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Group categories and their �eld theories

Frank Quinn

Abstract A group{category is an additively semisimple category with a
monoidal product structure in which the simple objects are invertible. For
example in the category of representations of a group, 1{dimensional rep-
resentations are the invertible simple objects. This paper gives a detailed
exploration of \topological quantum �eld theories" for group{categories,
in hopes of �nding clues to a better understanding of the general situation.
Group{categories are classi�ed in several ways extending results of Frölich
and Kerler. Topological �eld theories based on homology and cohomol-
ogy are constructed, and these are shown to include theories obtained
from group{categories by Reshetikhin{Turaev constructions. Braided{
commutative categories most naturally give theories on 4{manifold thick-
enings of 2{complexes; the usual 3{manifold theories are obtained from
these by normalizing them (using results of Kirby) to depend mostly on
the boundary of the thickening. This is worked out for group{categories,
and in particular we determine when the normalization is possible and
when it is not.

AMS Classi�cation 18D10; 81R50, 55B20
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1 Introduction

There is a close connection between monoidal categories and low-dimensional
modular topological �eld theories. Speci�cally, symmetric monoidal categories
correspond to �eld theories on 2{dimensional CW complexes [2, 17]; monoidal
categories correspond to theories on 3{manifolds with boundary, and tortile
(braided{commutative) categories correspond to theories on 4{dimensional
thickenings of 2{complexes. These last can usually be normalized to give the-
ories on extended 3{manifolds, and this is the most familiar context [19, 22,
11, 20, 23]. Particularly interesting braided categories are obtained from rep-
resentations of \quantum groups" at roots of unity, cf [14, 10], and analogous
symmetric mod p categories were de�ned by Gelfand and Kazhdan [9].
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This subject has produced a voluminous literature but not a lot of new informa-
tion. Presumably we do not yet understand the geometric signi�cance, wider
contexts, methods of computation, etc, well enough to e�ectively exploit these
theories. This paper presents a class of examples in which everything can be
worked out in detail, as a source of clues for the general case. Descriptions
of the categories gives a connection to recent work on classifying spaces. The
�eld theories turn out to be special cases of constructions using homology of
CW complexes, or more generally cohomology of manifold thickenings of CW
complexes. This clari�es the nature of the objects on which the �elds are de-
�ned, and hints at higher-dimensional versions. The examples illuminate the
normalization procedure used to pass to �elds on extended 3{manifolds. Finally
group{categories occur as tensor factors of the \quantum" categories (2.2.4),
so understanding them is an essential ingredient of the general case.

Finite groups provide another class of examples that have been worked out in
detail [7, 17, 25], but these have not been so helpful. Representations of the
group give a (symmetric) monoidal category, and a �eld theory (on all �nite
CW complexes) de�ned in terms of homomorphisms of fundamental groups into
the �nite group. The restriction of the �eld theory to 2{complexes is the �eld
theory corresponding to the representation category. However the restriction of
the �eld theory to 3{manifolds corresponds to the double of the category [16],
not the category itself. Constructions using a double are much easier but also
much less informative than the general case, so this is a defect in this model.

A group category is a semisimple additive category with a product structure in
which the simple objects are invertible. Isomorphism classes of simple objects
then form a group, called the \underlying group" of the category. Section 2
begins with a slightly more precise de�nition (2.1) and some examples. The
conjectural appearance of group{categories as tensor factors of quantum cate-
gories (2.2.4) is particularly curious. Three views of the classi�cation of group{
categories are then presented. The �rst and only novel view (2.3) uses recent
work on classifying spaces of braided categories [6] to give a characterization in
terms of spaces with two nonvanishing homotopy groups. Speci�cally, group{
categories over a ring R with underlying group G correspond to spaces E with
�d(E) = G and �d+1(E) = units(R). The cases d = 1; 2, and d � 3 correspond
to monoidal, braided{commutative, and symmetric categories respectively. The
Postnikov decomposition gives an equivalence of this to k{invariants in group
cohomology. The second approach (2.4) derives a category structure directly
from group cohomology using cellular cochains in a model for the classifying
space. This approach was developed by Frölich and Kerler [8]. The third ap-
proach (2.5) gives a \numerical presentation" for the category. This is a format
developed for machine computation [3, 18], but in this case it gives an explicit
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and e�cient low-level description.

Group cohomology in the context of topological �eld theories �rst appeared in
Dijkgraaf{Witten [5] as lagrangians for �elds with �nite gauge group. Their
lagrangians lie in H3(BG), which we now see as classifying monoidal (no com-
mutativity conditions) group{categories. The �eld theory they construct cor-
responds to the double of the category.

Topological �eld theories based on homology with coe�cients in a �nite group
are studied in section 3. Suppose G is a �nite abelian group and R a ring.
State spaces of the Hn theory are the free modules R[Hn(Y ;G)]. Induced
homomorphisms are de�ned by summing over Hn+1 : if X � Y1; Y2 and y 2
H1(Y1;G) then

ZX(y) = �fx2Hn+1(X;G)j@1x=−yg@2x:

We determine (3.1.3) exactly when this satis�es various �eld theory axioms.
The H1 theory is the one that connects with categories: on 2{complexes it
corresponds to the standard (untwisted) group{category. On 3{manifolds it
provides examples of �eld theories that are not modular. This illustrates the
role of doubling or extended structures in obtaining modularity on 3{manifolds.
The higher-dimensional versions are new, and suggest interesting connections
with classical algebraic topology.

Probably the eventual proper setting for �eld theories will be covariant (homo-
logical), but the current constructions are too rigid. In section 4 we restrict to
manifolds and consider the dual cohomology-based theories. Here we can build
in a twisting by evaluating group cohomology classes on fundamental classes.
Again we get examples for any n, and it is the n = 1 cases that relate to
group{categories. Again homological calculations determine when these satisfy
�eld axioms. For n = 1 state spaces are associated to manifold with the homo-
topy type of 1{complexes (we refer to these as \thickenings" of 1{complexes);
induced homomorphisms come from thickenings of 2{complexes, and corners
used in modular structures are thickenings of 0{complexes. The dimensions
of these thickenings depend on the type of category. To establish notation we
relate both �elds and categories to spaces with two homotopy groups. Let E
have �d(E) = G and �d+1(E) = units(R). Then E determines a category and
a �eld theory:

d category structure �elds on
1 associative (3; 2; 1){thickenings
2 braided{commutative (4; 3; 2){thickenings

� 3 symmetric (d+ 2; d+ 1; d){thickenings
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We show (4.3) that the �eld theory is in fact the one obtained by a Reshetikhin{
Turaev construction from the category.

Section 5 concerns �eld theories on 3{manifolds. The basic plan [23, 22] is to
start with a theory on 4{dimensional thickenings of 2{complexes, associated to
a braided{commutative category, and try to extract a theory that depends only
on the boundary of the thickening. The geometric ingredient is the basis of
the Kirby calculus [12]: a 3{manifold bounds a simply-connected 4{manifold,
and this 4{manifold is well-de�ned up to connected sums with CP 2 and CP

2
.

If we specify the index of the 4{manifold then it is well-de�ned up to sums
with CP 2#CP

2
. These connected sums change the induced homomorphisms

by multiplication by an element in R . If the element associated to CP 2#CP
2

has an inverse square root then we can use it to nomalize the theory (tensor
with an Euler characteristic theory) to be insensitive to such sums. This gives a
theory de�ned on \extended" 3{manifolds: manifolds together with an integer
specifying the index of the bounding 4{manifold. For group{categories we eval-
uate the e�ect of these connected sums in terms of structure constants of the
category. When the underlying group is cyclic the conclusions are very explicit,
and determine exactly when the �eld theory can be normalized. For instance
over an algebraically closed �eld there are four categories with underlying group
Z=2Z , distinguished by how the non-unit simple object commutes with itself.
The possibilities are multiplication by �1 or �i, i a primitive fourth root of
unity. The �1 cases are symmetric, �i braided{symmetric. The canonical and
braided cases can be normalized; the −1 case cannot.

Acknowledgement The author is partially supported by the National Sci-
ence Foundation.

2 Group{categories

This section gives the formal de�nition and examples, then proceeds to classi-
�cation. Classi�cation is approached on three levels: modern homotopy theory
gives a quick general description. Explicit CW models for classifying spaces
give associativity and commutativity isomorphisms satisfying the standard ax-
ioms. Finally chosing bases for morphism sets gives a very explicit description
in terms of sequences of units in the ring. Much of this material is essentially
already known, so proofs are designed to clarify connections rather than nail
down every detail. For instance the iterated bar construction is explained in
detail in 2.4 because the connection with categories comes from the details,
while the technically more powerful multi-simplicial construction behind 2.3 is
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not discussed. We do give a lot of detail, though, since new insights tend to be
found in details.

2.1 De�nition

A group{category is an additive category over a commutative ring R , with a
product (monoidal structure) that distributes over addition, and in addition:

(1) it is additively semisimple in the sense that each object is a �nite sum of
certain speci�ed \simple" objects;

(2) there are no nontrivial morphisms between distinct simple objects; and

(3) the simple objects are invertible.

An object is invertible if there is another object so that the product of the two
is isomorphic to the multiplicative unit. This is a very restrictive condition.
In particular it follows that the product of any two simple objects is again
simple, so isomorphism classes of simple objects form a group. This is called the
\underlying group" of the group category. Condition (2) is usually automatic
for simple objects because the category is usually assumed to be abelian (have
kernels and cokernels, see [15]). We avoid this assumption to enable use of
integers and other non-�elds as coe�cient rings. The extra generality is useful
in the abstract theory and really vital in some numerical computations.

2.2 Examples

The canonical examples are analogs of group rings. Other examples come from
representations of groups and Lie algebras.

2.2.1 Canonical examples

Suppose G is a group and R a commutative ring. De�ne R[G] to be the cat-
egory with objects G{graded free R{modules of �nite total dimension. Mor-
phisms are R{homomorphisms that preserve the grading, with the usual com-
position. The product is the standard graded product: if a and b are G{graded
modules then

(a⊗ b)f = �fg;h : gh=fgag ⊗ bh:
Products of morphisms are de�ned similarly. This product is naturally associa-
tive with associating isomorphism the \identity"

�fg;h;i : (gh)i=fg(ag ⊗ bh)⊗ ci = �fg;h;i : g(hi)=fgag(⊗bh ⊗ ci):
The simple objects are the \delta functions" that take all but one group el-
ement to zero, and that one to a copy of R . In 2.3.3 and 2.4.1 we see that
general group{categories are obtained (up to equivalence) by modifying the
associativity and commutativity structures in this standard example.
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2.2.2 Sub group{categories

If C is an additive category with a product then the subcategory generated by
the invertible objects is a group{cateory. The following examples are of this
type.

2.2.3 One{dimensional representations

If R is a commutative ring and G is a group then a representation of G over R
is a �nitely generated free R{module on which G acts. Equivalently, these are
R[G] modules that are �nitely generated free as R{modules. Tensor product
over R gives a monoidal structure on the category of �nite dimensional rep-
resentations. The invertible elements in this category are the one{dimensional
representations. Therefore the subcategory with objects sums of 1{dimensional
representations is a group category. In fact it is equivalent to the canonical
group{category R[hom(G;units(R)]. We briefly describe the equivalences be-
tween the two descriptions since they are models for several other constructions.

A homomorphism � : G! units(R) determines a 1{dimensional representation
R�), where elements g act by multiplication by �(g).

An object in the group{category is a free hom(G;units(R)){graded R{module,
so associates to each homomorphism � a free module a� . Take such an object
to the representation ��(a� ⊗R R�). This clearly extends to morphisms. The
canonical identi�cation R�⊗R� = R�� makes this a monoidal functor from the
group{category to representations.

To go the other way suppose V is a representation. De�ne a hom(G;units(R)){
graded R{module by associating to each homomorphism � the space hom(R�;
V ). To give an object in the group{category these must be �nitely gener-
ated free modules. This process therefore de�nes a functor on the subcategory
of representations with this property, and this certainly contains sums of 1{
dimensional representations. Note this functor may not be monoidal on its
entire domain: there may be indecomposable modules of dimension greater
than 1 whose product has 1{dimensional summands. However it is monoidal
on the subcategory of sums of 1{dimensional representations. It is also easy to
see it gives an inverse equivalence for the functor de�ned above.

2.2.4 Quantum categories

Let G be a simple Lie algebra, or more precisely an algebraic Chevalley group
over Z , and p a prime larger than the Coxeter number of G. Some of the
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categories are de�ned for non-prime p, but the prime case is simpler and com-
putations are currently limited to primes. Let X be the weight lattice. The
\quantum" categories are obtained by: consider either mod p representations
(Gelfand and Kazhdan [9]), or deform the universal enveloping algebra and then
specialize the deformation parameter to a pth root of unity [14, 10]. De�ne Gp
to be the additive category generated by highest weight representations whose
weights lie in the standard alcove of the positive Weyl chamber in X . De�ne a
product on Gp by: take the usual tensor product of representations and throw
away all indecomposable summands that are not of the speci�ed type. The
miracle is that this operation is associative, and gives a tortile or symmetric
monoidal category in the root of unity or mod p cases respectively.

Now let R � X denote the root lattice of the algebra. The quotient X=R is
a �nite abelian group, and each highest weight representation determines an
element in X=R (the equivalence class of its weight). Subgroups of X=R corre-
spond to Lie groups with algebra G, and representations of the group are those
with weights in the given subgroup. In particular the \class 0" representations,
ones with weights in the root lattice, form a monoidal subcategory.

Conjecture The category Gp has a group subcategory with underlying group
X=R , and Gp decomposes as a tensor product of this subcategory and the class
0 representations G0

p . Further G0
p is \simple" in the sense that it has no proper

subcategories closed under products and summands.

This is true in the few dozen numerically computed examples, though the tensor
product in the root-of-unity cases might be slightly twisted. In these examples
the objects in the group subcategory have weights lying just below the up-
per wall of the alcove. The values of these weights are available through the
\Category Comparison" software in [18] (see the Category Guide).

2.3 Homotopy classi�cation of group{categories

Current homotopy-theory technology is used to obtain the classi�cation in terms
of spaces with two homotopy groups, or equivalently group cohomology. The
result is essentially due to [8; section 7.5] where these are called \�{categories":

Proposition Suppose R is a commutative ring and G is a group. Then

(1) monoidal group{categories over R with underlying group G correspond
to H3(BG; units(R));

(2) tortile (ie, balanced braided{commutative monoidal) group{categories cor-
respond to H4(B2

G; units(R)); and

(3) symmetric monoidal group{categories to Hd+2(BdG; units(R)), for d > 2.
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It has been known for a long time that the group completion of the nerve
of a category with an associative monoidal structure is a loop space. It has
been known almost as long that if the category is symmetric then the group
completion is an in�nite loop space. Recently this picture has been re�ned [6, 1]
to include braided categories: the group completion of the nerve of a braided{
commutative monoidal category is a 2{fold loop space. This can be applied to
group{categories to obtain:

2.3.1 Lemma Suppose R is a commutative ring and G a group (abelian in
cases 2 and 3). Then

(1) equivalence classes of monoidal group{categories over R with group G
correspond to homotopy classes of simple spaces with loop space
Bunits(R) �G;

(2) braided{commutative group categories correspond to spaces with second
loop space Bunits(R) �G; and

(3) symmetric group{categories correspond to spaces with d{fold loop
Bunits(R) �G, for d > 2.

In practice this version seems to be more fundamental than the cohomology
description of the Proposition.

Proof Consider the monoidal subcategory of simple objects and isomorphisms
in the category. The nerve of a category is the simplicial set with vertices
the objects, and n{simplices for n > 0 composable sequences of morphisms
of length n. Condition 2.1(2) implies this is a disjoint union of components,
one for each isomorphism class. Invertibility implies the components are all
homotopy equivalent. Endomorphisms of the unit object in a category over a
ring R are assumed to be canonically isomorphic to R , so the isomorphisms
of each simple are given by units(R). This identi�es the nerve of the whole
category as Bunits(R) �G.

The next step in applying the loop-space theory is group completion. Ordinarily
�0 of a category nerve is a monoid, and group completion converts this to a
group. Here �0 is already the group G so the nerve is equivalent to its group
completion. Thus application of [6, 1] shows that the nerve is a 1{, 2{ or
d > 2{fold loop space when the category is monoidal, braided{commutative,
and symmetric respectively.

A few re�nements are needed:

(1) In the single loop case the delooping is X with �1(X) = G and �2 =
units(R). In general �1 acts on higher homotopy groups. Here the action
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is trivial (the space is simple) because in the category G acts trivially on
the coe�cient ring.

(2) It is not necessary to be speci�c about which d > 2 in the symmetric case
because in this particular setting a 3{fold delooping is automatically an
in�nite delooping. This follows from the cohomology description below.

(3) Generally the construction does not quite give a correspondence: monoidal
structures give deloopings of the group completion of the nerve, while de-
loopings give monoidal structures on categories whose nerve is already
the group completion. Here, however, the nerve is group{completed to
begin with, so the inverse construction does give monoidal structures on
categories equivalent to the original one.

(4) Since the original group{category is additively semisimple, monoidal struc-
tures on the simple objects extend linearly, and uniquely up to equiva-
lence, to products on the whole category that distribute over sums. This
shows that classi�cation of structures on the subcategory of simples does
classify the group{category.

The �nal step in the classi�cation is to relate this to group cohomology.

2.3.2 Lemma Connected spaces with �d = G, �d+1 = units(R), and all
other homotopy trivial (and simple if d = 1) are classi�ed up to homotopy
equivalence by elements of Hd+2(BdG; units(R)).

Proof This is an almost trivial instance of Postnikov systems [24; chapter IX].
Suppose E is the space with only two non-vanishing homotopy groups. There is
a map E ! BdG (obtained, for instance, by killing �d+1 ), and up to homotopy
this gives a �bration

Bd+1
units(R) ! E ! BdG:

The point of Postnikov systems is that this extends to the right: there is a map
k : BdG ! Bd+2

units(R) well-de�ned up to homotopy, so that

E −! BdG
k−! Bd+2

units(R)

is a �bration up to homotopy. This determines E , again up to homotopy.
Homotopy classes of such maps k are exactly Hd+2(BdG; units(R)), so the spaces
E correspond to cohomology classes.

Putting 2.3.1 and 2.3.2 together gives the classi�cation theorem.
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2.3.3 Monoidal categories from spaces with two homotopy groups

In many ways the delooping of 2.3.1 is more fundamental than its k{invariant
of 2.3.2. We �nish this section by showing how to recover the category from
the space. A description directly in terms of the k{invariant is given in 2.4.
Suppose E is a space with �1(E) = G, �2(E) = units(R), and �1 acts trivially
on �2 . This data speci�es (up to monoidal equivalence) a group{category over
R with underlying group G. Here we show how to describe a category in the
equivalence class. In 2.3.4 this is extended to braided{monoidal and symmetric
categories.

Begin with the canonical category R[G] of 2.2.1. G has the same underlying
additive category over R and the same product functor, but we change the
associativity isomorphisms. Speci�cally we �nd �(f; g; h) so that the isomor-
phism (af ⊗ bg) ⊗ ch ! af ⊗ (bg ⊗ ch) obtained by multiplying the standard
isomorphism by � gives an associativity. The key property is the pentagon
axiom.

The de�nition of � depends on lots of choices. For each g 2 �1(E) choose a
map ĝ : I=@I ! E in the homotopy class. For each g; h 2 G choose a homotopy
mg;h : ĝĥ � cgh . Here ĝĥ indicates composition of paths. The only restrictions
are that the identity element of the group lifts to the constant path, and m1;g

and mg;1 are constant homotopies.

Now de�ne �(f; g; h) as follows: use these standard homotopies to construct a
homotopy dfgh � cfgĥ � f̂ ĝĥ � f̂cgh �dfgh. Since this is a homotopy of a loop
to itself the ends can be identi�ed to give a map I �S1=(@I �S1)! E . Think
of I �S1=(f0g �S1) as D2 , then this de�nes an element in �2(E) = units(R).
De�ne �(a; b; c) to be this element of R .

We explain why the pentagon axiom holds. A huge diagram goes with this
explanation, but the reader may �nd it easier to reconstruct the diagram than
to make sense of a printed version. Thus we stick with words. It is su�cient
to verify the axiom for simple objects, and we write g for the G{graded R{
module that takes g to R and all other elements to 0. The pentagon has
various associations of a 4{fold product efgh at the �ve corners, and connects
them with reassociation isomorphisms �. The routine for constructing the
isomorphisms can be described as follows. Put the loop êfgh at each corner,
and put the composite loop êf̂ ĝĥ in the center. Along each radius from a corner
to the center put the concatenation of homotopies m�;� corresponding to the
way of associating the product at that corner. The � for an edge comes from
the homotopy of êfgh to itself obtained by going from one corner radially in to
the center and then back out to the other corner. Going all the way around the
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pentagon corresponds to going in and out �ve times. But going out and back
in along a single radius gives the composition of a homotopy with its inverse, so
cancels, up to homotopy. Therefore the homotopy obtained from the full circuit
is homotopic to the constant homotopy of êfgh to itself. In �2E = units(R)
this is the statement that the product of the � terms associated to the edges
is the identity, so the diagram commutes.

Changing the choices gives an isomorphic category. Speci�cally suppose m0f;g
are di�erent homotopies between compositions. They di�er from the original
m by elements of �2(E), so by units �f;g 2 R . Regard this as de�ning a
natural isomorphism from the product functor to itself: f ⊗ g ! f ⊗ g by
multiplication by �f;g . Then the identity functor R[G] ! R[G] together with
this transformation is a monoidal isomorphism, ie, associativity de�ned using
m in the domain commutes with associativity using m0 in the range. We revisit
this construction in the context of group cohomology in 2.4.2, and make it more
explicit using special choices in 2.5.

2.3.4 Braided group{categories from spaces with two homotopy groups

Suppose E has �2E = G and �3E = units(R). According to 2.3.1 this corre-
sponds to an equivalence class of braided{commutative group{categories with
underlying group G. Here we show how to extract one such category from this
data, extending the monoidal case of 2.3.3.

The loop space ΩE has �1E = G and �2E = units(R), so speci�es an asso-
ciativity structure for the standard product on R[G]. Let fĝg : I ! ΩE and
mf;g : I2 ! ΩE be the choices used in 2.3.3 to make this explicit. Let eg : I2 !
E and emf;g : I3 ! E denote the adjoints. An element �(f; g) 2 units(R) is
obtained as follows: de�ne a homotopy ffg � efeg � eg ef � fgf by the reverse ofemf;g , the clockwise standard commuting homotopy in �2 , and emg;f . Since G
is abelian gf = fg , and this is a self-homotopy. Glueing the ends gives a map
on I2�S1=(@I2�S1). Regard this as a neighborhood of S1 � D3 , and extend
the map to D3 by taking the complement to the basepoint. This gives an ele-
ment of �3(E) = units(R). De�ne this to be �(f; g). De�ne a commutativity
natural transformation f ⊗ g ! g⊗ f by multiplying the natural identi�cation
by �(f; g).

We explain why this and the associativity from 2.3.3 satisfy the hexagon ax-
iom. Again we omit the huge diagram. The hexagon has various associations
of permutations of fgh at the corners, and reassociating and commuting iso-
morphisms alternate going around the edges. Imagine a triangle inside the
hexagon, with two hexagon corners joined to each triangle corner. Put gfgh
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at each hexagon corner, and the three permutations of efegeh on the triangle
corners. On the edges joining the triangle to the hexagon put compositions
of homotopies em corresponding to di�erent associations of the terms. On the
edges of the triangle put clockwise commuting homotopies in �2 . The homo-
topies used to de�ne associating or commuting units on the hexagon edges are
obtained by going in to the triangle and either directly back out (for associa-
tions) or along a triangle edge and back out (for commutes). Going around the
whole hexagon composes all these. The trips from the triangle out and back
cancel, to give a homotopy of the big composition to the composition of the
triangle edges. This composition is trivial (it gives the analog of the hexagon
axiom for �2(E)). Thus the composition of homotopies corresponding to the
full circuit of the hexagon gives the trivial element in �3(E), and the diagram
itself commutes.

Finally suppose E has �d(E) = G and �d+1(E) = units(R) for some d > 2.
Then the same arguments as above apply except the representatives eg are now
de�ned on Dd , and there is only a single standard commuting homotopy, up to
homotopy. This implies �(g; h)�(h; g) = 1, so the group{category is symmetric.

2.4 Models for classifying spaces

Here we use explicit CW models for classifying spaces BnG to connect group
cohomology to descriptions of categories using functorial isomorphisms. This
is done in detail for n = 1; 2, and outlined for n = 3. The basis for the
connection is a comparison between general group{categories and the standard
example 2.2.1.

2.4.1 Lemma Suppose C is a group category over R with underlying group
G. Then there is an equivalence of categories C ! R[G] and a natural trans-
formation between the given product in C and the standard product in R[G].

Note that this functor usually not monoidal since it usually will not commute
with associativity morphisms. If a \lax" description of associativity is used then
it can be transferred through such a categorical equivalence. The classi�cation
of group{categories then corresponds to classi�cation of di�erent associativity
and commutativity structures for the standard product on R[G].

Proof By hypothesis G is identi�ed with the set of equivalence classes of
simple objects in C , so we can choose a simple object sg in each equivalence
class g . Further we can choose isomorphisms mg;h : sgh ! sg � sh .
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Now de�ne the functor homs : C ! R[G] by: an object X goes to the function
that takes g 2 G to homC(sg;X). Comparison of products in the two categories
involves the diagram

C � C homs�homs−−−−−−−−! R[G]�R[G]??y� ??y⊗
C homs−−−−! R[G]

A natural transformation ⊗(homs � homs) ! homs� consists of: for X;Y
in C and g 2 G a natural homomorphism �hhom(sh;X) ⊗ hom(sh−1g; Y ) !
hom(sg;X � Y ). De�ne this by taking (a; b) 2 hom(sh;X) ⊗ hom(sh−1g; Y ) to
(a � b)mh;h−1g . It is simple to check this has the required naturality properties.
Note the lack of any coherence among the isomorphisms mg;h prevents any
conclusions about associativity.

Associativity structures for a product on a category are de�ned using natural
isomorphisms satisfying the \pentagon axiom" [15]. These can be connected
directly to group cohomology via the cellular chains of a particular model for
the classifying space.

2.4.2 Lemma Suppose G is a group and R a commutative ring.

(1) Cellular 3{cocycles for the bar construction BG are natural associativity
isomorphisms for the product on R[G], and coboundaries of 2{cochains
correspond to compositions with natural endomorphisms.

(2) If G is abelian, cellular 4{cocycles for the iterated bar construction B2
G

give braided{commutative monoidal structures for the product on R[G],
and coboundaries of 3{cochains correspond to natural endomorphisms.

(3) If G is abelian, cellular 5{cocycles on B3
G give symmetric monoidal struc-

tures.

Lemmas 2.4.1 and 2.4.2 together give the equivalences between group{categories
and cohomology, except for \balance" in the braided case. This is addressed in
2.4.3. The analysis in the symmetric case is only sketched.

Proof Suppose G is a discrete group. The \bar construction" gives the fol-
lowing model for the classifying space BG : n{cells are indexed by n{tuples
(g1; : : : ; gn) of elements in the group, so we denote the set of n{tuples by B

(n)
G .

Note that there is a single 0{cell, the 0{tuple ( ). There are n + 1 bound-
ary functions from n{tuples to (n − 1){tuples: @0 omits the �rst element;
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@n omits the last; and for 0 < i < n, @i multiplies the i and i + 1 entries:
@i(g1; : : : ; gn) = (g1; : : : ; gigi+1; : : : ; gn).

We get a space by geometrically realizing these formal cells:

BG =
(
[nB(n)

G ��n
�
= ’ :

Here �n is the standard n{dimensional simplex, and ’ is the equivalence
relation that for each n{tuple � identi�es � � @i�n with @i� ��n .

The cellular chains of this CW structure gives a model for the chain complex of
the space. Speci�cally, Ccn(BG) is the free abelian group generated by the for-
mal n{cells B(n)

G , and the boundary homomorphism @ : Ccn(BG)! Ccn−1(BG)
takes an n{tuple � to the class representing the boundary @� . The boundary
of the standard n{simplex �n is the union of the faces @i�n , but the ones
with odd i have the wrong orientation. Using the equivalence relation in BG
therefore gives @� = �ni=0(−1)i@i� .

Now suppose H is an abelian group. The model for chains of BG gives a
description for the cohomology H3(G;H). A 3{cocycle is a function � : B3

G !
H with composition �@ is trivial. @(a; b; c; d) = (b; c; d)− (ab; c; d)+ (a; bc; d)−
(a; b; cd) + (a; b; c), so the cocycle condition is

�(b; c; d) + �(a; bc; d) + �(a; b; c) = �(ab; c; d) + �(a; b; cd):

In the application the coe�cient group is units(R), with multiplication as group
structure. Rewriting the cocycle condition multiplicatively gives exactly the
pentagon axiom for associativity, so this gives a monoidal category.

Now we consider uniqueness. A 2{cochain is a function on the 2{cells, so �(a; b)
de�ned for all a; b 2 G. The coboundary of this is the 3{cochain obtained by
composing with the total boundary homomorphism. Written multiplicatively
(in units(R)) this is

(��)(a; b; c) = �(b; c)�(ab; c)−1�(a; bc)�(a; b)−1:

Thus a 3{cocycle �0 di�ers from � by a coboundary if

�0(a; b; c) = �(a; b)−1�(ab; c)−1�(a; b; c)�(b; c)�(a; bc):

Interpreting this as commutativity in the diagram

(ab)c
�(a;b;c)−−−−−! (a(bc)??y�(a;b)

??y�(b;c)

(ab)c (a(bc)??y�(ab;c)

??y�(a;bc)

(ab)c
�0(a;b;c)−−−−−! (a(bc)
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shows we can think of � as a natural transformation from the standard product
to itself, and then �0 is obtained from � by composition with this transforma-
tion. This gives an isomorphism between categories where the associativity
cocycles di�er by a coboundary.

The braided case uses the iterated bar construction. If G is abelian then BG
is again a group, this time simplicial or topological rather than discrete. The
same construction gives a simplicial (or �) space B(BG) whose realization is
B2
G . The �rst step in describing this is a description of the multiplication on

BG .

Cells in the product BG � BG are modeled on products �i � �j . The map
BG � BG ! BG is de�ned by subdividing these products into simplices, and
describing where in BG to send these simplices. The standard subdivision of
a product of simplices is obtained as follows: the vertices of �i are numbered
0; 1; : : : ; i. Suppose ((r0; s0); : : : ; (ri+j ; si+j)) is a sequence of pairs of these,
ie, vertices of �i � �j , then the function of vertices k 7! (rk; sk) extends to
a linear map to the convex hull �i+j ! �i � �j . Restrict the sequences to
ones for which one coordinate of (rk+1; sk+1) is the same as in (rk; sk), and
the other coordinate increases by exactly one. Then this gives a collection of
embeddings with disjoint interiors, whose union is the whole product.

We relate this subdivision to the indexing of simplices by sequences in G. Think
of a sequence (a1; : : : ; ai) as labeling edges in �i , speci�cally think of ak as
labeling the edge from vertex k − 1 to k . Then we label sub-simplices of a
product (a�) � (b�) by: if rk = rk−1 + 1 then label the edge from k − 1 to
k with ark , otherwise label it with bsk . This identi�es the sub-simplices as
corresponding to i; j{shu�es: orderings of the union (a�) [ (b�) which restrict
to the given orderings of a� and b� . Thus we can write

�i ��j = [ss(�i+j)

where the union is over i; j shu�es s. For future reference we mention that
the orientations don’t all agree: the orientation on s(�i+j) is (−1)s times
the orientation on the product, where (−1)s indicates the parity of s as a
permutation.

Now the product on BG is de�ned by: if s is a shu�e the sub-simplex s(�i+j)�
(a�)�(b�) goes to �i+j�s(a�; b�). It is a standard fact that this is well-de�ned
on intersections of sub-simplices.

As before the n{simplices of B(BG are indexed by points in the n{fold product
�nBG . The realization is again

B2
G =

(
[n�n � (�nBG)

�
= ’ :
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The equivalence relation identi�es points in the boundary of �n with points
in lower-dimensional pieces. Speci�cally we identify @k�n � (�nBG) with its
image in �n−1(�n−1BG), via the map which is the \identity" on the simplices,
and on the BG part multiplies the k− 1 and k entries if 0 < k < n, omits the
�rst if 0 = k , and omits the last if k = n.

This de�nition gives a cell complex model for B2
G . Unraveling, we �nd the cells

are of the form

�n �
(
�i1 � � � � ��in

�
�
(
(a1
�)� � � � � (an� )

�
;

where (ak�) is a sequence of length ik .

The cell structure on the space gives standard models for the chain and cochain
complexes. The �rst comment about the chain complex is that the cells that
involve the 0{cell of BG form a contractible subcomplex. The union is not
a topological subcomplex because these cells have faces that are not of this
type. However if a face does not involve a 0{cell then there is an adjacent face
with the same image but opposite sign, so they algebraically cancel in the chain
complex. Dividing out this subcomplex leaves \non-trivial" cells, corresponding
to non-empty sequences (a�).

We use this to describe the cohomology group H4 . Eventually the coe�cients
will be units(R), but to keep the notation standard we start with a group J
with group operation written as addition. Nontrivial 4{cells are in two families:

�1 � (�3) indexed by (a; b; c), and
�2 � (�1 ��1) indexed by ((a); (b))

Denote the cochain C4 ! J by �(a; b; c) on the �rst family, and �(a; b) on the
second.

The cocycle condition on (�; �) comes from boundaries of 5{cells. Nontrivial
5{cells are in families:

�1 � (�4) indexed by (a; b; c; d)
�2 � (�1 ��2) indexed by ((a); (b; c)), and
�2 � (�2 ��1) indexed by ((a; b); (c))

In the �rst family the boundary of the �1 factor is trivial, so the boundary is
the boundary of (a; b; c; d) as a 4{cell of BG . As before this gives the pentagon
axiom for �. Now consider ((a); (b; c)) in the second family. Boundaries of
products are given by @(x � y) = @(x) � y + (−1)dim (y)x � @y . In �2 �
(�1 � �2) the boundary on the middle piece vanishes so the total boundary
is @ � id � id − id � id � @ . In the �rst factor the boundary is @0 − @1 + @2 .
The �rst and last use projection of BG � BG to one factor, so map to cells of
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dimension less than 3 and are trivial algebraically. @1 uses multiplication in
BG so is given by (1; 2) shu�es. This contribution to the boundary is thus
−
(
(a; b; c)− (b; a; c)+(b; c; a)

�
. The boundary in the last coordinate applies the

BG boundary to (b; c). This contribution is −
(
((a); (c))−((a); (bc))+((a); (b))

�
.

Applying the cochain and setting it to zero gives

�(a; b; c) − �(b; a; c) + �(b; c; a) + �(a; c) − �(a; bc) + �(a; b) = 0:

This is exactly the hexagon axiom for � and �−1 , written additively. Bound-
aries of cells in the third family give the hexagon axiom for � and � .

The conclusion is that 4{dimensional cellular cochains in B2
G correspond exactly

to associativity and commutativity isomorphisms (�; �) satisfying the pentagon
and hexagon axioms, for the standard product on the category R[G].

The �nal step in the proof of Lemma 2.4.2 is seeing that coboundaries cor-
respond to endomorphisms, or more precisely natural transformations of the
standard product to itself.

The only nontrivial 3{cells in B2
G are of the form �1��2� (a; b). 3{cochains

therefore correspond to functions �(a; b). Boundaries of 4{cells are given by:
in the �1 � �3 case, the negative of the BG boundary (the negative comes
from the preceeding �1 factor). In the �2 � (�1 ��1) case all terms vanish
except the −@1 term in the �rst factor, which gives shu�es −

(
(a; b) − (b; a)

�
.

Therefore changing a 4{cocycle (�; �) by the coboundary of � changes �(a; b; c)
just as in the monoidal category case, and changes � by conjugation by �.

Finally we come to the symmetric monoidal case, using B3
G . This is a further

bar construction obtained as

B3
G =

(
[n(�n � (�nB2

G))
�
= ’

where the identi�cations in ’ involve a product structure on B2
G . We indicate

the source of the new information (symmetry of �) without going into details.

We are concerned with H5 , so functions on the 5{cells. Again we can divide
out the \trivial" ones involving 0{cells of BG at the lowest level. The only
nontrivial cells are products of �1 and 4{cells of B2

G , so these use the same
data (�; �) as 4{cochains on B2

G . Boundaries of 6{cells of the form �1 times
a 5{cell of B2

G involve only the second factor, so give the same relations as
in B2 (namely, the pentagon and hexagon axioms). The only other source of
relations are nontrivial 6{cells of the form �2� ((2{cell)� (2{cell)), where each
of these 2{cells (in B2 ) is of the form �1 � �1

(a) . The only nonzero term in
the boundary of such a 6{cell comes from @1 in �2 , which goes to �1 times
the product of the two 2{cells in B2 . We won’t describe this in detail, but
multiplying two cells of the form �1 � �1 involves multiplying the �rst two
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�1 factors to get a square, then subdividing this into two �2 . These two sub-
simplices have opposite orientation, so the product is a di�erence of cells of B2

of the form �2 � (�1 � �1). Vanishing of the cocycle on this therefore is a
relation of the form (written additively) �(�) − �(��) = 0. So much follows
from generalities. We don’t do it here, but explicit description of the product
structure shows the indices on the two �nal �1 factors is interchanged, so we
get exactly the symmetry relation

�(a; b) = �(b; a):

2.5 Numerical presentations

Here we get explicit \numerical presentations" of group{categories in the sense
of [3]. This amounts to direct computation of group cohomology, and we inter-
pret some of the formulae in terms of cohomology operations. We consider the
symmetric and braided{commutative cases in detail, and only remark on the
general monoidal case.

2.5.1 Proposition Suppose G is an abelian group with generators gi of order
ni , and R is a commutative ring.

(1) Braided{commutative group{categories over R with underlying group G
correspond to

i) �� with �2ni
i = 1, and �nii = 1 if ni is odd; and

ii) �i;j for i > j , with �nii;j = �
nj
i;j = 1.

(2) These categories are all tortile, and any tortile structure is obtained by
scaling a standard one by a homomorphism from G to the units of R .

(3) The symmetric monoidal categories correspond to �2
i = �i;j = 1.

Given a group{category we extract the invariants as follows: Choose a simple
object ĝi in the equivalence class gi . The commuting isomorphism �ĝi;ĝi is an
endomorphism of the object ĝi � ĝi , so is multiplication by an element of R .
De�ne this to be �i . If i > j the double commuting isomorphism ĝi � ĝj !
ĝj � ĝi ! ĝi � ĝj is also an endomorphism, so is multiplication by an element of
R . De�ne this to be �i;j .

Conversely given invariants we de�ne a group{category by de�ning associating
and commuting isomorphisms for the standard product on the standard group{
category R[G]. The content of 2.5.1 is then that there is a braided{monoidal
equivalence from a general group{category to the standard one with the same
invariants.
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2.5.2 The inverse construction

Suppose data as in 2.5.1 are given. If a is an element of G we let ai denote
the exponent of gi in a, so we have a = �ig

ai
i . Then de�ne:

� : (ab)c! a(bc) is multiplication by �i

�
1 if bi + ci < ni

�niaii if bi + ci � ni
� : ab! ba is multiplication by �i�j�

aibj
i;j

In the second expression �i;j means �i if i = j . Recall the exponent of �i is
at most 2ni , so the terms �niaii are 1 if ni is odd, and depend at most on the
parity of ai in general.

2.5.3 Example

Suppose G = Z=2Z and i 2 R is a primitive 4th root of unity. Then � =
�1 and � = �i give four group{categories that are not braided commutative
equivalent. The �1 cases are symmetric, and monoidally equivalent (ignoring
commutativity). The �i cases are genuinely braided. In these the associativity
(gg)g ! g(gg) is multiplication by −1, so they are monoidally equivalent to
each other but distinct from the standard category.

2.5.4 A relation to cohomology

Since group{categories correspond to cohomology classes, Proposition 2.5.1
amounts to an explicit calculation of cohomology. We discuss only a piece
of this: the associativity structure is the image of the braided structure under
the suspension

�: H4(B2
G; units(R))! H3(BG; units(R)):

Elements of H3(BG; units(R)) can be obtained as follows:

(1) take homomorphisms G! J ! Z=2! units(R), with J cyclic;

(2) the identity homomorphisms de�nes a class � 2 H1(BJ ;J);

(3) the Bockstein is an operation � : H1(BJ ;J)! H2(BJ ;J);

(4) applying the Bockstein to � and then cup product with � gives �[ �(�) 2
H3(BJ ;J);

(5) applying BG ! BJ in the space argument, and J ! units(R) in the
coe�cients gives an element in H3(BG; units(R)).

Working out the Bockstein and cup product on the chain level gives exactly the
formulas in the description of � above when �nii 6= 1.
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2.5.5 Representatives and products

To begin the construction we need:

(1) a standard representative for each isomorphism class of simple object; and

(2) an algorithm for �nding a parameterization of an arbitrary iterated prod-
uct by the standard representative.

Here we will use the solution to the word problem in the abelian group G. The
analysis of other categories uses the same approach, as far as it can be taken.
Descriptions of representations of sl(2), cf [4], and other small algebras [13] de-
pend on the description of speci�c representatives for simples using projections
on iterated products of \fundamental" representations. When special informa-
tion of this type is not available numerical presentations can be obtained by
numerically describing representatives and then parameterizing iterated prod-
ucts by direct computation [2, 3].

Choose representatives as follows: choose simple objects ĝi in the equivalence
class of the generator gi 2 G, for each i. A general element a 2 G has a unique
representation of the form a = gr11 g

r2
2 � � � g

rk
k , where 0 � ri < ni . We want to

get an object in the category by subsituting the simple object ĝi for the group
element gi , but for this to be well-de�ned we must specify a way to associate the
product. Associate as follows: each grii is nested left (ie, g4 = ((gg)g)g), and
then the product of these pieces is also nested left. Now subsituting standard
representatives for generators gives a standard simple object in each equivalence
class.

Next �x for each i an isomorphism �i : 1 ! gnii . Suppose W is a word with
associations, in the generators gi . W speci�es an iterated product, and we
want an algorithm describing a morphism from the standard representative for
this simple object into the product of the word W . Proceed as follows:

(1) If there is a pair gjg1 with j > 1 in the word (ignoring associations), then
associate to pair them, and apply �−1

g1;gj to interchange them. The result
is a simpler word W 0 with a morphism (of products) W 0 ! W formed
by composing associations and �gi;gj ;

(2) when (1) is no longer possible, then all g1 occur �rst. Repeat to move all
g2 just after the g1 , etc. Then associate to the left to obtain gr11 g

r2
2 � � � grnn .

(3) after (2) is done, if any ri is too large, compose with �i�id : gri−nii ! grii .

When this process terminates the result is a morphism from a standard repre-
sentative to the product of the word W .
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Lemma The morphisms resulting from this algorithm are well de�ned.

The point is that there are choices, but the �nal result is independent of these
choices. Suppose that we have two sequences of operations as described in the
algorithm. The coherence theorem for associations shows the outcome does not
depend on the order of associations, so problems can come only from the � in
(3) and the commuting isomorphisms in (1) and (2). There is no choice about
which operations are needed, but some choice in the order. If there is a choice
then the operations do not overlap, in the sense that each is of the form id���id,
and the nontrival part of one operation takes place in an identity factor of the
other. Thus the operations commute, and the result is well-de�ned.

2.5.6 The functor

We use the choices of 2.5.5 to de�ne a functor F : C ! R[G], and a natural
transformation between the two products.

Suppose a is an object of C . F(a) is supposed to be a function from G to R{
modules. De�ne F(a)(g) = homC(ĝ; a), where ĝ denotes the standard simple
object in the equivalence class g . The natural transformation from the product
in R[G] to the one in C is given by natural homomorphisms

�fr;sjrs=gghom(r̂; a)⊗ hom(ŝ; b) −! hom(ĝ; a � b):

These are de�ned by h1 ⊗ h2 7! (h1 � h2)m, where m : brs ! r̂ � ŝ is the
standard parameterization, ie, the morphism from the standard representative
of the product to the product of representatives.

The proposition is proved by showing this functor and transformation commute
with commutativity and associativity isomorphisms when the twisted structure
2.5.2 is used in R[G]. we begin with very special cases. Consider the commuta-
tivity �ĝi;ĝj : ĝi � ĝj ! gj � ĝi . If i < j then the right term is already canonical
and the algorithm gives �−1

ĝj ;ĝi
as parameterization of the left. The diagram

ĝi � ĝj
�ĝi;ĝj−−−−! gj � ĝix??id

x??�−1
ĝj ;ĝidgigj −−−−! dgigj

commutes if we put �i;j = �ĝj ;ĝi�ĝi;ĝj across the bottom.
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If i > j in the same situation then the left term is canonical and we get the
diagram

ĝi � ĝj
�ĝi;ĝj−−−−! gj � ĝix??�−1

ĝi;ĝj

x??id

dgigj −−−−! dgigj
which commutes with the identity across the bottom. The commutativity re-
quired in the model is therefore multiplication by8><>:

�i;j if i < j

�i if i = j

1 if i > j

which is the factor speci�ed in 2.5.2.

Associativity terms come from di�erent ways of reducing excessively large pow-
ers. Fix a particular generator gi , drop i from the notation, and consider the
association (ĝr ĝs)ĝt ! ĝr(ĝsĝt). If s + t < n then the parameterization algo-
rithm gives the same thing on the two sides, and the associativity is the identity.
If s+ t � n the reductions using � are di�erent:

(ĝn) � ĝr+s+t−n �−−−−! ĝr � (ĝn) � ĝs+t−nx??��id
x??id���id

(1) � ĝr+s+t−n −−−−! ĝr � (1) � ĝs+t−n

Putting multiplication by �niri on the bottom makes the diagram commute.
This corresponds to commuting gr past gn one g factor at a time. The point
is that this is di�erent from commuting the full products, which wouldn’t con-
tribute anything since gn = 1.

We now claim the hexagon axiom and these special cases imply the general
case, ie, the associativity and commutativity isomorphisms in C commute with
the natural transformation between products and the twisted associativity and
commutativity morphisms 2.5.2. The new feature in the general case is that
di�erent associations change the way a product is reduced to standard form.
Speci�cally, g3(g2g1) follows the standard algorithm in �rst commuting the g1

all the way to the left, while in (g3g2)g1 the g3g2 are commuted �rst. However
the fact that both orders give the same �nal morphism is exactly the stan-
dard crossing identity for braided{commutative categories. Independence of
association in arbitrary products follows from this by induction on the number
of out-of-order commutes. Once one can choose associations arbitrarily it is
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straightforward to check the general associativity and commutativity formulae
by choosing special association patterns.

The general associative (ie, non-braided) case of classi�cation is not considered
in this section, but at this point we can indicate what is involved when the
underlying group is abelian. As above choose simple objects representing gen-
erators, and reduction isomorphisms �i : 1 ! ĝnii . Since the underlying group
is abelian there are isomorphisms si;j : ĝi� ĝj ! ĝj � ĝi . Use these in place of the
commuting isomorphisms in de�ning morphisms to products via the standard
algorithm. The same proof shows the morphisms produced by the algorithm
are well-de�ned, since special properties of � were not used. The di�erence
comes in associations. As above, when products are reduced in blocks speci�ed
by associations rather than all at once, the \commuting" isomorphisms si;j oc-
cur out of the standard order. Now, however, the crossing identity is no longer
valid so each of these out-of-order interchange contributes a correction factor.
These are the new ingredients of the general case.

2.5.7 Order conditions

The arguments of 2.5.6 give uniqueness, ie, that there is a braided{monoidal
equivalence from a group{category C to the standard one with the same invari-
ants. However this implicitly uses the existence assertions, that the invariants
of C satisfy the order conditions, and conversely if a set of invariants satisfy
the order conditions then the twisted structure on R[G] does in fact give a
braided{monoidal category. We will discuss the cyclic case, ie, the �i which
commute a generator with itself, since this has the extra factor of 2 and the
connection to associativity. The conditions on �i;j which commutes distinct
generators are more routine and are omitted.

Fix a generator of G, and drop the index i from the notation gi . Thus the
generator is g , its order is n, ĝ is the chosen simple object in the equivalence
class, �: 1 ! ĝn is the chosen isomorphism implementing the order, and the
commutativity isomorphism ĝ � ĝ ! ĝ � ĝ is multiplication by � . Finally de�ne
� 2 R so that the diagram

ĝ
�−−−−! ĝ??y��id

??yid��

(ĝ � ĝn−1) � ĝ −−−−! ĝ � (ĝn−1 � ĝ)
commutes, where the top morphism is multiplication by � and the bottom is
the associativity isomorphism in the category. The conditions in 2.5.1 for a
single generator are equivalent to:
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Lemma �n = � = �−1

The hexagon axiom for commutativity isomorphisms asserts that the diagram
commutes (where unmarked arrows are associativities):

(g � gk−1) � g −−−−! g � (gk−1 � g)??y�g;gk−1

??y�g;gk
(gk−1 � g) � g (gk−1 � g) � g??y ??y
gk−1 � (g � g) �g;g−−−−! gk−1 � (g � g)

The reduction algorithm of 2.5.5 give canonical maps from a standard gk+1

into these objects, and we think of these as bases for hom(gk+1; �). If k < n
then the associativities are all \identities" (preserve these canonical bases).
The commuting maps multiply by elements of R , so for these elements the
diagram gives a relation �g;gk = �g;gk−1�g;g . �g;g is multiplication by � , so
this subsitution and induction gives �gj ;gk = �jk , if j; k < n.

Now consider the diagram with k = n. The previous argument still applies
to the left side and bottom, and shows the diagonal composition is �n . � is
de�ned so the top associativity takes � � id to �(id � �). We can evaluate the
upper right � term using the unit condition. This condition requires that the
diagram commutes:

g � 1
�g;1−−−−! 1 � g??y�g ??yg�

g
=−−−−! g

Composing the inverse of this with �: 1! gn and using naturality gives

g
=−−−−! g??yid��

??y��id

g � gn �g;gn−−−−! gn � g
This shows the upper right side in the main diagram takes id � � to � � id.
Therefore going across the top and down the right side takes the standard gener-
ator to � times the standard generator. Comparing with the other composition
gives �n = �.

There is a second hexagon axiom in which �a;b is replaced by �−1
b;a . The same

argument applies to this diagram to give (�−1)n = �. This completes the
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proof of the identity. In fact this proof shows that the identities are exactly
equivalent to commutativity of the diagrams above, so the identity implies
the hexagon axioms. To complete the argument it must be veri�ed that the
formula for association in 2.5.2 satis�es the pentagon axiom if �2 = 1. This is
straightforward so is omitted.

2.5.8 Balance

The �nal task is to show that braided group{categories are balanced, ie, there
is a functor �(a) so that (writing the operations multiplicatively)

�(a; b)−1 = (�(a) � �(b))�(b; a)�(ab)−1:

In fact �(a) = �(a; a) works.

Lemma The commuting isomorphism � in a braided group{category satis�es

�(ab; ab) = �(a; a)�(b; b)�(a; b)�(b; a)

Note this relation would follow if � were bilinear, but this is usually not the
case.

Proof In the following we use freely the fact that R is a commutative ring, so
even though the identities are written multiplicatively they can be reordered at
will. First, the hexagon axiom for (ab; a; b) gives

(1) �ab;ab = �ab;a�ab;b�
−1
ab;a;b�

−1
a;b;ab

Next the pentagon axiom for (a; b; a; b) gives

�a;ab;b�
−1
ab;a;b�

−1
a;b;ab = �−1

a;b;a�
−1
b;a;b:

Subsituting this into (1) gives

(2) �ab;ab = (�ab;a�−1
a;b;a)(�ab;b�−1

b;a;b)

In the inverse hexagon for (a; b; a) two � terms cancel to give

�a;ba�
−1
a;b;a = �a;b�a;a

Subsituting this, and the similar formula obtained by interchanging a and b,
into (2) gives the identity of the lemma.
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3 Homological �eld theories

The \theory" based on nth homology is described in 3.1. It is de�ned for
general topological spaces, but is not a �eld theory in this generality. Criteria
for this are given in 3.1.3. In particular the Hn theory is modular on (n+ 1){
complexes, but is a nonmodular �eld theory on (n + 2){manifolds. In 3.2 the
H1 theory on 2{complexes is shown to agree with the categorical construction
using a group{category. More general theories are obtained in Section 4 by
twisting the dual cohomology-based theories.

3.1 The Hn �eld theory

The objective is to use homology groups to de�ne a topological �eld theory.
The de�nition is given in 3.1.1, and hypotheses implying the �eld theory ax-
ioms are given in 3.1.3. Examples are given in 3.1.4, and in particular the Hn

theory is a non-modular �eld theory on Mn+2 manifolds. In 3.1.5 the H1 the-
ory on 2{complexes is shown to be the category-based theory de�ned using the
canonical group{category. In the following \space" will mean �nite CW com-
plex, \subspace" means subcomplex. These assumptions imply that homology
groups are �nitely generated, and pairs satisfy excision, long exact sequences,
etc.

3.1.1 De�nition

Fix a commutative ring R , a �nite abelian group G and a dimension n. For a
pair (Y;W ) de�ne the \state space" by

Z(Y;W ) = R[Hn(Y;W ;G)]:

Next suppose X � Y0[Y1 and Y0\Y1 = W . Then the induced homomorphism
ZX : Z(Y0;W )! Z(Y1;W ) is de�ned by: for y 2 Hn(Y0;W ;G),

ZX(y) = �fxj@0x=−yg@1x:

The x in the sum are elements of Hn+1(X;Y0[Y1;G), and the @i are boundary
homomorphisms @i : Hn+1(X;Y0 [ Yn;G)! Hn(Yi;W ;G).

ZX can be described a bit more explicitly using the exact sequence

Hn+1(X) −! Hn+1(X;Y0 [ Y1) @−! Hn(Y0)�Hn(Y1) i−! Hn(X):

Let k be the order of the image of Hn+1(X) in Hn+1(X;Y0 [ Y1). Then

ZX(y) = k�fy1 2 Hn(Y1) j i(y1) = i(y)g:

We want to �nd conditions under which this de�nes a topological �eld theory,
and when the theory is modular.
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3.1.2 Axioms

Domain categories are de�ned in [17] as the appropriate setting for topological
�eld theories, but full details are not needed here. We take the objects (space-
times) of the category to be a subcategory T of topological pairs (X;Y ). The
boundary objects are the possible second elements Y . The de�nition above sat-
is�es the tensor property (disjoint unions give tensor products of state spaces,
morphisms) on any T because disjoint unions give direct sums in homology.
The composition property requires that if X1 : Y0 ! Y1 and X2 : Y1 ! Y2 are
bordisms then ZX2ZX1 = ZX1[X2 . This is not satis�ed for completely general
T .

In a modular domain category three levels of objects are speci�ed. Boundary
objects have corner objects as their boundaries and certain identi�cations are
allowed. A �eld theory on a modular domain category has relative state spaces
Z(Y;W ) de�ned for a (boundary, corner) pair, and induced homomorphisms
de�ned for boundaries with corners. Here we assume the extended boundary
objects (Y;W ) are certain speci�ed topological pairs, glueing is the standard
topological operation, etc, and then de�nition 3.1.1 is given in the modular
formulation. If Z is a �eld theory on a modular domain category then for
each corner object W the state space Z(W � I;W � @I) has a natural ring
structure, and if Y is a boundary object with boundary W1[W2 then the state
space Z(Y;W1 [W2) has natural module structures over the corner algebras
Z(Wi�I;Wi�@I). A �eld theory is modular if the state space of a glued object
is obtained by \algebraically" glueing the state space of the original object.
More speci�cally suppose (Y; @Y ) is a boundary object with a decomposition
of its boundary in the corner category, @Y = W1[W2[V , and W1 ’ �W2 . Then
there is a glueing in the category, ([WY; V ), and a natural homomorphism of
state spaces

Z(Y;W1 [W2 [ V ) −! Z([WY; V ):

The two copies of W give two module structures on Z(Y;W1 [W2 [ V ) over
the ring Z(W � I;W � @I), and the di�erence between the two vanishes in
Z([WY; V ). This gives a factorization of the natural homomorphism through

(�) ⊗Z(W�I;W�@I)Z(Y;W1 [W2 [ V ) −! Z([WY; V ):

The �eld theory is said to be modular if this homomorphism is an isomorphism.

In the following T is a domain category whose objects are (certain speci�ed)
topological spaces. Examples are given in 3.1.4.
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3.1.3 Lemma Z satis�es the composition property (so de�nes a �eld theory)
on T provided: if (X;Y ) is a T pair and Y = Y1 [W Y2 is a T decomposition
then

Hn+2(X;Y1 [ Y2;G) @−! Hn+1(Y1;W ;G)

is onto. If T is a modular topological domain category then Z is modular
provided in addition: if [WY is a glueing in the boundary category, with
boundary V , then the homomorphism

Hn+1([WY; V ;G) @−! Hn(W ;G)

is onto.

3.1.4 Examples

(1) Z is a modular �eld theory on the modular domain category of (n+ 1){
complexes, ie, with (objects, boundaries, corners) = ((n+ 1){complexes,
(n){complexes, (n−1){complexes). Slightly more generally, it is su�cient
to have the homotopy type of complexes of the indicated dimensions. The
composition and modularity conditions are satis�ed because the groups
involved are all trivial.

(2) Z is a �eld theory on the domain category of oriented (n+ 2){manifolds,
ie, with (objects, boundaries) = ((n+ 2){manifolds, (n+ 1){manifolds).
In this case Hn+2(X;Y1[Y2;G) and Hn+1(Y1;W ;G) are both isomorphic
to G generated by the respective fundamental classes, and the boundary
homomorphism is an isomorphism. However the theory is not modular
on the modular domain category with corners n{manifolds. The crite-
rion given in the lemma fails because Hn(W ;G) ’ G, and when Y is
obtained by identifying two copies of W the boundary homomorphism
@ : Hn+1(Y; @Y ) ! Hn(W ) is trivial. More directly, the theory is not
modular because the modularity construction does not account for the
image of the fundamental class of W in Hn(Y; @Y ).

Proof of 3.1.3 The composition property for (X1; Y0[W Y1) and (X2; Y1[W
Y2) is that the functions ZX1[Y1X2 and ZX2ZX1 agree. Both are de�ned as
sums of @2 of homology classes, so we need to show there is an appropriate
bijection between the index sets.

There is a commutative diagram with excision isomorphisms on the top and
bottom,

Hk(X1 [Y1 X2; Y0 [ Y1 [ Y2) ’−−−−! Hk(X1; Y0 [ Y1)�Hk(X2; Y1 [ Y2)??y@ ??y@X1
1 −@

X2
1

Hk−1(Y0 [ Y1 [ Y2; Y0 [ Y2) ’−−−−! Hk−1(Y1;W )
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Using this to replace terms in the long exact sequence of the triple X1[Y1X2 �
Y0 [ Y1 [ Y2 � Y0 [ Y2 gives

Hn+2(X1; Y0 [ Y1)�Hn+2(X2; Y1 [ Y2) @1−@1−−−−! Hn+1(Y1;W ) i−!

Hn+1(X1 [Y1 X2; Y0 [ Y2)
j−! Hn+1(X1; Y0 [ Y1)�Hn+1(X2; Y1 [ Y2)

@1−@1−−−−! Hn(Y1;W )

The index set for the sum in ZX1[X2 is the middle term, while the index set
for the composition is the kernel of the lower boundary homomorphism. The
function j between these is onto by exactness. For it to also be one-to-one we
need i = 0, or equivalently the upper boundary homomorphism is onto. But
this is the sum of two morphisms, both of which are onto by the hypothesis of
the lemma, so it is onto.

Now consider the modular case. The ring structures are obtained by applying
Z to (W � I) � I , regarded as a bordism rel ends from W � I [W � I to
W � I . Similarly Y [W W � I ’ Y , so Y � I can be regarded as a bordism
Y [W � I ! Y . Applying Z to this gives the module structure. In the case
at hand Z(W � I;W � @I) = R[Hn(W � I;W � @I)], and the ring structure
is pointwise multiplication in the free module. (This means if v;w are basis
elements then vw = 0 if v 6= w , and vw = w if v = w .) There are isomorphisms
Hn(W � I;W � @I) @i−! Hn−1(W ) for i = 0; 1, and @0 = −@1 . The module
structure on R[Hn(Y; V [W )] using the 1 end of W�I is: if y 2 Hn(Y; V [W ),
v 2 Hn−1(W ) then vy = 0 if @W y 6= v , and vy = y if @W y = v . Using the
other end of W � I gives 0 or y depending on whether or not @W y = −v .

This description of the ring and module structures identi�es the algebraic glue-
ing on the left in the modularity criterion (�) as the free module generated by
y 2 Hn(Y;W1 [W2 [ V ;G) satisfying @W1y = −@W2y .

Now consider the long exact sequence of the triple [WY � V [W � V :

Hn+1([WY; V [W ) @−! Hn(W ) −! Hn([WY; V ) −!Hn([WY; V [W )
@−! Hn−1(W )

The state space of the geometric glueing is generated by the third term, while
we have identi�ed the algebraic glueing as generated by the kernel of @ in the
fourth term. The homomorphism of (�) is induced by the set-level inverse of
the third homomorphism, so we need to show the third homomorphism is an
isomorphism onto the kernel of @ . Exactness implies it is onto. For injectivity
we need the second homomorphism to be 0, or equivalently the �rst @ to be
onto. But this is exactly the hypothesis of the lemma.
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3.2 Connections to categories

This gives the �rst direct connection between the homological theories and
categorical constructions. The general case is in Section 4.

Proposition The canonical untwisted group{categories are the only ones that
de�ne modular �eld theories on 2{complexes, and the corresponding �eld the-
ories are the H1 theories of 3.1.1.

Proof The categorical input for �elds on 2{complexes is a symmetric monoidal
category satisfying a symmetry condition. Symmetric monoidal group{categor-
ies are classi�ed in 2.3(3), or 2.5.1(3). The �rst part of 3.1.4 corresponds to the
fact that of these only the canonical examples satisfy the symmetry conditions.

The symmetry condition concerns nondegenerate pairings. A nondegenerate
pairing on a is another object �a and morphisms

�a : 1! �a � a
�a : a � �a! 1

satisfying

a ’ a � 1 id��a−−−! a � (�a � a) associate−−−−−! (a � �a) � a �a�id−−−! 1 � a ’ a

�a ’ 1 � a �a�id−−−! (�a � a) � �a associate−−−−−! �a � (a � �a) id��a−−−! �a � 1 ’ �a

are both identity maps. The construction requires a �xed choice of pairings
on the simple objects. This is equivalent to an additive assignment of pairings
to all objects, and this in turn is equivalent to a \duality" functor making the
category \autonomous", [21] or a nondegenerate trace function.

The construction requires the symmetry condition ��a = �a��a;a . If a 6= �a then
we can arrange this to hold by taking it as the de�nition of ��a . If a = �a the
condition is equivalent to �a;a being the identity. But this is the only possibly
nontrivial invariant in 2.5.1(3), so the category is standard.

Now we show that the H1 theory corresponds to the standard group{category.
One way to do this is to go through the construction [17, 2] and see homology
emerge. This is illuminating but too long to reproduce here. Instead we use
the reverse construction, extracting a category from a �eld theory. This goes
as follows: let \pt" denote the connected corner object in the domain category.
The state space of Z(pt � I) has a natural ring structure, and additively the
category is the category of modules over this ring. The state space of the cone
on three points Z(c(3)) has three module structures over the ring. The product
on the category is de�ned by tensoring with this trimodule.
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Z(pt� I) = R[H1(I; @I;G)] = R[G]. The ring structure is obtained by consid-
ering the boundary of I2 as the union of three intervals, with two incoming and
one outgoing. If (g; h) 2 H1(I; @I)�H1(I; @I) then the image in R[H1(I; @I)]
is obtained by summing over elements of H2(I�I; @I�I;G) whose restrictions
to the incoming boundary intervals is g and h. H2(I � I; @I � I;G) = G, and
the restrictions are identities. Thus (g; h) goes to 0 if g 6= h, and to g if they
are the same. The ring is therefore R[G] with componentwise multiplication.
There is an antiinvolution on this ring induced by interchanging ends of the
interval. This is the involution on R[G] induced by inverse in G. The category
of modules over this ring is exactly the G{graded (left) R{modules. Denote
the category by C . Simple objects are R[g] as in 2.2.1: a copy of R on which
multiplication by h 2 G is zero if h 6= g and is the identity if h = g .

Now let c(3) denote the cone on three points. The standard cell structure is
three invervals joined at a point. Using cellular chains gives an explicit de-
scription of H1(c(3); 3;G) as f(a; b; c) 2 G3 j abc = 1g (the three generators
correspond to the three 1{cells, the relation comes from the boundary homo-
morphism to the chains on the vertex). The three (left) module structures over
R[H1(I; @I;G)] are de�ned by glueing intervals on the three endpoints. Thus
in the �rst structure g in the ring takes (a; b; c) to 0 if g 6= a, and (a; b; c) if
g = a. The product on the category

C � C −! C

is de�ned by: begin with M and N left modules over the ring. Convert these
to right modules using the antiinvolution in the ring, and tensor with the �rst
two module structures on Z(c(3)). Then M �N is the result, with respect to
the third module structure. Now we can work out the product of two simple
objects R[g] � R[h]. The involution converts these to right modules on which
g−1 , h−1 respectively act nontrivially. Tensoring with the �rst two coordinates
in R[f(a; b; c) 2 G3 j abc = 1g] kills everything with a 6= g−1 , b 6= h−1 , so
leaves exactly R[gh]. Therefore the product is the standard product in R[G].

This does not yet identify the category as standard: according to 2.3.2 any
group{category is equivalent to the standard one with the standard product.
The di�erences are in the associativity and commutativity structures. Here
commutativity comes from the involution on the cone on three points that in-
terchanges the two \incoming" ends. This interchanges two of the 1{cells in
the cell structure, so interchanges the corresponding generators in the cellu-
lar 1{chains. Thus in homology it interchanges the �rst two coordinates in
f(a; b; c) 2 G3 j abc = 1g. Following through the tensor product gives the
standard \trivial" commuting isomorphism for R[g] �R[h] = R[g]⊗R[h]. This
�nishes the argument because the commutativity determines the associativity.
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Standardness of associativity is also easy to see directly: associating isomor-
phisms come from two ways to glue together two cones on three points to get
(up to homotopy) the cone on four points. Following this through gives the
standard trivial associations.

4 Cohomological �eld theories

Homology will probably be the most natural setting for �eld theories, but so far
only the �elds for standard group{categories can be described this way. In this
section we restrict to manifolds and show how to twist the dual theory theory
based on cohomology. More speci�cally �x a space E with two nonvanishing
homotopy groups �dE = G and �n+dE = units(R), and suppose E is simple if
d = 1. We construct state spaces and induced homomorphisms from homotopy
classes of maps to this space. A simple case is described in 4.1.1 to show this
gives a twisted version of the Hn(�;G) theory. The full de�nition occupies the
rest of 4.1. The �eld axioms and modularity are veri�ed in 4.2. The n = 1
cases are shown to be Reshetikhin{Turaev constructions from group{categories
in 4.3.

4.1 The de�nition

The general construction is a bit complicated so we begin with a special case in
4.1.1. The domain category for the theory is de�ned in 4.1.2; the special case
of 4.1.1 is supposed to explain why this is the right choice. Once the objects
are known the full de�nition can be presented.

4.1.1 A special case

The Postnikov decomposition for the �xed space E is

Bn+d
units(R) −! E −! BdG

k−! Bn+d+1
units(R):

The �rst space Bn+d
units(R) has the structure of a topological abelian group, and

the last space is the classifying space for principal bundles with this group. In
particular E is a principal bundle with an action of Bn+d

units(R) .

Now suppose Y is a connected oriented manifold of dimension n + d. The
group [Y=@Y;Bn+d

units(R)] = Hn+d(Y; @Y ; units(R)) is dual to H0(Y ; units(R)) =
units(R). This acts on the set of homotopy classes [Y=@Y;E] and the quotient
of this action is (when G is abelian)

[Y=@Y;BdG] = Hd(Y; @y;G) ’ Hn(Y ;G):
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De�ne the state space Z(Y ) to be the set of functions [Y=@Y;E] ! R that
commute with the action of units(R).

If E is the product Bn+d
units(R)�BdG then the homotopy classes are also a product

[Y=@Y;E] = units(R)�Hn(Y ;G) and the set of units(R){maps is R[Hn(Y ;G)],
exactly the de�nition of Section 3. Thus the k{invariant of E gives a way to
twist the R{module generated by Hn(Y ;G). In the present case (Y connected)
this can also be described as: [Y=@Y;E] is a principal units(R) bundle over
Hn(Y ;G). The state space is the space of sections of the associated R{bundle.

Note to get the key canonical identi�cation of [Y=@Y;Bn+d
units(R)] with units(R)

we needed the boundary objects to be oriented manifolds of dimension n+ d.

4.1.2 The domain category

The �eld theory will be de�ned on (n + 1 + d){dimensional thickenings of
(n+1){complexes. The de�nitions of state spaces and induced homomorphisms
use only the manifold structure. Restrictions on the homotopy dimension are
needed for the �eld axioms to be satis�ed.

(1) Corner objects are compact oriented (n + d − 1){manifolds with the
homotopy type of an (n − 1){complex, together with a set of maps
wi : W=@W ! E , one in each homotopy class;

(2) relative boundary objects are compact oriented (n + d){manifolds with
the homotopy type of an n{complex, with boundary given as a union
@Y = @̂Y [ W of submanifolds, and W has the structure of a corner
object (ie, homotopy dimension n− 1 and a choice of maps wi ); and

(3) \spacetime" objects are compact oriented (n + d + 1){manifolds with
homotopy type of (n + 1){complexes, boundary given as a union @X =
@̂X [ Y of submanifolds, and Y having the homotopy type of an n{
complex.

The \internal" boundary (in the domain category) of an object (X; @̂X [Y ) is
Y with @̂Y = @Y and W = ;. The internal boundary of Y with @Y = @̂Y [
W is W . Morphisms are orientation-preserving homeomorphisms, required to
commute with the �xed reference maps on corners. The choices of maps in
(1) are typical of the rigidity seen in corner objects, see [17]. The involution
X 7! X is de�ned by reversing the orientation.
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4.1.3 The de�nition

Suppose Y with @Y = @̂Y [ W and wi : W=@W ! E is a relative bound-
ary object. De�ne [Y=@̂Y;E]0 to be maps that agree with one of the stan-
dard choices on W , modulo homotopy rel @Y . The group [Y=@Y;Bn+d

units(R)] =
Hn+d(Y; @Y ; units(R)) acts on this set, as in 4.1.1. Caution: the group op-
eration in units(R) is written multiplicatively . The operations in cohomology
groups and their action on homotopy classes into E are therefore also written
multiplicatively. De�ne

� : Hn+d(Y; @Y ; units(R))! units(R)

by evaluation on the fundamental class of Y . When Y is connected (as in 4.1.1)
this is an isomorphism, but we do not assume that here. De�ne the state space
for the theory by

Z(Y;W ) = hom�([Y=@̂Y;E]0; R)

where hom� indicates functions � : [Y=@̂Y;E]0 ! R so that if f 2 [Y=@̂Y;E]0
and a 2 Hn+d(Y; @Y ; units(R)) then �(af) = �(a)�(f).

Now we de�ne induced homomorphisms. The general modular setting is an
object with boundary divided into \incoming" and \outgoing" pieces, and the
incoming boundary further subdivided. Speci�cally suppose Y1 is a relative
boundary object with corner a disjoint union W1 tW 01 tW2 , an isomorphism
W 01 ’ W 1 is given, and [W1Y1 is the object obtained by identifying W 01 and
W1 . Suppose Y2 is a boundary object with corner W2 , and �nally X is an
object with internal boundary ([W1Y 1) [W2 Y2 . Then we de�ne

ZX : Z(Y1;W1 tW 01 tW2) −! Z(Y2;W2)

as follows. An element in the domain is a function � : [Y1=@̂Y1; E]0 ! R . The
output is a function [Y2=@̂Y2; E]0 ! R , so we can de�ne it by specifying its value
on a map f : Y2=@̂Y2 ! E . We �rst suppose each component of X intersects
either Y1 or Y2 . Then

ZX(�)(f) = �[g]�2(a)�(ĝjY1):

The sum is over homotopy classes of g : X=@̂X ! BdG whose restriction to Y2

is homotopic to the projection of f . When G is abelian (eg if d > 1) this is
dual to index set used in the homological version. ĝ : X=@̂X ! E is a lift of
g which is standard on W1 and W2 , and a 2 Hn+d(Y2; @Y2; units(R)) so that
a � ĝjY2 � f . When each component of X intersects either Y1 or Y2 such a lift
exists, and since ĝjY2 and f project to homotopic maps in BdG they di�er by
the action of some such element a.
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If Y1 and Y2 are empty then we de�ne an element of R by

ẐX = �[g]k(g)([X]):

Here the sum is again over X=@X ! BdG , k : BdG ! Bn+d+1
units(R) is the k{invariant

of E , (see 2.3.2 and 4.1.1) and k(g)([X]) is the evaluation of the resulting
cohomology class on the fundamental class of X .

Now de�ne ZX for general X . Write X as X1 tX2 , where X1 are the com-
ponents intersecting Y1 [ Y2 and X2 are the others. If X1 is nonempty de�ne
ZX as ZX1 multiplied by ẐX2 . If X1 is empty then Z(Yi) are canonically
identi�ed with R and ZX is multiplication by ẐX .

4.1.4 Lemma ZX is well-de�ned, and takes values in Z(Y2;W2).

Proof The things to be checked are that �2(a)�(ĝjY1) does not depend on
the choice of lift ĝ and a, and that the resulting function [Y2=@̂Y2; E]0 ! R
commutes appropriately with the action of units(R).

Suppose g0 is another lift of a map g . There is b 2 Hn+d(X; @̂X; units(R))
with g0 = b � ĝ . Denote the restrictions of b to Y1 and Y2 by b1 and b2
respectively, then we have f � a�ĝjY2 � a(b2)−1(b2)�(ĝjY2) � a(b2)−1�(b�ĝ)jY2 �
a(b2)−1 � (g0)jY2 . Therefore the element of Hn+d(Y2; @Y2; units(R)) associated
to g0 is ab−1

2 , and the corresponding contribution to ZX is �2(ab−1
2 )�(g0jY1).

Since �2 is a homomorphism and � is an �1 {homomorphism,

�2(ab−1
2 )�((b � ĝ)jY1) = �2(a)�2(b−1

2 )�1(b1)�(ĝjY1):

Thus we have to show �2(b2)−1�1(b1) = 1. � is de�ned by evaluation on funda-
mental classes. The orientation of Y2 is the opposite of the induced orientation
of @X , and the complement of Y1 [ Y2 in @X is taken to the basepoint. Thus
�2(bjY2)−1�1(bjY1) is obtained by evaluating bj@X on the fundamental class of
@X . But bj@X extends to a cohomology class (b) on X , and the image of
[@X] in the homology of X is trivial (it is the boundary of the fundamental
class of X ). Thus the evaluation is trivial; 1 since we are writing the structure
multiplicatively.

To complete the lemma we show ZX(�) is an �2 {morphism. Suppose f , � as
above, and c 2 Hn+d(Y2; @Y2; units(R)). Then

�2(c)ZX(�)(f) = �2(c)�[g]�2(a)�(ĝjY1)
= �[g]�2(ac)�(ĝjY1)
= ZX(�)(c � f)

The third line is justi�ed by the fact that a � ĝjy ’ f if and only if ac � ĝjy ’ c �f
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4.2 The �eld axioms

We will not be as precise as in 3.1.3 about the exact conditions for �eld axioms,
but concentrate on the case of interest. We continue the standard assumption
that E has two nontrivial homotopy groups, G in dimension d and units(R)
in dimension n+ d.

4.2.1 Proposition Z de�ned in 4.2 is a modular �eld theory on (n+ d+ 1){
dimensional thickenings of (n+1){complexes. If E is a product (and G abelian
if d = 1) then Z is equal to the homological theory of 3.1.

Proof Consider the composition of X1 : Y1 ! Y2 and X2 : Y2 ! Y3 . Sup-
pose �rst that each component of X1 [Y2 X2 intersects either Y1 or Y3 . In
this case ZX1[X2 and ZX2ZX1 are given by sums over [(X1 [X2)=@̂;BdG] and
[X1=@̂;B

d
G] � [X2=@̂;B

d
G] respectively. Since these are dual to the index sets

used in the homological theory, that proof shows that under the given dimen-
sion restrictions the natural function between the two is a bijection.Thus we
need only show that the corresponding terms in the sum are equal. Suppose
� 2 Z(Y1) and f 2 [Y3=@̂Y3; E]0 , and consider the image of � evaluated on
f . Choose an element g : (X1 [ X2)=@̂ ! BdG in the index set, and let ĝ be
a lift, with a 2 Hn+d(Y3; @Y3; units(R)) so that a � (ĝjY3) � f . The term in
ZX1[X2 is �3(a)�(ĝjY1). Use restrictions of ĝ as lifts of the restrictions of g to
X1 and X2 . Since these agree on Y2 there is no �2 correction factor, and the
corresponding term in ZX2ZX1 is exactly the same.

Now consider a component of X1 [X2 disjoint from Y1 and Y3 , so we want to
show that ZX2ZX1 is multiplication by the ring element ẐX1[X2 . If the union is
disjoint from Y2 as well then it lies entirely in one piece and this is trivially true.
Thus suppose X1 : ; ! Y2 , X2 : Y2 ! ;, and Y2 intersects each component of
the union. Again the index sets match up so we show corresponding terms are
equal. Choose a map g : (X1 [X2)=@(X1 [X2)! BdG , and choose lifts ĝ1 and
ĝ2 of the restrictions to the two pieces. Note g itself may not lift, so the two
lifts may not agree on Y2 . Let a be a class with a � (ĝ1jY2) = ĝ2jY2 . Then we
want to show a evaluated on the fundamental class of Y2 is the same as kg
evaluated on the fundamental class of X1 [X2 .

For convenience insert a collar on Y2 , so the union is X1 [ Y2 � I [X2 . Now
consider the lifts on the pieces as a lift of g on the disjoint union. This lift gives
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a factorization of kg through Y2 � I=@ :

(X1 tX2)=@̂ ĝ1tĝ2−−−−! E??y ??y
(X1 [ Y2 � I [X2)=@

g−−−−! BdG??y ??yk
Y2 � I=@ −−−−! Bn+d+1

units(R)

The lower map gives kg as the image of an element in Hn+d+1(Y2 � I; @(Y2 �
I; units(R)). The suspension isomorphism

Hn+d(Y2; @Y2; units(R))! Hn+d+1(Y2 � I; @(Y2 � I; units(R))

takes a to this element. To see this, interpret the �rst class as the classifying
map for a principal bundle over Y2 � I �lling in between the restrictions of ĝi
to Y2 . The homotopy extension property for principal bundles shows this is the
mapping cylinder of a bundle isomorphism, which must be the one classi�ed by
a. Since evaluation of a on [Y2] is equal to the evaluation of the suspension of
a on [Y2 � I], it follows that �2(a) = kg([X]).

This completes the proof of the composition property for induced homomor-
phisms. The proof of modularity is similar to the homology case, and in fact
the algebra associated to a corner object is exactly the same.

Suppose W is a corner object, so an oriented (n + d − 1){manifold with the
homotopy type of a (d−1){complex and chosen representatives wi for homotopy
classes [W=@W;E]. The �rst claim is that there is a canonical isomorphism

Z(W � I) �−! functions([W=@W;BdG]; R);

and this takes the corner algebra structure to the product induced by mul-
tiplication in R . The de�nition of Z(W � I) is hom�([(W=@W ) � I;BdG]0 ,
where the subscript 0 indicates that the restrictions to W � f0; 1g are im-
ages of standard representatives wi . The �rst point is that the homotopy
(d − 1){dimensionality of W implies that [W=@W;E] ! [W=@W;BdG] is a bi-
jection. Since the restrictions to the ends of a map (W=@W ) � I ! BdG are
homotopic, this means the maps on the ends are actually equal. Next, again
using dimensionality, a map (W=@W ) � I ! BdG which is equal to pwi on
each end is itself homotopic rel ends to the map which is constant in the I
coordinate. This map has a canonical lift to (W=@W ) � I ! E which is
standard on the ends, namely wi applied to projection to the �rst coordi-
nate. Applying Hn+d(W � I; @(W � I);units(R) to this gives a surjection
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[W=@W;BdG]�Hn+d(W � I; @(W � I);units(R)! [(W=@w)� I;E]0 . Applying
hom�(�; R) to this gives the required bijection.

The algebra structure in the algebra, or more generally the action on a state
space, is described as follows: Suppose Y is a relative boundary object with
@Y = @̂Y [W1[W2 . A function � : [W1=@W1; B

d
G]! R acts on � : [Y=@̂Y;E]0

! R to give another function like �. The new function can be speci�ed by its
action on f 2 [Y=@̂Y;E]0 , by

(� � �)(f) = �(f jW1)�(f):

Finally we prove modularity. Suppose Y has corners W tW tW2 , and let
[WY be the boundary object obtained by identifying the copies of W . The
homomorphism of state spaces induced by this glueing is

hom�([Y=@̂Y;E]0; R) −! hom�([[WY=@̂Y;E]0; R):

This is induced by a \splitting" function

[[WY=@̂Y;E]0 −! [Y=@̂Y;E]0

de�ned as follows. Suppose f : [W Y=@̂Y ! E is standard on W2 . The
restriction to W is homotopic to a standard map. Use this to make f standard
on W , then split along W to obtain f 0 : Y=@̂Y ! E standard on W tW tW2 .
The dimensionality hypotheses can be used as above to show f 0 is well-de�ned
up to homotopy rel boundary, and the splitting function is a bijection onto
the subset of g : Y=@̂Y ! E satisfying gjW = gj(W ). Therefore to show the
algebraic glueing map

⊗Z(W�I)Z(Y ) −! Z([WY )

is an isomorphism we need to show that dividing by the di�erence between the
two Z(W � I){module structures divides out exactly the functions supported
on the complement of the image of the splitting function. These functions are
sums of \delta" functions: suppose g has gjW 6= gj(W ). De�ne �g to take g
to 1, extend to an �{morphism on H(Y=@Y ; units(R)) � g , and de�ne it to be 0
elsewhere. It is su�cient to show these functions get divided out. Dividing by
the di�erence between the module structures divides all elements of the form
f 7! (�(f jW ) − �(f jW ))�(f). For the particular g under consideration there
is a function � with �(gjW ) = 1 and �(gjW ) = 0. Using this � and the delta
function �g gives

f 7!
�
�g(f) if f is a multiple of g, since �(f jW )− �(f jW ) = 1
0 otherwise , since �g(f) = 0

But this is exactly �g , so �g is divided out.
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4.3 Relations to group{categories

Suppose E is a space as above with n = 1, so �d(E) = G and �d+1(E) =
units(R). In Section 2.3 these spaces are shown to correspond to group{
categories with various degrees of commutativity. The cohomological construc-
tion of Proposition 4.2.1 gives a modular �eld theory on the domain category
whose objects, boundaries, corners are manifolds of dimension (d+ 2; d+ 1; d)
and homotopy type of complexes of dimension (2; 1; 0) respectively. Speci�cally
we have:

d category structure �elds on
1 associative (3; 2; 1){thickenings
2 braided{commutative (4; 3; 2){thickenings

� 3 symmetric (d+ 2; d+ 1; d){thickenings

On the category side the independence of d when d � 3 comes from stability
of group cohomology under suspension. For �elds, cartesian product with I
gives a \suspension" functor of domain categories, from d{thickenings to (d+
1){thickenings. Composition with this gives a suspension function on �eld
theories, from ones on (d + 1){thickenings to ones on d{thickenings. When
d � 3, suspension is an equivalence of domain categories (ie, all thickenings
are isomorphic to products in an appropriately canonical way), so it induces a
bijection of �eld theories.

There is also a Reshetikhin{Turaev type construction that uses a category to
de�ne a �eld theory on the same objects. Here we show that the two �eld
theories agree.

Proposition Suppose G is a group{category corresponding to a space E . The
cohomological �eld theory de�ned in 4.2 using E is the same as the Reshetikhin{
Turaev theory de�ned using G .

Proof We will not prove this directly, but rather use the fact (as in 3.2) that
the category can be recovered (up to equivalence) from the �eld theory. Specif-
ically the category G is additively equivalent to the category of representations
of the corner algebra of a thickening of a point, with product structure induced
by the state space of thickenings of the cone on three points.

Fix a connected corner object: a copy of Dd with speci�c choices of representa-
tives ĝ : Dd=@Dd ! E for each homotopy class g 2 [Dd=@Dd; E] = �d(E) = G.
The algebra structure on Z(Dd � I;Dd � f0; 1g) is identi�ed in the proof of
4.2.1 as the set of functions G ! R , with product given by product in R , or
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alternatively R[G] with componentwise multiplication. Representations of this
are exactly R[G], so this gives an additive equivalence G ! R[G].

To determine the product structure we choose data as in 2.3.3{4: for each pair
g; h choose a homotopy mg;h : ĝĥ ’ cgh . The left side of this expression is
the product of homotopy classes in �d(E), while the right side is the given
representative of the product in G. Let Y denote the thickening of the cone
on three points, so Y ’ Dd+1 with internal boundary 3Dd � @Dd+1 and @̂Y
the complement. The next object is to describe Z(Y ) with its three mod-
ule structures over the corner algebra. Reverse the orientation on two of the
boundary components (to switch the module structure from left to right). A
map Y=@̂Y ! E that restricts to ĝ t ĥ on the incoming boundaries of Y gives
a homotopy to the restriction to the third component. This identi�es the third
restriction as (̂gh)−1 . The inverse comes from the fact that all the components
of @Y have the induced orientation, while in Dd � I one of the ends has the
reverse orientation. We have speci�ed one such map, namely mg;h , and all
others with this restriction are obtained (up to homotopy) by the action of
Hd+1(Y; @Y ; units(R)) = units(R). Thus the choices mgh give a bijection

[Y=@̂Y;E]0 � [g;hunits(R):

The state space Z(Y ) is the set hom�([Y=@̂Y;E]0; R), so the bijection gives
an identi�cation Z(Y ) = R[G � G]. The three (left) module structures are:
on a summand R[(g; h)], f 2 G acts by the delta function �f;g , �f;h , and
�f;(gh)−1 . Switch the �rst two to right structures by reversing the orientation,
and replace g; h by g−1; h−1 . This gives an identi�cation in which the right
structures on R[(g; h)] are �f;g and �f;h respectively, and the left structure is
�f;gh . Now suppose ag and ah are simple modules in R[G]. Their Z{product
is Z(Y ) ⊗Z(W�I)2 (ag ⊗ ah). The description of Z(Y ) shows this is a free
based module of rank 1, canonically isomorphic to agh . This gives a natural
isomorphism between the Z product in G and the standard product in R[G].

The category structure shows up in the reassociating and (when d > 1) com-
muting isomorphisms. Speci�cally the isomorphism � : (af �ag)�ah ’ af �(ag �
ah) comes from the thickening of the cone on four points decomposed in two
ways as union of cones on three points. The two decompositions give two base-
points in [Y=@̂Y;E]0 , namely the homotopies mfg;hmf;g and mf;ghmg;h . These
di�er by a unit in R , which gives the di�erence between the identi�cations of
the iterated products with afgh . But according to 2.3.2 this unit is exactly the
associativity isomorphism in the category associated with E . Thus the natu-
ral isomorphism between the products in G and R[G] takes the associativity
isomorphisms in G to the E{twisted ones in R[G].
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A similar argument shows that the commutativity isomorphisms agree too,
when d > 1.

5 Modular �eld theories on 3{manifolds

Modular theories on 3{manifolds with a little extra data can be obtained as
follows: start with a theory on 4{dimensional thickenings of 2{complexes, cor-
responding to some braided{symmetric category. Restrict to a subcategory of
objects that are almost determined by their boundaries. Then normalize us-
ing an Euler-characteristic theory to remove most of the remaining dependence
on interiors. Here we carry this through for group{categories. The untwisted
theories (which are H1 theories in the sense of Section 3) can be normalized if
the order of the underlying group is invertible. For cyclic groups we determine
exactly which group{categories give normalizable theories: in most cases it re-
quires a certain divisor of the group order to have a square root. However there
are cases, including the category with group Z=2Z and � = −1, that cannot
be normalized.

5.1 Extended, or weighted, 3{manifolds

There is a domain category (in the sense of [17]) with

(1) corners are closed 1{manifolds, with a parametrization of each component
by S1 ;

(2) boundaries are oriented surfaces with boundary, the boundary is a corner
object (ie, has parameterized components, with correct orientation), and
a lagrangian subspace of H1(Y ;Z); and

(3) spacetimes are 3{manifolds whose boundaries are boundary objects (ie,
have lagrangian subspaces), together with an integer (the \index").

In (2) Y denotes the closed surface obtained by glueing copies of D2 to Y
via the given parameterizations of the boundary components. A \lagrangian
subspace" is a Z{summand of half the rank on which the intersection pairing
vanishes. These objects are the \extended" or \e{manifolds" of Walker [23],
and special cases of the \weighted" manifolds of Turaev [22]. Turaev allows
lagrangian subspaces of the real rather than integer cohomology.

A domain category comes with cylinder functors and glueing operations. Most
of these are pretty clear. For instance when glueing spacetimes along closed
(no corners) boundaries, the weights add. Glueing when corners are involved
requires Wall’s formula for modi�ed additivity of the index, using the Shale{
Weyl cocycle [23, 22].

The geometric basis for the construction is:
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5.1.1 Theorem

(1) If U is an oriented 3{dimensional thickening of a 1{complex, then the
kernel of the inclusion H1(@U;Z) ! H1(U ;Z) is a lagrangian subspace.
Every lagrangian subspace arises this way, and the manifold U is unique
up to di�eomorphism rel boundary; and

(2) (Kirby [12]) A connected oriented 3{manifold is the boundary of a smooth
4{manifold with the homotopy type of a 1{point union of copies of S2 .
If X1 and X2 are two such manifolds with the same boundary, then for
some m1; n1;m2; n2 there is a di�eomorphism

X1#m1CP
2#n1CP

2 ’ X2#m2CP
2#n2CP

2

which is the identity on the boundary.

Some of the modi�cations in (2) can be tracked with the index of the 4{manifold:
adding CP 2 increases it by 1, while CP

2
decreases it by 1. Doing both leaves

the index unchanged. This gives a re�nement of (2):

5.1.2 Corollary Suppose X1 and X2 are 4{manifolds as in 5.1.1(2) and the
indexes are the same. Then for some p1; p2 there is a di�eomorphism

X1#p1(CP 2#CP
2
) ’ X2#p2(CP 2#CP

2
):

5.2 Construction of �eld theories

Now suppose Z is a �eld theory on 4{dimensional thickenings of 2{complexes.
Suppose Y is a extended boundary object, so a surface with parameterized
boundary and homology lagrangian. According to 5.1.1(1) this data is the
same as a 3-d thickening U of a 1{complex with @U = Y , together with pa-
rameterized 2{disks in the boundary. This is a boundary object of the category
of thickenings, so we can de�ne Ẑ(Y ) = Z(U).

If induced homomorphisms ZV are unchanged by connected sum with CP 2 and
CP

2
then we can de�ne ẐX to be ZV for one of the 4{manifolds of 5.1.1(2)

with @V = X . Usually these operations do change ZV ; speci�cally there are
elements �; � 2 R so that

(5.2.1) ZV#CP 2 = �ZV and Z
V#CP

2 = �ZV :

These changes were called \anomalies" by physicists. Usually the changes are
too strong to �x, but sometimes we can �x the changes caused by adding both

Frank Quinn

Geometry and Topology Monographs, Volume 2 (1999)

448



CP 2 and CP
2

together. Speci�cally, suppose there is an inverse square root
for �� : an element r such that

(5.2.2) r2�� = 1:

Connected sum with CP 2#CP
2

changes ZV by �� and increases the Euler
characteristic of V by 2. Thus if we multiply by r to the power X (V ) the
changes cancel. More speci�cally if (X;n) : Y1 ! Y2 is a bordism in the ex-
tended 3{manifold category, and V : U1 ! U2 is a corresponding 4-d morphism
of thickenings with index n de�ne

(5.2.3) ẐX = rX (V;U1)ZV :

Proposition If an element r satisfying 5.2.2 exists, then Ẑ is a modular �eld
theory on extended 3{manifolds.

Note that adding 1 to the index of an extended 3{manifold X corresponds
to changing the bounding 4{manifold by #CP 2 . This adds 1 to the Euler
characteristic so changes ẐX by r� . This is the \anomaly" of the normalized
theory. In particular it is nontrivial if � 6= � .

Proof Multiplication by r raised to the relative Euler chacteristic gives a
modular �eld theory with all state spaces R , de�ned on all �nite complexes
[17]. The product in 5.2.3 is the tensor product of this Euler theory with Z ,
so de�nes a theory on 4-d thickenings. Restricting to the simply-connected
thickenings obtained from extended 3{manifolds therefore is a modular �eld
theory. By construction it is insensitive to the di�erence between di�erent
V with �xed boundary and index, so it is a well-de�ned theory on extended
3{manifolds.

5.3 Normalization of group{category �eld theories

Here we describe the \anomalies" of the �eld theory associated to a group{
category in terms of the category structure. In the cyclic case this is explicit
enough to completely determine when the �eld theory can be normalized to
give one on extended 3{manifolds.

5.3.1 Proposition Suppose G is a braided{commutative group{category over
R , with �nite underlying group G. Then the associated �eld theory Z has
ZCP 2 = �g2G�g and Z

CP
2 = �g2G�−1

g . If G is cyclic of order n, � (= �g for
some generator g) has order exactly ‘, and R has no zero divisors then

Z
CP 2#CP

2 =

8><>:
n2=‘ if ‘ is odd

2n2=‘ if 4j‘
0 otherwise (‘ is even and ‘=2 is odd).
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We recall �g 2 units(R) is the number so that the commuting endomorphism
�g;g : g � g ! g � g is multiplication by �g . The order of �g divides the order
of g if this order is odd, and twice this order if it is even.

5.3.2 Example

If G = Z=2Z then ZCP 2 = 1 + � and Z
CP

2 = 1 + �−1 . Since �4 = 1 there are
three cases: � = 1, � = −1, and � = i (a primitive 4th root of unity).

(1) When � = 1 (the standard untwisted category) both Z are 2, so the in-
verse square root of the product is 1=2. Thus the theory can be normalized
over R[1=2] and gives an anomaly-free theory (ẐX doesn’t depend on the
index of X ).

(2) When � = −1 (the nontrivial symmetric category) both Z are 0, and no
extended 3{manifold theory can be obtained.

(3) When � = i (a non-symmetric braided category) the Z are 1 + i and
1− i respectively. The product is 2, so the theory can be normalized over
R[1=

p
2].

Note that the Z=2Z category with � = −1 is a (possibly twisted) tensor factor
of the quantum categories coming from sl(2) at roots of unity. This should
mean that on 4-d thickenings the �eld theory is a (possibly twisted) tensor
product. The non-normalizability of the Z=2Z factor would explain why it has
been so hard to normalize the full sl(2) theory.

Proof of 5.3.1 In general we want ZCP 2−D4 , where CP 2 − D4 is regarded
as a bordism D3 ! D3 (relative to the corner S2 = @D3 ). In the group{
category case this is the same as the closed case (CP 2 as a bordism from the
empty set to itself). This can either be seen directly, or more generally induced
homomorphisms can be seen to be multiplicative with respect to connected
sums. Thus we consider the closed case.

Let k 2 H4(B2
G; units(R)) be the class corresponding to the group{category

G . ZCP 2 is multiplication by the sum over [CP 2; B2
G] = H2(CP 2;G) = G

of k evaluated on the image of the fundamental class of CP 2 . We claim this
evaluation for a single g 2 G is �g , so the sum is as indicated in 5.3.1. The
element for CP

2
is obtained by evaluating on the negative of the fundamental

class of CP 2 , so gives �−1
g .

This claim is veri�ed using a geometric argument and the description of 2.3.4.
Suppose data ~g : D2=S1 ! E and ~mg;h has been chosen. Then �g;g is obtained
by glueing together ~mg;g , its inverse, and the standard commuting homotopy
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in �2 to get D2�S1 ! E . Consider this as a neighborhood of a standard circle
in D3 and extend to D3=S2 ! E by taking the complement to the basepoint.
�g;g is the resulting element in �3(E) = units(R). We manipulate this a little.
~mg;g and its inverse cancel to leave just the standard commuting homotopy.
This gives the following description: take an embedding � : D2�S1 ! D2�S1

that goes twice around the S1 , and locally preserves products. The element of
�3 is obtained by

D3=S2 −! D2 � S1=(@D2 � S1)
�−1

−−! D2 � S1=(@D2 � S1)
p−! D2=S1 ~g−! E

where the �rst map divides out the complement of the standard D2�S1 � D3 ,
and p projects to the D2 factor of the product. According to 2.3.4 the image of
this in �3(E) = units(R) is �g . Denote the composition D3=S2 ! D2=S1 by h.
This is homotopic to the Hopf map. This can be checked using Hopf’s original
description: the inverses of two points in the interior of D2 give two unknotted
circles in S3 with linking number 1. But S2 [h D4 ’ CP 2 . The vanishing
higher homotopy of B2

G implies there is an extension (unique up to homotopy)
of g over the 4{cell to give CP 2 ! B2

G . General principles imply that the k{
invariant evaluated on the homology image of the 4{cell (the orientation class
of CP 2 ) is equal to the homotopy class of the attaching map in �3E , so the
evaluation does give �g .

The numerical presentation material of 2.5 can be used to make these conclu-
sions more concrete. We carry this out for cyclic groups. Suppose G is cyclic
of order n with generator g , and � = �g . Suppose � has order ‘. From 2.5
we know ‘ divides n if n is odd, and 2n if n is even. Further (see 2.5.2),
�gr = (�g)r

2
. Therefore

ZCP 2 = �n−1
r=0�

r2
and Z

CP
2 = �n−1

r=0�
−r2

:

The product of these is

�n−1
r;s=0�

r2−s2 = �n−1
r;s=0�

(r+s)(r−s)

Reindex this by setting r−s = t, and use the fact that r and s can be changed
by multiples of n to get

(5.3.3) �n−1
s;t=0�

t(t+2s) = �n−1
t=0 �

t2�n−1
s=0 (�2t)s:

We have assumed R has no zero divisors. This means if (�n − 1) = (� −
1)(�n−1

s=0 �
s) = 0 then one of the factors is 0. This implies

�n−1
s=0 �

s) =
�
n if � = 1
0 if � 6= 1:

Applying this with � = �2t to (5.3.3) gives the sum over t with �2t = 1 of
n�t

2
.
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If ‘ (the order of �) is odd or divisible by 4, then �2t = 1 implies �t
2

= 1. In
this case the sum is just n times the number of such t between 0 and n − 1.
This number is n=‘ if n is odd, 2n=‘ if n is even. This gives the conclusion
of the proposition in these cases. If ‘ is even but ‘=2 is odd then �2t = 1
implies �t

2
= 1 if t is even, and �t

2
= −1 if t is odd. The sum is thus n times

the di�erence between the number of even and odd t with �2t = 1. These
are t = (‘=2)j for 0 � j < 2n=‘, so they exactly cancel if 2n=‘ is even, or
equivalently if ‘ divides n. We are in the case with ‘ even so n is even and
4 divides 2n. But ‘=2 odd, so if ‘ divides 2n it must also divide n. This
completes the proof of the proposition.
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