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On regularly fibered complex surfaces

D Kotschick

Abstract We show that a compact complex surface which fibers smoothly
over a curve of genus ≥ 2 with fibers of genus ≥ 2 fibers holomorphically.
We deduce an improvement of a result in [16], and a characterisation of
fibered surfaces with zero signature.
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1 Introduction

In this paper we begin a study of complex structures on the total spaces X of
fiber bundles whose base B and fiber F are compact orientable two–manifolds.
We shall assume throughout that the genera g(B) = g and g(F ) = h are at
least 2. For fixed g and h we have infinitely many homotopy types of orientable
total spaces X , corresponding to conjugacy classes of representations of the
fundamental group of B in the mapping class group of F . By the Thurston
construction all the total spaces are symplectic, compare [16].

Suppose now that X admits some complex structure. The assumption g , h ≥
2 implies in particular that X is minimal and of general type. It has fixed
topological Euler characteristic c2(X) = (2g − 2) · (2h− 2) and therefore there
are only finitely many possible values for c21(X). By the boundedness results
of Moishezon and Gieseker for the moduli space of surfaces of general type, we
conclude that among the infinitely many total spaces of surface bundles with
fixed g and h there are at most finitely many which admit a complex structure.
In this paper we take the first step or two towards characterising them.

In section 2 we shall prove a result which implies that every complex struc-
ture as above admits a regular holomorphic map f to B endowed with a
suitable complex structure. In fact, f is in the same homotopy class as the
bundle projection. (This then makes the above finiteness result a consequence
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of Parshin–Arakelov finiteness, without the need to appeal to Moishezon and
Gieseker.)

In section 3 we give some applications of the fibration criterion. We charac-
terise the total spaces of surface bundles admitting complex structures under
the additional assumption that the signature vanishes, and we also sharpen a
result from [16]. This result concerns the minimal genus of a holomorphic rep-
resentative for a given second cohomology class in the classifying space of the
mapping class group of F , and thus bears on the complex analytic version of
Problem 2.18 in Kirby’s problem list [12].

Acknowledgement I am grateful to F Catanese and to D Toledo for useful
comments.

2 A fibration criterion

We shall say that a compact complex surface is regularly fibered if it admits an
everywhere regular holomorphic map onto a smooth curve. It follows that the
base curve and all the fibers are compact, and that the surface is a smooth fiber
bundle, though not usually a complex analytic bundle, as the complex structure
of the curves can vary. We shall assume throughout that the genera of the base
and of the fiber are at least 2.

Nontrivial examples of regularly fibered surfaces were first exhibited by Ko-
daira [13] and by Atiyah [2], and later by many others, see eg [10, 7]. Sometimes
the terms Kodaira surface and, more often, Kodaira fibration are used to denote
these surfaces. That terminology gives rise to confusion, not only because the
term Kodaira surface is more commonly used for certain non-Kähler complex
surfaces of Kodaira dimension zero, but also because some authors seem to use
Kodaira fibration to denote any regularly fibered surface (with base and fiber
of genus at least 2) whereas others implicitly restrict the term to mean only the
examples of Kodaira [13] (and maybe Kas [10]) constructed as branched covers
of products.

Here is the fibration criterion saying that any surface satisfying the obvious
necessary conditions is indeed regularly fibered.

Proposition 1 Let S be a compact complex surface whose fundamental group
fits into an extension

1→ π1(F )→ π1(S) π→ π1(B)→ 1 , (1)
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where F and B are closed oriented 2–manifolds with genera g(F ) = h ≥ 2 and
g(B) = g ≥ 2.

(1) The topological Euler characteristic e(S) ≥ e(F ) · e(B) > 0.

(2) The following conditions are equivalent:

• e(S) = e(F ) · e(B),

• π is induced by a regular fibration of S over B endowed with a
suitable complex structure,

• S is aspherical.

Proof Corresponding to the extension (1) there is a fiber bundle F → X → B ,
with X a classifying space for π1(S). As X realises the smallest possible Euler
characteristic among all orientable 4–manifolds with fundamental group π1(S),
cf [14], we obtain e(S) ≥ e(X) = e(F )·e(B), as claimed, where the last equality
follows from the multiplicativity of the Euler characteristic in fiber bundles.

For the characterisation of the case of equality, notice that if S is regularly
fibered, then it is aspherical by the homotopy exact sequence of the fibration.
Further, if S is aspherical, then by the uniqueness of classifying spaces it is
homotopy equivalent to X and therefore has the same Euler characteristic.
Thus the crucial step is to show that the equality of Euler characteristics implies
that π is induced by a regular holomorphic map.

First of all, as S is minimal with c2(S) = e(S) > 0 and with b1(S) ≥ 4, it
must be of general type. In particular, it is Kähler. By the theorem of Siu and
Beauville, see Chapter 2 of [1] and also [8], there is a surjective holomorphic
map with connected fibers f : S → C , with C a compact complex curve,
such that the map π in (1) factors through f∗ . This implies that ker(f∗)
is a (finitely generated) subgroup of ker(π) = π1(F ). Thus ker(f∗) is the
fundamental group of an orientable surface F which is a covering of F . If F
were noncompact, ker(f∗) would be a free group, contradicting the fact that
π1(S) has cohomological dimension 4. Thus F is compact, with

g(F ) ≥ g(F ) = h . (2)

On the other hand, denoting the generic fiber of f by F ′ , we have that
ker(f∗) = π1(F ) is a quotient of π1(F ′) and so g(F ) ≤ g(F ′). Now by the
theorem of Zeuthen–Segre a singular fiber makes a positive contribution to the
Euler characteristic, so we have e(S) ≥ (2g(C) − 2) · (2g(F ′) − 2), so that
e(S) = (2g(B)− 2) · (2g(F ) − 2) and g(C) ≥ g(B) = g imply

g(F ) ≤ g(F ′) ≤ g(F ) = h . (3)
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Combining (2) and (3), we conclude that g(F ) = g(F ′) = g(F ) = h and
therefore g(C) = g(B) = g . Thus C gives a complex structure on B and f
is a holomorphic map inducing π . As we are in the case of equality for the
Zeuthen–Segre inequality, f must be everywhere regular.

In Chapter 2 of [1] the genus g(M) of a compact Kähler manifold M was
defined. This is the maximal genus of a compact curve C onto whose fun-
damental group π1(M) surjects. The Siu–Beauville theorem shows that if
π : π1(M) → π1(C) is any surjective homomorphism with g(M) = g(C), then
π is induced by a holomorphic map with connected fibers. This conclusion
does not necessarily hold if g(M) > g(C), although surjective homomorphisms
will exist in abundance. An interesting aspect of the proof of Proposition 1 is
that it shows the homomorphism π in (1) is induced by a holomorphic map
with connected fibers although the genus of S may very well be larger than
g(B) = g : just take a trivial extension with h = g(F ) > g(B) = g .

Remark 1 A version of the second part of Proposition 1 has been proved
idependently by Hillman [5], but his proof is more complicated. He begins
by using the work of Gromov and of Arapura–Bressler–Ramachandran on L2–
cohomology (see Chapter 4 of [1]) to produce a holomorphic map to a curve.
In [9] an extension of the argument is proposed in the case where the kernel
of π in (1) is not assumed to be a surface group, but can be any finitely
presentable group. It turns out that this more general result can be deduced
from Proposition 1 or from the result of [5] using standard arguments on the
cohomology of Poincaré duality groups [6].

As an immediate consequence of Proposition 1 we have:

Corollary 2 If S is any compact complex surface homotopy equivalent to a
surface bundle X over a surface with base and fiber of genera at least 2, then
S is regularly fibered and is diffeomorphic to X .

This generalises results of Kas [10] and of Jost–Yau [8] who showed that defor-
mations of Kodaira’s examples [13] are regularly fibered. In those examples one
obtains a description of a component of the moduli space in terms of moduli
spaces of curves underlying the construction. In the general case, the corollary
says that all components of the moduli space of complex structures on this
particular manifold are made up of regularly fibered surfaces, but there is no
direct description in terms of the moduli of curves.

D Kotschick

Geometry and Topology Monographs, Volume 2 (1999)

294



3 Applications

The original motivation for studying regularly fibered surfaces was that they
provide examples of smooth fibre bundles for which the signature is not multi-
plicative [2, 13], in this case that just means non-zero. In [16] we proved some
bounds on the signatures of surface bundles over surfaces. We shall now slightly
improve Theorem 3 of [16]:

Theorem 3 Let X be a surface bundle over a surface, with the genera of
the base and the fiber ≥ 2. If X admits a complex structure (not necessarily
compatible with the orientation), or an Einstein metric, then

3|σ(X)| < e(X) . (4)

Proof Suppose X admits a complex structure. After possibly reversing the
orientation, we may assume that the complex structure is compatible with the
orientation.

The argument in [16] was as follows: X is a minimal surface of general type for
which the underlying manifold endowed with the other, non-complex, orienta-
tion is symplectic and therefore has non-zero Seiberg–Witten invariants. Thus
Theorem 1 of [15] gives

σ(X) ≥ 0 .

This, together with the Miyaoka–Yau inequality

3σ(X) ≤ e(X) ,

implies 3|σ(X)| ≤ e(X).

We can now reach the same conclusion in a different way, and we can also
show that the inequality must be strict, as claimed. By Corollary 2 the surface
X is regularly fibered, so that the non-negativity of the signature follows from
Arakelov’s theorem. Moreover the Miyaoka–Yau inequality is strict for regularly
fibered surfaces, as proved by Liu [18].

Suppose that X admits an Einstein metric. As it is also symplectic, it has
non-zero Seiberg–Witten invariants and by the result of [17] satisfies 3σ(X) ≤
e(X). The same argument for the manifold with the other orientation gives
−3σ(X) ≤ e(X). It remains to exclude the case of equality.

Suppose that X admits an Einstein metric and that for a suitable choice of
orientation 3σ(X) = e(X). Then Le Brun [17] showed that the Einstein metric
must be Kähler–Einstein, so that X must be a complex surface which is a ball
quotient. But then by the above argument for the complex case, we have a
contradiction.
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We now return to the issue of characterising those surface bundles over surfaces
which admit complex structures. Here is such a characterisation in the easiest
case, when the signature of the total space vanishes.

Theorem 4 Let X be the total space of a surface bundle over a surface, with
the genera of the base B and of the fiber F at least 2. The following are
equivalent:

(1) X admits a complex structure and has zero signature,

(2) the monodromy representation ρ : π1(B)→ Γh has finite image1.

Proof Suppose X admits a complex structure, then by Proposition 1 X is
regularly fibered. If the signature vanishes, we are in the borderline case of
Arakelov’s theorem, which says that the signature is nonnegative, and is zero
only if all the fibers are isomorphic, so the fibration is isotrivial. In this case
we can pull back the fibration to a finite cover of B to obtain a product. This
implies that the kernel of the monodromy representation has finite index in
π1(B).

Conversely, assume that we have a bundle with finite monodromy. Then it must
have zero signature. By the positive resolution of the Nielsen realisation prob-
lem [11] we can choose a complex structure on F and a lift of the monodromy
representation to the diffeomorphism group of F so that the monodromy acts
by complex analytic diffeomorphisms of F . Fixing an arbitrary complex struc-
ture on B , we obtain a complex structure on X by viewing it as (F×B̃)/π1(B),
where π1(B) acts on B̃ by deck transformations and acts on F through the
chosen lift of the monodromy representation to the diffeomorphism group.

Remark 2 Under the conditions of the theorem X is finitely covered by a
product, and is uniformised by the polydisk, compare Theorem 1 in [15]. Thus
Theorem 4 is related to Catanese’s characterisation [3] of complex surfaces
finitely covered by products.

By the finiteness results for the complex case, Theorem 4 has the following
immediate consequence:

Corollary 5 For fixed g = g(B) and h = g(F ), both ≥ 2, there are only
finitely many conjugacy classes of representations ρ : π1(B) → Γh with finite
image.

1 Γh is the mapping class group of the fiber F , where h = g(F ).
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This is a considerable strengthening of the following result of Harvey [4]:

Corollary 6 The finite subgroups of the mapping class group Γh fall into
finitely many conjugacy classes.

Proof Every finitely generated subgroup of Γh is the monodromy group of a
surface bundle of zero signature over some base B , where the genus of B can
be taken to be the number of generators of the subgroup, see Proposition 4
of [16]. As the order of the finite subgroups of Γh is bounded2, we have an a
priori bound on g = g(B) and can apply the previous corollary.

It is clear that the first corollary is much stronger than the second one, as there
are usually many different monodromy representations with the same image,
compare section 3 of [16].

Finally, note that every surface bundle with fibers of genus 2 has zero signature,
and so is covered by Theorem 4. In the higher genus case there are always bun-
dles of non-zero signature, and for these a characterisation of the monodromy
representations arising from complex surfaces is not yet available. We shall re-
turn to this in a future paper. Here we just remark that this problem need not
be the same as trying to decide which extensions of surface groups by surface
groups are Kähler groups. If a surface bundle admits a complex structure, then
its fundamental group is Kähler and in fact projective. However, it is possible
that there are surface bundles which admit no complex structure but still have
Kähler fundamental groups.
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