H_1(X; \mathbb{Z})$ has no 2{torsion there is a

Copyright Geometry and Topology

natural identi cation of the *spin*^{*c*} structures of X with the characteristic elements of $H_2(X; \mathbb{Z})$ (ie, those elements k whose Poincare duals \hat{k} reduce mod 2 to $w_2(X)$). In this case we view the Seiberg{Witten invariant as

$$SW_X: fk \ 2 \ H_2(X; \mathbb{Z}) jk \quad w_2(TX) \pmod{2} g! \ \mathbb{Z}$$

The sign of SW_X depends on an orientation of $H^0(X; \mathbf{R}) \quad \det H^2_+(X; \mathbf{R})$ det $H^1(X; \mathbf{R})$. If $SW_X() \neq 0$, then is called a *basic class* of X. It is a fundamental fact that the set of basic classes is nite. Furthermore, if is a basic class, then so is – with $SW_X(-) = (-1)^{(e+\operatorname{sign})(X)=4} SW_X()$ where e(X) is the Euler number and $\operatorname{sign}(X)$ is the signature of X.

Now let f_{1} ;...; $_ng$ be the set of nonzero basic classes for X. Consider variables $t = \exp()$ for each $2 H^2(X; \mathbb{Z})$ which satisfy the relations $t_+ = t t$. We may then view the Seiberg{Witten invariant of X as the Laurent polynomial

$$SW_X = SW_X(0) + \sum_{j=1}^{N} SW_X(j) \quad (t_j + (-1)^{(e+sign)(X)=4} t_j^{-1}):$$

2 The Knot and Link Surgery Construction

We shall need the knot surgery construction of [3]: Suppose that we are given a smooth simply connected oriented 4{manifold X with $b^+ > 1$ containing an essential smoothly embedded torus T of self-intersection 0. Suppose further that $_1(XnT) = 1$ and that T is contained in a cusp neighborhood. Let $K = S^3$ be a smooth knot and M_K the 3{manifold obtained from 0{framed surgery on K. The meridional loop m to K de nes a 1{dimensional homology class [m]both in $S^3 n K$ and in M_K . Denote by T_m the torus $S^1 = m = S^1 = M_K$. Then X_K is de ned to be the ber sum

$$X_{K} = X \#_{T=T_{m}} S^{1}$$
 $M_{K} = (X n N(T)) [(S^{1} (S^{3} n N(K)));$

where $N(T) = D^2$ T^2 is a tubular neighborhood of T in X and N(K) is a neighborhood of K in S^3 . If denotes the longitude of K (bounds a surface in $S^3 n K$) then the gluing of this ber sum identi es fptg with a normal circle to T in X. The main theorem of [3] is:

Theorem [3] With the assumptions above, $X_{\mathcal{K}}$ is homeomorphic to X, and $SW_{X_{\mathcal{K}}} = SW_X \qquad_{\mathcal{K}}(t)$

where κ is the symmetrized Alexander polynomial of κ and $t = \exp(2[T])$.

In case the knot K is bered, the 3{manifold M_K is a surface bundle over the circle; hence $S^1 M_K$ is a surface bundle over T^2 . It follows from [12] that $S^1 M_K$ admits a symplectic structure and T_m is a symplectic submanifold. Hence, if T X is a torus satisfying the conditions above, and if in addition X is a symplectic 4{manifold and T is a symplectic submanifold, then the ber sum $X_K = X \#_{T=T_m} S^1 M_K$ carries a symplectic structure [4]. Since K is a bered knot, its Alexander polynomial is the characteristic polynomial of its monodromy '; in particular, $M_K = S^1 for some surface and <math>K(t) = \det(t - tI)$, where ' is the induced map on H_1 .

There is a generalization of the above theorem in this case due to Ionel and Parker [7] and to Lorek [8].

Theorem [7, 8] Let X be a symplectic 4 {manifold with $b^+ > 1$, and let T be a symplectic self-intersection 0 torus in X which is contained in a cusp neighborhood. Also, let be a symplectic 2 {manifold with a symplectomorphism ': ! which has a xed point ' $(x_0) = x_0$. Let $m_0 = S^1 + fx_0g$ and $T_0 = S^1 + m_0 + S^1 + (S^1 + fx_0)$. Then $X = X \#_{T=T_0}S^1 + (S^1 + fx_0)$ is a symplectic manifold whose Seiberg{Witten invariant is

$$SW_{X'} = SW_X$$
 (t)

where $t = \exp(2[T])$ and (t) is the obvious symmetrization of det((-tI)).

Note that in case K is a bered knot and $M_K = S^1$, Moser's theorem [9] guarantees that the monodromy map ' can be chosen to be a symplectomorphism with a xed point.

There is a related link surgery construction which starts with an oriented n{ component link $L = fK_1$; ...; K_ng in S^3 and n pairs $(X_i; T_i)$ of smoothly embedded self-intersection 0 tori in simply connected 4{manifolds as above. Let

$$_{L}: _{1}(S^{3} n L) ! \mathbf{Z}$$

denote the homomorphism characterized by the property that it send the meridian m_i of each component K_i to 1. Let N(L) be a tubular neighborhood of L. Then if i_i denotes the longitude of the component K_i , the curves $i_i = i_i + L(i_i)m_i$ on @N(L) given by the $L(i_i)$ framing of K_i form the boundary of a Seifert surface for the link. In S^1 ($S^3 nN(L)$) let $T_{m_i} = S^1 m_i$ and de ne the 4{manifold $X(X_1, \ldots, X_n; L)$ by

$$X(X_1, \dots, X_n; L) = (S^1 \quad (S^3 \, n \, N(L)) \, \left[\begin{array}{c} {n \atop i=1}^n (X_i \, n \, (T_i \, D^2)) \right]$$

where
$$S^1 = @N(K_i)$$
 is identi ed with $@N(T_i)$ so that for each *i*:
 $[T_{m_i}] = [T_i];$ and $[i] = [\text{pt} = @D^2];$

Theorem [3] If each T_i is homologically essential and contained in a cusp neighborhood in X_i and if each $_1(XnT_i) = 1$, then $X(X_1, \ldots, X_n; L)$ is simply connected and its Seiberg{Witten invariant is

$$SW_{X(X_1,\dots,X_n;L)} = {}_L(t_1,\dots,t_n) \sum_{j=1}^{\gamma} SW_{E(1)\#_{F=T_j}X_j}$$

where $t_j = \exp(2[T_j])$ and $_L(t_1; ...; t_n)$ is the symmetric multivariable Alexander polynomial.

3 2{bridge knots

Recall that 2{bridge knots, K, are classi ed by the double covers of S^3 branched over K, which are lens spaces. Let K(p=q) denote the 2{bridge knot whose double branched cover is the lens space L(p;q). Here, p is odd and q is relatively prime to p. Notice that L(p;q) = L(p;q-p); so we may assume at will that either q is even or odd. We are rst interested in nding a pair of distinct bered 2{bridge knots $K(p=q_i)$, i = 1/2 with the same Alexander polynomial. Since 2{bridge knots are alternating, they are bered if and only if their Alexander polynomials are monic [2]. There is a simple combinatorial scheme for calculating the Alexander polynomial of a 2{bridge knot K(p=q); it is described as follows in [10]. Assume that q is even and let $\mathbf{b}(p=q) = (b_1; \ldots; b_n)$ where p=q is written as a continued fraction:

$$\frac{p}{q} = 2b_1 + \frac{1}{-2b_2} + \frac{1}{2b_3} + \frac{1}{2b_3}$$

There is then a Seifert surface for $\mathcal{K}(p=q)$ whose corresponding Seifert matrix is:

$$V(p=q) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & b_2 & 1 & 0 & 0 \\ 0 & 0 & b_3 & 0 & 0 \\ 0 & 0 & 1 & b_4 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{bmatrix}$$

Geometry and Topology Monographs, Volume 2 (1999)

106

Thus the Alexander polynomial for $\mathcal{K}(p=q)$ is

$$K(p=q)(t) = \det(t \ V(p=q) - V(p=q)^{tr})$$

Using this technique we calculate:

Proposition 3.1 The 2{bridge knots K(105=64) and K(105=76) share the Alexander polynomial

$$(t) = t^4 - 5t^3 + 13t^2 - 21t + 25 - 21t^{-1} + 13t^{-2} - 5t^{-3} + t^{-4}$$

In particular, these knots are bered.

Proof The knots $\mathcal{K}(105=64)$ and $\mathcal{K}(105=76)$ correspond to the vectors

$$\mathbf{b}(105=64) = (1/1/(-1/(-1/(-1/(-1/1))))$$

$$\mathbf{b}(105=76) = (1/1/(-1/(-1/(-1/(1/1))))$$

4 The examples

Consider any pair of inequivalent bered 2{bridge knots $K_i = K(p=q_i)$, i = 1,2, with the same Alexander polynomial (*t*). Let $K_i = {}_i^{-1}(K_i)$ denote the branch knot in the 2{fold branched covering space $i: L(p;q_i) ! S^3$, and let $m_i = {}_i^{-1}(m_i)$, with m_i the meridian of K_i . Then $M_{K_i} = S^1 \cdot {}_i$ with double cover $M_{K_i} = S^1 \cdot {}_i^2$.

Let X be the K3{surface and let F denote a smooth torus of self-intersection 0 which is a ber of an elliptic bration on X. Our examples are

$$X_{K_i} = X \#_{F=T_{\mathcal{R}_i}}(S^1 \quad \mathcal{M}_{K_i}):$$

The gluing is chosen so that the boundary of a normal disk to F is matched with the lift $\check{\tau}_i$ of a longitude to K_i . A simple calculation and our above discussion implies that X_{K_1} and X_{K_2} are homeomorphic [5] and have the same Seiberg{Witten invariant:

Theorem 4.1 The manifolds X_{κ_i} are homeomorphic symplectic rational homology K3{surfaces with fundamental groups $_1(X_{\kappa_i}) = \mathbb{Z}_p$. Their Seiberg{ Witten invariants are

$$SW_{X_{K_i}} = \det(\binom{2}{i} - \binom{2}{i} = () \quad (-)$$

where $= \exp([F])$.

5 Their universal covers

The purpose of this nal section is to prove our main theorem.

Theorem 5.1 $X_{K(105=64)}$ and $X_{K(105=76)}$ are homeomorphic but not di eomorphic symplectic 4 {manifolds with the same Seiberg{Witten invariant.

Let $K_1 = K(105=64)$ and $K_2 = K(105=76)$. We have already shown that X_{K_1} and X_{K_2} are homeomorphic symplectic 4{manifolds with the same Seiberg{ Witten invariant. Suppose that $f: X_{K_1} ! X_{K_2}$ is a di eomorphism. It then satis es $f(SW_{X_{K_1}}) = SW_{X_{K_2}}$. Since these are both Laurent polynomials in the single variable $= \exp([F])$, and $[F] = [T_{m_i}]$ in X_{K_i} , after appropriately orienting T_{m_2} , we must have

$$f\left[T_{\mathcal{P}_{1}}\right] = \left[T_{\mathcal{P}_{2}}\right]:$$

We study the induced di eomorphism $\hat{f}: \hat{X}_{K_1} ! \hat{X}_{K_2}$ of universal covers. The universal cover \hat{X}_{K_i} of X_{K_i} is obtained as follows. Let $\#_i: S^3 ! L(p;q_i)$ be the universal covering $(p = 105, q_1 = 64, q_2 = 76)$ which induces the universal covering $\#_i: \hat{X}_{K_i} ! X_{K_i}$, and let \hat{L}_i be the p{component link $\hat{L}_i = \#_i^{-1}(K_i)$. The composition of the maps $' \#_i: S^3 ! S^3$ is a dihedral covering space branched over K_i , and the link $\hat{L}_i = \hat{L}(p=q_i)$ is classically known as the 'dihedral covering link' of $K(p=q_i)$. This is a symmetric link, and in fact, the deck transformations $_{i,k}$ of the cover $\#_i: S^3 ! L(p;q_i)$ permute the link components. The collection of linking numbers of \hat{L}_i (the dihedral linking numbers of $K(p=q_i)$) classify the 2{bridge knots [2]. The universal cover \hat{X}_{K_i} is obtained via the construction $\hat{X}_{K_i} = X(X_1; \cdots; X_p; L_i)$ of section 2, where each $(X_i; T_i) = (K3; F)$. Hence it follows from section 2 that

$$SW_{\hat{X}_{K_{i}}} = \sum_{\hat{L}_{i}} (t_{i;1}; \dots; t_{i;p}) \xrightarrow{\varphi} SW_{E(1)\#_{F}K3} = \sum_{\hat{L}_{i}} (t_{i;1}; \dots; t_{i;p}) \xrightarrow{\varphi} (t_{i;j}^{1=2} - t_{i;j}^{-1=2})$$

where $t_{i;j} = \exp([2T_{i;j}])$ and $T_{i;j}$ is the ber F in the *j*th copy of K3. Let $L_{i;1}$; \ldots ; $L_{i;p}$ denote the components of the covering link \hat{L}_i in S^3 , and let $m_{i;j}$ denote a meridian to $L_{i;j}$. Then $[T_{i;j}] = [S^1 \quad m_{i;j}]$ in $H_2(\hat{X}_{K_i}; \mathbf{Z})$, and so $\hat{\#}_i [T_{i;j}] = [T_i]$.

Now we have $\hat{f}(SW_{\hat{\chi}_{\kappa_1}}) = SW_{\hat{\chi}_{\kappa_2}}$ as elements of the integral group ring of $H_2(\hat{\chi}_{\kappa_2}; \mathbf{Z})$. The formula given for $SW_{\hat{\chi}_{\kappa_1}}$ shows that each basic class may be

Geometry and Topology Monographs, Volume 2 (1999)

108

Nondiffeomorphic Symplectic 4-Manifolds

written in the form $= \bigcap_{j=1}^{p} a_j[T_{i:j}]$. Thus if is a basic class of \hat{X}_{κ_1} , then

$$f() = f(a_j[T_{1:j}]) = \int_{j=1}^{\infty} b_j[T_{2:j}]$$

for some integers, b_1 ; ...; b_p . But since $f[T_1] = [T_2]$ in $H_2(X_{K_2}; \mathbf{Z})$ we have

$$\overset{\mathcal{N}}{\underset{j=1}{\overset{j}{1}{\overset{j}}{\overset{j}{1}{\overset{j}}{\overset{j}{1}{\overset{j}}{\overset{j}}$$

Henc $\sum_{j=1}^{p} a_j = \sum_{j=1}^{r} u_j$

Form the 1{variable Laurent polynomials $P_i(t) = {}_{\hat{L}_i}(t; \ldots; t) (t^{1=2} - t^{-1=2})^p$ by equating all the variables $t_{i;j}$ in $SW_{\hat{X}_{\kappa_j}}$. The coe cient of a xed term t^k in $P_i(t)$ is

$$\times fSW_{\hat{X}_{\kappa_i}}(\overset{\mathcal{S}}{\underset{j=1}{\overset{j}{(a_j[T_{i:j}])}}} \overset{\mathcal{S}}{\underset{j=1}{\overset{j}{(a_j=x_j)}}} a_j = kg:$$

Our argument above (and the invariance of the Seiberg{Witten invariant under di eomorphisms) shows that \hat{f} takes $P_1(t)$ to $P_2(t)$; ie, $P_1(t) = P_2(t)$ as Laurent polynomials.

The reduced Alexander polynomials $f_{L_i}(t; \ldots; t)$ have the form

$$\mathcal{L}_{i}(t; \ldots; t) = (t^{1=2} - t^{-1=2})^{p-2} r_{\mathcal{L}_{i}}(t)$$

where the polynomial $r_{\hat{L}_i}(t)$ is called the Hosokawa polynomial [6]. Consider the matrix:

$$(p=q) = \bigcup_{a=1}^{O} (p=q) = \bigcup_{a=1}^{n} (p=1) (p=1)$$

(Burde has shown that this is the linking matrix of $\hat{L}(p=q)$.)

It is a theorem of Hosokawa [6] that $r_{\hat{L}(p=q)}(1)$ can be calculated as the determinant of any (p-1) by (p-1) minor $\sqrt[p]{(p-q)}$ of (p=q). In particular, we have

the following Mathematica calculations. (Note that $\mathcal{K}(105=64) = \mathcal{K}(105=-41)$ and $\mathcal{K}(105=76) = \mathcal{K}(105=-29)$.)

$$det(\ \ ^{\theta}(105=-41))=105 = 13^2 \ \ 61^2 \ \ 127^2 \ \ 463^2 \ \ 631^4 \ \ 1358281^4$$
$$det(\ \ ^{\theta}(105=-29))=105 = 139^4 \ \ 211^4 \ \ 491^2 \ \ 8761^2 \ \ 10005451^4:$$

This means that $r_{\hat{L}_1}(1) \notin r_{\hat{L}_2}(1)$. However, if we let $Q(t) = (t^{1-2} - t^{-1-2})^{2p-2}$, then $P_i(t) = r_{\hat{L}_i}(t) Q(t)$. For ju-1j small enough, $P_1(u) = Q(u) \notin P_2(u) = Q(u)$. Hence for $u \notin 1$ in this range, $P_1(u) \notin P_2(u)$. This contradicts the existence of the di eomorphism f and completes the proof of Theorem 5.1.

Acknowledgements The rst author was partially supported NSF Grant DMS9704927 and the second author by NSF Grant DMS9626330

References

- [1] **G Burde**, Verschlingungsinvarianten von Knoten und Verkettungen mit zwei Brücken, Math. Z. 145 (1975) 235{242
- [2] G Burde, H Zieschang, *Knots*, deGruyter Studies in Mathematics, 5, Walter de Gruyter, Berlin, New York (1985)
- [3] **R Fintushel**, **R Stern**, *Knots*, *links*, and 4 {manifolds, Invent. Math. 139 (1998) 363{400
- [4] R Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995) 527{595
- [5] I Hambleton, M Kreck, On the classi cation of topological 4 {manifolds with nite fundamental group, Math. Ann. 280 (1988) 85{104
- [6] F Hosokawa, On r {polynomials of links, Osaka Math. J. 10 (1958) 273{282
- [7] E Ionel, T Parker, Gromov invariants and symplectic maps, preprint
- [8] W Lorek, Lefschetz zeta function and Gromov invariants, preprint
- [9] J Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286{294
- [10] L Siebenman, Exercises sur les noeds rationnels, preprint, 1975
- [11] C Taubes, The Seiberg{Witten invariants and symplectic forms, Math. Res. Letters, 1 (1994) 809{822
- [12] W Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467{468
- [13] S Wang, A vanishing theorem for Seiberg{Witten invariants, Math. Res. Letters, 2 (1995) 305{310

[14] E Witten, Monopoles and four{manifolds, Math. Res. Letters, 1 (1994) 769{ 796

Department of Mathematics, Michigan State University East Lansing, Michigan 48824, USA Department of Mathematics, University of California Irvine, California 92697, USA

Email: ronfint@math.msu.edu, rstern@math.uci.edu

Received: 11 April 1998 Revised: 16 October 1999