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Abstract
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1444 Dror Bar-Natan

1 Introduction

The Euler characteristic of a space is a fine invariant; it is a key ingredient in
any discussion of the topology of surfaces (indeed, it separates closed orientable
surfaces), and it has further uses in higher dimensions as well. But homology is
way better. The alternating sum of the ranks of the homology groups of a space
is its Euler characteristic, so homology is at least as strong an invariant, and it
is easy to find examples showing that homology is a strictly stronger invariant
than the Euler characteristic.

And then there’s more. Unlike the Euler characteristic, homology is a functor

— continuous maps between spaces induce maps between their homologies,
and it is this property of homology that makes it one of the cornerstones of
algebraic topology; not merely the fact that it is a little better then the Euler
characteristic at telling spaces apart.

In his seminal paper [10] Khovanov explained that the Jones polynomial of a
link L is the (graded) Euler characteristic of a certain “link homology” theory.
In my follow up paper [3] I have computed the Khovanov homology of many
links and found that indeed it is a stronger invariant than the Jones polynomial,
as perhaps could be expected in the light of the classical example of the Euler
characteristic and the homology of spaces.

In further analogy with the classical picture, Jacobsson [6] and Khovanov [13]
found what seems to be the appropriate functoriality property of the Khovanov
homology. What replaces continuous maps between spaces is 4D cobordisms be-
tween links: Given such a cobordism C between links L1 and L2 Jacobsson and
Khovanov show how to construct a map Kh(C) : Kh(L1) → Kh(L2) (defined up
to a ± sign) between the corresponding Khovanov homology groups Kh(L1) and
Kh(L2).

1 Note that if L1 and L2 are both the empty link, then a cobordism be-
tween L1 and L2 is a 2–knot in R4 (see eg, [4]) and Kh(C) : Kh(L1) → Kh(L2)
becomes a group homomorphism Z → Z, hence a single scalar (defined up to
a sign). That is, this special case of Kh(C) yields a numerical invariant of
2–knots.2

Given a “movie presentation” of a cobordism C (as in [4]), the construction of
Kh(C) is quite simple to describe. But the proofs that Kh(C) is independent
of the specific movie presentation chosen for C are quite involved. Jacobs-
son’s proof involves a large number of complicated case by case computations.

1Check [16] for a topological application and [5] for some computations.
2Added July 2005: The latter is trivial; see [17].
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Khovanov’s proof is more conceptual, but it relies on his rather complicated
“functor-valued invariant of tangles” [11] and even then there remains some
case-checking to do.

A major purpose of this article is to rewrite Khovanov’s proof in a simpler
language. Thus a major part of our work is to simplify (and at the same
time extend!) Khovanov’s treatment of tangles. As side benefits we find a
new homology theory for knots/links (Section 9.3) and what we believe is the
“right” way to see that the Euler characteristic of Khovanov homology is the
Jones polynomial (Section 10).

1.1 Executive summary

This quick section is for the experts. If you aren’t one, skip straight to Sec-
tion 1.2.

1.1.1 Why are tangles relevant to cobordisms?

Tangles are knot pieces, cobordisms are movies starring knots and links [4].
Why is the former relevant to the study of the latter (in the context of Khovanov
homology)?

The main difficulty in showing that cobordisms induce maps of homology groups
is to show that trivial movies induce trivial maps on homology. A typical
example of such a trivial movie is the circular clip

(5)(4)(3)(2)(1)

R2R2 R3 R3

(1)

(this is MM6 of Figure 12). Using a nice theory for tangles which we will develop
later, we will be able to replace the composition of morphisms corresponding
to the above clip by the following composition, whose “core” (circled below)
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remains the same as in clip (1):

(6)(5)(4)

R2R2R3

R3

(3)(2)

R3R2R2

(0) (1)

(2)
But this composition is an automorphism of the complex K of the crossingless

tangle T = and that complex is very simple — as T has no crossings,

K ought to3 consist only of one chain group and no differentials. With little
luck, this would mean that K is also simple in a technical sense — that it
has no automorphisms other than multiples of the identity. Thus indeed the
circular clip of Equation (1) induces a trivial (at least up to a scalar) map on
homology.

In the discussion of the previous paragraph it was crucial that the complex for

the tangle T = be simple, and that it would be possible to manipulate

tangles as in the transition from (1) to (2). Thus a “good” theory of tangles is
useful for the study of cobordisms.

1.1.2 How we deal with tangles

As defined in [10] (or in [3] or in [21]), the Khovanov homology theory does
not lend itself naturally to an extension to tangles. In order to define the chain
spaces one needs to count the cycles in each smoothing, and this number is not
known unless all ‘ends’ are closed, ie, unless the tangle is really a link. In [11]
Khovanov solves the problem by taking the chain space of a tangle to be the
direct sum of all chain spaces of all possible closures of that tangle. Apart from
being quite cumbersome (when all the details are in place; see [11]), as written,
Khovanov’s solution only allows for ‘vertical’ compositions of tangles, whereas
one would wish to compose tangles in arbitrary planar ways, in the spirit of
V Jones’ planar algebras [8].

We deal with the extension to tangles in a different manner. Recall that the
Khovanov picture of [10] can be drawn in two steps. First one draws a ‘topo-
logical picture’ Top made of smoothings of a link diagram and of cobordisms

3We say “ought to” only because at this point our theory of tangles is not yet defined
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between these smoothings. Then one applies a certain functor F (a (1 + 1)–
dimensional TQFT) to this topological picture, resulting in an algebraic picture
Alg , a complex involving modules and module morphisms whose homology is
shown to be a link invariant. Our trick is to postpone the application of F to
a later stage, and prove the invariance already at the level of the topological
picture. To allow for that, we first need to ‘mod out’ the topological picture
by the ‘kernel’ of the ‘topology to algebra’ functor F . Fortunately it turns out
that that ‘kernel’ can be described in completely local terms and hence our
construction is completely local and allows for arbitrary compositions. For the
details, read on.

1.2 The plan

A traditional math paper sets out many formal definitions, states theorems and
moves on to proving them, hoping that a “picture” will emerge in the reader’s
mind as (s)he struggles to interpret the formal definitions. In our case the
“picture” can be summarized by a rather fine picture that can be uploaded
to one’s mind even without the formalities, and, in fact, the formalities won’t
necessarily make the upload any smoother. Hence we start our article with the
picture, Figure 1, and follow it in Section 2 by a narrative description thereof,
without yet assigning any meaning to it and without describing the “frame” in
which it lives — the category in which it is an object. We fix that in Sections 3
and 4: in the former we describe a certain category of complexes where our
picture resides, and in the latter we show that within that category our picture
is a homotopy invariant. The nearly tautological Section 5 discusses the good
behaviour of our invariant under arbitrary tangle compositions. In Section 6
we refine the picture a bit by introducing gradings, and in Section 7 we explain
that by applying an appropriate functor F (a 1+1–dimensional TQFT) we can
get a computable homology theory which yields honest knot/link invariants.

While not the technical heart of this paper, Sections 8–10 are its raison d’être.
In Section 8 we explain how our machinery allows for a simple and conceptual
explanation of the functoriality of the Khovanov homology under tangle cobor-
disms. In Section 9 we further discuss the “frame” of Section 3 finding that in
the case of closed tangles (ie, knots and links) and over rings that contain 1

2
it frames very little beyond the original Khovanov homology while if 2 is not
invertible our frame appears richer than the original. In Section 10 we intro-
duce a generalized notion of Euler characteristic which allows us to “localize”
the assertion “The Euler characteristic of Khovanov Homology is the Jones
polynomial”.
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The final Section 11 contains some further “odds and ends”.

1.3 Acknowledgement

I wish to thank B Chorny, L Kauffman, M Khovanov, A Kricker, G Naot,
J Przytycki, A Referee, J Roberts, SD Schack, K Shan, A Sikora, A Shu-
makovich, J Stasheff, D Thurston and Y Yokota for their comments and sug-
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2 A picture’s worth a thousand words

As promised in the introduction — we’d like to start with Figure 1 at a com-
pletely descriptive level. All interpretations will be postponed to later sections.

1− 2− 3−

2.1 Knot On the upper left of the figure we see the left-
handed trefoil knot K with its n = 3 crossings labeled 1, 2
and 3. It is enclosed in double brackets ([[·]]) to indicate that
the rest of the figure shows the formal Khovanov Bracket of
the left-handed trefoil. As we describe the rest of the figure we will also indicate
how it changes if the left-handed trefoil is replaced by an arbitrary other knot
or link.

2.2 Crossings On the figure of K we have also marked the
signs of its crossings — (+) for overcrossings (!) and (−) for
undercrossings ("). Let n+ and n− be the numbers of (+) crossings and (−)
crossings in K , respectively. Thus for the left-handed trefoil knot, (n+, n−) =
(0, 3).

001

010

100 110

101

011

111000

00*

0*0

0*1
*01

01*

*10

10*

1*0

*11

1*1

*00 11*

−3 −2 −1 0

2.3 Cube The main part of the figure is the 3–
dimensional cube whose vertices are all the 3–letter
strings of 0’s and 1’s. The edges of the cube are
marked in the natural manner by 3–letter strings
of 0’s, 1’s and precisely one ⋆ (the ⋆ denotes the
coordinate which changes from 0 to 1 along a given edge). The cube is skewered
along its main diagonal, from 000 to 111. More precisely, each vertex of the
cube has a “height”, the sum of its coordinates, a number between 0 and 3.
The cube is displayed in such a way so that vertices of height k project down
to the point k − n− on a line marked below the cube. We’ve indicated these
projections with dashed arrows and tilted them a bit to remind us of the −n−

shift.
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Figure 1: The main picture. See the narrative in Section 2.
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up
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a crossing its 0 smoothing its 1 smoothing
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(1
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Figure 2: A crossing is an interchange involving two highways. The 0–smoothing
is when you enter on the lower level (level 0) and turn right at the crossing. The
1–smoothing is when you enter on the upper level (level 1) and turn right at the
crossing.
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1101

1110

0 1 2 3 4

2.4 Aside: More crossings Had we been
talking about some n crossing knot rather
than the 3–crossing left-handed trefoil, the
core of our picture would have been the n-
dimensional cube with vertices {0, 1}n , pro-
jected by the “shifted height” to the integer
points on the interval [−n−, n+].

0 01

2.5 Vertices Each vertex of the cube carries a smooth-

ing of K — a planar diagram obtained by replacing every
crossing / in the given diagram of K with either a “0–
smoothing” (H) or with a “1–smoothing” (1) (see Figure 2
for the distinction). As our K has 3 crossings, it has 23 = 8 smoothings. Given
the ordering on the crossings of K these 8 smoothings naturally correspond to
the vertices of the 3–dimensional cube {0, 1}3 .

2.6 Edges Each edge of the cube is labeled
by a cobordism between the smoothing on the
tail of that edge and the smoothing on its
head — an oriented two dimensional surfaces
embedded in R2 × [0, 1] whose boundary lies entirely in R2 × {0, 1} and whose
“top” boundary is the “tail” smoothing and whose “bottom” boundary is the
“head” smoothing. Specifically, to get the cobordism for an edge (ξi) ∈ {0, 1, ⋆}3

for which ξj = ⋆ we remove a disk neighborhood of the crossing j from the
smoothing ξ(0) := ξ|⋆→0 of K , cross with [0, 1], and fill the empty cylindrical

slot around the missing crossing with a saddle cobordism . Only one such

cobordism is displayed in full in Figure 1 — the one corresponding to the edge
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⋆00. The other 11 cobordisms are only shown in a diagrammatic form, where
the diagram-piece K stands for the saddle cobordism with top H and bottom1.

−

+
−

1 dy

dx

dz
−

dx^dy

−
dx^dz

dy^dz

dx^dy^dz
^dy

^dx

^dz

+

+
+

+
+

+

+
2.7 Signs While easy to miss at
first glance, the final ingredient in
Figure 1 is nevertheless significant.
Some of the edge cobordisms (namely,
the ones on edges 01⋆, 10⋆, 1⋆0 and
1⋆1) also carry little ‘minus’ (−) signs. The picture on the right explains
how these signs are determined from a basis of the exterior algebra in 3 (or in
general, n) generators and from the exterior multiplication operation. Alter-
natively, if an edge ξ is labeled by a sequence (ξi) in the alphabet {0, 1, ⋆} and
if ξj = ⋆, then the sign on the edge ξ is (−1)ξ := (−1)

P
i<j ξi .

:

10

0* *1

*0 1*

1+ 2+

0 1 2

00

01

11

(n+, n−) = (2, 0)

2.8 Tangles It should
be clear to the reader how
construct a picture simi-
lar to the one in Figure 1
for an arbitrary link dia-
gram with possibly more
(or less) crossings. In fact,
it should also be clear how
to construct such a picture
for any tangle (a part of a
link diagram bounded in-
side a disk); the main dif-
ference is that now all cobor-
disms are bounded within a cylinder, and the part of their boundary on the
sides of the cylinder is a union of vertical straight lines. An example is on the
right.

3 A frame for our picture

Following the previous section, we know how to associate an intricate but so-
far-meaningless picture of a certain n–dimensional cube of smoothings and
cobordisms to every link or tangle diagram T . We plan to interpret such a cube
as a complex (in the sense of homological algebra), denoted [[T ]], by thinking
of all smoothings as spaces and of all cobordisms as maps. We plan to set the
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r ’th chain space [[T ]]r−n− of the complex [[T ]] to be the “direct sum” of the
(n

r

)

“spaces” (ie, smoothings) at height r in the cube and to sum the given “maps”
(ie, cobordisms) to get a “differential” for [[T ]].

The problem, of course, is that smoothings aren’t spaces and cobordisms aren’t
maps. They are, though, objects and morphisms respectively in a certain cat-
egory Cob3(∂T ) defined below.

Definition 3.1 Cob3(∅) is the category
whose objects are smoothings (ie, simple
curves in the plane) and whose morphisms
are cobordisms between such smoothings
as in Section 2.6, regarded up to boundary-
preserving isotopies4. Likewise if B is a
finite set of points on the circle (such as the boundary ∂T of a tangle T ), then
Cob3(B) is the category whose objects are smoothings with boundary B and
whose morphisms are cobordisms between such smoothings as in Section 2.8,
regarded up to boundary-preserving isotopies. In either case the composition
of morphisms is given by placing one cobordism atop the other. We will use the
notation Cob3 as a generic reference either to Cob3(∅) or to Cob3(B) for some
B .

Next, let us see how in certain parts of homological algebra general “objects”
and “morphisms” can replace spaces and maps; ie, how arbitrary categories
can replace the Abelian categories of vector spaces and/or Z–modules which
are more often used in homological algebra.

An pre-additive category is a category in which the sets of morphisms (between
any two given objects) are Abelian groups and the composition maps are bilinear
in the obvious sense. Let C be some arbitrary category. If C is pre-additive,
we leave it untouched. If it isn’t pre-additive to start with, we first make it
pre-additive by extending every set of morphisms Mor(O,O′) to also allow
formal Z–linear combinations of “original” morphisms and by extending the
composition maps in the natural bilinear manner. In either case C is now
pre-additive.

Definition 3.2 Given a pre-additive category C as above, the pre-additive
category Mat(C) is defined as follows:

4 A slightly different alternative for the choice of morphisms is mentioned in Sec-
tion 11.3.
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• The objects of Mat(C) are formal direct sums (possibly empty) ⊕n
i=1Oi

of objects Oi of C .

• If O = ⊕m
i=1Oi and O′ = ⊕n

j=1O
′
j , then a morphism F : O′ → O in

Mat(C) will be an m × n matrix F = (Fij) of morphisms Fij : O′
j → Oi

in C .

• Morphisms in Mat(C) are added using matrix addition.

• Compositions of morphisms in Mat(C) are defined by a rule modeled on
matrix multiplication, but with compositions in C replacing the multipli-
cation of scalars,

((Fij) ◦ (Gjk))ik :=
∑

j

Fij ◦ Gjk.

Mat(C) is often called “the additive closure of C”.

It is often convenient to represent objects of Mat(C) by column vectors and
morphisms by bundles5 of arrows pointing from one column to another. With
this image, the composition (F ◦ G)ik becomes a sum over all routes from O′′

k

to Oi formed by connecting arrows. See Figure 3.

G21

G31

G11

F23

O′
2

O′
2

O′
1

O′′
1

O′′
2

O1

O2

G F

F21

F22

Figure 3: Matrices as bundles of morphisms, the composition F ◦ G and the matrix
element (F ◦ G)21 = F21 ◦ G11 + F22 ◦ G21 + F23 ◦ G31 (in solid lines).

A quick glance at Figure 1 should convince the reader that it can be interpreted

as a chain of morphisms [[K]] =
(

[[K]]−3 // [[K]]−2 // [[K]]−1 // [[K]]0
)

in

Mat(Cob3), where K =
1− 2− 3−

(if an arrow is missing, such as between

the vertices 001 and 110 of the cube, simply regard it as 0). Likewise, if T is
an n–crossing tangle, Section 2 tells us how it can be interpreted as a length n

5“Bundle” in the non-technical sense. Merriam–Webster: bundle: “a group of things
fastened together for convenient handling”.
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chain [[T ]] =
(

[[T ]]−n− // [[T ]]−n−+1 // . . . // [[T ]]n+

)

. (Strictly speaking,

we didn’t specify how to order the equal-height layers of an n–dimensional cube
as “column vector”. Pick an arbitrary such ordering.) Let us make a room for
such chains by mimicking the standard definition of complexes:

. . . // Ωr−1
a

dr−1
a //

F r−1

��

Ωr
a

dr
a //

F r

��

Ωr+1
a

//

F r+1

��

. . .

. . . // Ωr−1
b

dr−1

b // Ωr
b

dr
b // Ωr+1

b
// . . .

Definition 3.3 Given a pre-
additive category C , let Kom(C)
be the category of complexes
over C , whose objects are chains

of finite length . . . // Ωr−1 dr−1
// Ωr dr

// Ωr+1 // . . . for which the com-

position dr ◦ dr−1 is 0 for all r , and whose morphisms F : (Ωr
a, da) → (Ωr

b , db)
are commutative diagrams as displayed on the right, in which all arrows are
morphisms in C . Like in ordinary homological algebra, the composition F ◦ G
in Kom(C) is defined via (F ◦ G)r := F r ◦ Gr .

Proposition 3.4 For any tangle (or knot/link) diagram T the chain [[T ]] is
a complex in Kom(Mat(Cob3(∂T ))). That is, dr ◦ dr−1 is always 0 for these
chains.

Proof We have to show that every square
face of morphisms in the cube of T anti-
commutes. Every square face of the cube of
signs of Section 2.6 carries an odd number
of minus signs (this follows readily from the anti-commutativity of exterior
multiplication, dxi ∧ dxj = −dxj ∧ dxi ). Hence, all signs forgotten, we have
to show that every square face in the cube of T positively commutes. This is
simply the fact that spatially separated saddles can be time-reordered within a
cobordism by an isotopy.

4 Invariance

4.1 Preliminaries

The “formal” complex [[T ]] is not a tangle invariant in any sense. We will
claim and prove, however, that [[T ]], regarded within Kom(Mat(Cob3

/l)) for some

quotient Cob3
/l of Cob3 , is invariant up to homotopy. But first we have to define

these terms.
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4.1.1 Homotopy in formal complexes

Ωr−1
a

dr−1
a //

F r−1

��
Gr−1

��

Ωr
a

dr
a //

hr

wwpp
p
p
p
p
p
p
p
p
p
p
p

F r

��
Gr

��

Ωr+1
a

hr+1

wwpp
p
p
p
p
p
p
p
p
p
p
p

F r+1

��
Gr+1

��
Ωr−1

b

dr−1

b // Ωr
b

dr
b // Ωr+1

b

Let C be a category. Just like
in ordinary homological alge-
bra, we say that two morphisms
F,G : (Ωr

a) → (Ωr
b) in Kom(C)

are homotopic (and we write
F ∼ G) if there exists “backwards diagonal” morphisms hr : Ωr

a → Ωr−1
b so

that F r − Gr = hr+1dr + dr−1hr for all r .

Many of the usual properties of homotopies remain true in the formal case, with
essentially the same proofs. In particular, homotopy is an equivalence relation
and it is invariant under composition both on the left and on the right; if F
and G are homotopic and H is some third morphism in Kom(C), then F ◦ H
is homotopic to G ◦ H and H ◦ F is homotopic to H ◦ G, whenever these
compositions make sense. Thus we can make the following definition:

Definition 4.1 Kom/h(C) is Kom(C) modulo homotopies. That is, Kom/h(C)
has the same objects as Kom(C) (formal complexes), but homotopic morphisms
in Kom(C) are declared to be the same in Kom/h(C) (the /h stands for “modulo
homotopy”).

As usual, we say that two complexes (Ωr
a) and (Ωr

b) in Kom(C) are homotopy

equivalent (and we write (Ωr
a) ∼ (Ωr

b)) if they are isomorphic in Kom/h(C).
That is, if there are morphisms F : (Ωr

a) → (Ωr
b) and G : (Ωr

b) → (Ωr
a) so that

the compositions G◦F and F ◦G are homotopic to the identity automorphisms
of (Ωr

a) and (Ωr
b), respectively. It is routine to verify that homotopy equivalence

is an equivalence relation on complexes.

4.1.2 The quotient Cob3
/l of Cob3

We mod out the morphisms of the category Cob3 by the relations S , T and 4Tu

defined below and call the resulting quotient Cob3
/l (the /l stands for “modulo

local relations”).

= 0
The S relation says that whenever a cobordism contains a con-
nected component which is a closed sphere (with no boundary),
it is set equal to zero (remember that we make all categories pre-
additive, so 0 always makes sense).

Geometry & Topology, Volume 9 (2005)
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=2
The T relation says that whenever a cobordism contains a
connected component which is a closed torus (with no bound-
ary), that component may be dropped and replaced by a
numerical factor of 2 (remember that we make all categories pre-additive, so
multiplying a cobordism by a numerical factor makes sense).

1 2

43

To understand 4Tu, start from
some given cobordism C and as-
sume its intersection with a cer-
tain ball is the union of four disks
D1 through D4 (these disks may well be on different connected components of
C ). Let Cij denote the result of removing Di and Dj from C and replacing
them by a tube that has the same boundary. The “four tube” relation 4Tu

asserts that C12 + C34 = C13 + C24 .

The local nature of the S , T and 4Tu relations implies that the composition
operations remain well defined in Cob3

/l and hence it is also a pre-additive cat-
egory.

4.2 Statement

Throughout this paper we will often short Kob(∅), Kob(B) and Kob for
Kom(Mat(Cob3

/l(∅))), Kom(Mat(Cob3
/l(B))) and Kom(Mat(Cob3

/l)). Likewise

we will often short Kob/h(∅), Kob/h(B) and Kob/h for Kom/h(Mat(Cob3
/l(∅))),

Kom/h(Mat(Cob3
/l(B))) and Kom/h(Mat(Cob3

/l)) respectively.

Theorem 1 (The Invariance Theorem) The isomorphism class of the complex
[[T ]] regarded in Kob/h is an invariant of the tangle T . That is, it does not
depend on the ordering of the layers of a cube as column vectors and on the
ordering of the crossings and it is invariant under the three Reidemeister moves
(reproduced in Figure 4).

Figure 4: The three Reidemeister moves R1, R2 and R3.
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4.3 Proof

The independence on the ordering of the layers of a cube as column vectors
is left as an exercise to the reader with no hints supplied. The independence
on the ordering of the crossings is also left as an exercise to the reader (hint:
when reordering, take signs from the signs that appear in the usual action
of a symmetric group on the basis of an exterior algebra). Invariance under
the Reidemeister moves is shown, in this section, just for the “local” tangles

representing these moves. Invariance under the Reidemeister moves applied
within larger tangles or knots or links follows from the nearly tautological good
behaviour of [[T ]] with respect to tangle compositions discussed in Section 5 (see
also Exercise 4.8).

0 //

F 0= −

��

0

0

��

G0=

OO

d=

//

0

OO

h=

oo

Figure 5: Invariance under R1

Invariance under the Reidemeister move R1 (See Figure 5) We have to

show that the formal complex
[[ ]]

=

(

0 // // 0

)

is homotopy

equivalent to the formal complex
[[ ]]

=

(

0 // d // // 0

)

, in

which d = (in both complexes we have underlined the 0th term). To do

this we construct (homotopically inverse) morphisms F :
[[ ]]

→
[[ ]]

and

G :
[[ ]]

→
[[ ]]

. The morphism F is defined by F 0 = − (in

words: a vertical curtain union a torus with a downward-facing disk removed,
minus a simple saddle) and F 6=0 = 0. The morphism G is defined by G0 =
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(a vertical curtain union a cup) and G6=0 = 0. The only non-trivial

commutativity to verify is dF 0 = 0, which follows from ◦ = ◦

, and where the latter identity holds because both of its sides are the

same — vertical curtains with an extra handle attached. If follows from the T
relation that GF = I .

2
3

4

1

Finally, consider the (homotopy) morphism h = :
[[ ]]1

=

→ =
[[ ]]0

. Clearly, F 1G1− I +dh = −I +dh = 0. We

claim that it follows from the 4Tu relation that F 0G0 − I +hd = 0

and hence FG ∼ I and we have proven that
[[ ]]

∼
[[ ]]

.

Indeed, let C be the cobordism (with four punctures labeled 1–4)
shown on the right, and consider the cobordisms Cij constructed from it as
in Section 4.1.2. Then C12 and C13 are the first and second summands in
F 0G0 , C24 is the identity morphisms I and C34 is hd. Hence the 4Tu relation
C12 − C13 − C24 + C34 = 0 is precisely our assertion, F 0G0 − I + hd = 0.

Invariance under the Reidemeister move R2 This invariance proof is
very similar in spirit to the previous one, and hence we will allow ourselves
to be brief. The proof appears in whole in Figure 6; let us just add some
explanatory words. In that figure the top row is the formal complex

[[ ]]

and
the bottom row is the formal complex

[[ ]]

. Also, all eastward arrows are
(components of) differentials, the southward arrows are the components of a
morphism F :

[[ ]]

→
[[ ]]

, the northward arrows are the components of
a morphism G :

[[ ]]

→
[[ ]]

, and the westward arrows are the non-zero
components of a homotopy h proving that FG ∼ I . Finally, in Figure 6 the
symbol K (or its variants, L, etc.) stands for the saddle cobordism K : H→ 1
(or L : 1 → H, etc.) as in Figure 1, and the symbols # and N stand for the
cap morphism # : ∅ → © and the cup morphism N : © → ∅.

We leave it for the reader to verify the following facts which together constitute
a proof of invariance under the Reidemeister move R2:

• dF = 0 (only uses isotopies).

• Gd = 0 (only uses isotopies).

• GF = I (uses the relation S ).

• The hardest — FG − I = hd + dh (uses the 4Tu relation).
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0

W

G

N

E
d

F

S

h

0

I
0

0
:

:

−1 0 1

0

0

Figure 6: Invariance under the Reidemeister move R2.

Remark 4.2 The morphism G :
[[ ]]

→
[[ ]]

at the heart of the above
proof is a little more than a homotopy equivalence. A routine check shows that
it is in fact a strong deformation retract in the sense of the following definition.

a

h h

F F GGG G

Ω

Ω b
Definition 4.3 A morphism of complexes G : Ωa →
Ωb is said to be a strong deformation retract if there
is a morphism F : Ωb → Ωa and homotopy maps h
from Ωa to itself so that GF = I , I −FG = dh+hd
and hF = 0. In this case we say that F is the in-

clusion in a strong deformation retract. Note that a
strong deformation retract is in particular a homo-
topy equivalence. The geometric origin of this notion
is the standard notion of a strong deformation retract in homotopy theory as
sketched on the right.

Invariance under the Reidemeister move R3 This is the easiest and
hardest move. Easiest because it doesn’t require any further use of the S , T and
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4Tu relations — it just follows from the R2 move and some ‘soft’ algebra (just
as in the case of the Kauffman bracket, whose invariance under R3 follows ‘for
free’ from its invariance under R2; see eg, [9, Lemma 2.4]). Hardest because it
involves the most crossings and hence the most complicated complexes. We will
attempt to bypass that complexity by appealing to some standard constructions
and results from homological algebra.

Ωr
0

−dr
0 //

Ψr

��

Ωr+1
0

−dr+1

0 //

Ψr+1

��
⊕

Ωr+2
0

Ψr+2

��
⊕

Ωr
1 dr

1

// Ωr+1
1 dr+1

1

// Ωr+2
1

Let Ψ: (Ωr
0, d0) → (Ωr

1, d1) be a mor-
phism of complexes. The cone Γ(Ψ)
of Ψ is the complex with chain spaces
Γr(Ψ) = Ωr+1

0 ⊕ Ωr
1 and with differen-

tials d̃r =

(

−dr+1
0 0

Ψr+1 dr
1

)

. The follow-

ing two lemmas explain the relevance of
cones to the task at hand and are easy6 to verify:

Lemma 4.4
[[!]] = Γ(

[[K]])[−1] and
[["]] = Γ(

[[L]]), where
[[K]] and

[[L]] are
the saddle morphisms

[[K]] :
[[H]] → [[1]] and

[[L]] :
[[1]] → [[H]] and where

·[s] is the operator that shifts complexes s units to the left: Ω[s]r := Ωr+s .

ΨL : ΨR :

Figure 7: The two sides of the Reidemeister move R3.

Ω0a

Ψ
��

G0 // Ω0b
F0

oo

Ω1a

F1 // Ω1b
G1

oo

Lemma 4.5 The cone construction is invariant up to homo-
topy under compositions with the inclusions in strong defor-
mation retracts. That is, consider the diagram of complexes
and morphisms that appears on the right. If in that diagram
G0 is a strong deformation retract with inclusion F0 , then

6Hard, if one is punctual about signs. . . .
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the cones Γ(Ψ) and Γ(ΨF0) are homotopy equivalent, and if G1 is a strong
deformation retract with inclusion F1 , then the cones Γ(Ψ) and Γ(F1Ψ) are
homotopy equivalent. (This lemma remains true if F0,1 are strong deformation
retracts and G0,1 are the corresponding inclusions, but we don’t need that
here).

Ψ

We note that Lemma 4.4 can also be interpreted
(and remains true) in a “skein theoretic” sense,
where each of ! and K (or " and L) repre-
sents just a small disk neighborhood inside an
otherwise-equal bigger tangle. Thus, applying
Lemma 4.4 to the bottom crossing in the tangle

we find that the complex
[[ ]]

is the cone

of the morphism Ψ =
[[ ]]

:
[[ ]]

→
[[ ]]

,

which in itself is the bundle of four morphisms
corresponding to the four smoothings of the two remaining crossings of
(see the diagram on the right). We can now use Lemma 4.5 and the inclusion
F of Figure 6 (notice Remark 4.2) to replace the top layer of this cube by a

single object, . Thus
[[ ]]

is homotopy equivalent to the cone of the

vertical morphism ΨL = ΨF of Figure 7. A similar treatment applied to the

complex
[[ ]]

yields the cone of the morphism ΨR of Figure 7. But up to

isotopies ΨL and ΨR are the same.

Given that we distinguish left from right, there is another variant of the third
Reidemeister move to check — . We leave it to the reader to verify
that invariance here can be proven in a similar way, except using the second
half of Lemma 4.5.

Proof of Lemma 4.5 Let h0 : Ω⋆
0a → Ω⋆−1

0a be a homotopy for which I −
F0G0 = dh0 + h0d and h0F0 = 0. Then the diagram in Figure 8 defines mor-

phisms Γ(ΨF0)
F̃0 // Γ(Ψ)
G̃0

oo and a homotopy h̃0 : Γ(Ψ)⋆ → Γ(Ψ)⋆−1 . We leave

it to the reader to verify that F̃0 and G̃0 are indeed morphisms of complexes
and that G̃0F̃0 = I and I − F̃0G̃0 = d̃h̃0 + h̃0d̃ and hence Γ(ΨF0) and Γ(Ψ)
are homotopy equivalent. A similar argument shows that Γ(Ψ) and Γ(F1Ψ)
are also homotopy equivalent.
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Γ(ΨF0) :

(

Ωr+1
0b

Ωr
1a

)

d̃=

0� −d 0
ΨF0 d

1A
//

F̃ r
0
:=

0�F0 0
0 I

1A
��

(

Ωr+2
0b

Ωr+1
1a

)

F̃ r+1

0

��

Γ(Ψ) :

(

Ωr+1
0a

Ωr
1a

)

d̃=

0�−d 0
Ψ d

1A
//

G̃r
0
:=

0� G0 0
Ψh0 I

1A OO

(

Ωr+2
0a

Ωr+1
1a

)

h̃0:=

0�−h0 0
0 0

1Aoo

G̃r+1

0

OO

Figure 8

Remark 4.6 The proof of invariance under the Reidemeister move R3 was
presented in a slightly roundabout way, using cones and their behaviour under
retracts. But there is no difficulty in unraveling everything to get concrete
(homotopically invertible) morphisms between the formal complexes at the two
sides of R3. This is done (for just one of the two variants of R3) in Figure 9.
The most interesting cobordism in Figure 9 is displayed — a cubic saddle7

(z, 3Re(z3)) bound in the cylinder [z ≤ 1] × [−1, 1] plus a cup and a cap.

Exercise 4.7 Verify that Figure 9 indeed defines a map between complexes —
that the morphism defined by the downward arrows commutes with the (right
pointing) differentials.

Exercise 4.8 Even though this will be done in a formal manner in the next
section, we recommend that the reader will pause here to convince herself that
the “local” proofs above generalize to Reidemeister moves performed within
larger tangles, and hence that Theorem 1 is verified. The mental picture you
will thus create in your mind will likely be a higher form of understanding than
its somewhat arbitrary serialization into a formal stream of words below.

7A “monkey saddle”, comfortably seating a monkey with two legs and a tail.
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I
−

I

I

I

I
I

r=
1

r=
2

r=
3

r=
0

:r

:r

r=
3

r=
2

r=
1

r=
0

Figure 9: Invariance under R3 in more detail than is strictly necessary. Notice the
minus signs and consider all missing arrows between the top layer and the bottom layer
as 0.
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5 Planar algebras and tangle compositions

*

1

2

3

4

*

*

*

*

Overview Tangles can be composed in a va-
riety of ways. Indeed, any d–input “planar arc
diagram” D (such as the 4–input example on
the right) yields an operator taking d tangles as
inputs and producing a single “bigger” tangle as
an output by placing the d input tangles into
the d holes of D . The purpose of this section
is to define precisely what “planar arc diagrams”
are and explain how they turn the collection of
tangles into a “planar algebra”, to explain how
formal complexes in Kob also form a planar algebra and to note that the Kho-
vanov bracket [[·]] is a planar algebra morphism from the planar algebra of tangles
to the planar algebra of such complexes. Thus Khovanov brackets “compose
well”. In particular, the invariance proofs of the previous section, carried out
at the local level, lift to global invariance under Reidemeister moves.

Definition 5.1 A d–input planar arc diagram D is a big “output” disk with
d smaller “input” disks removed, along with a collection of disjoint embedded
oriented arcs that are either closed or begin and end on the boundary. The
input disks are numbered 1 through d, and there is a base point (∗) marked on
each of the input disks as well as on the output disk. Finally, this information
is considered only up to planar isotopy. An unoriented planar arc diagram is
the same, except the orientation of the arcs is forgotten.

*
∈ T 0

↑↓↓↓↑↑

Definition 5.2 Let T 0(k) denote the collection of all k–
ended unoriented tangle diagrams (unoriented tangle dia-
grams in a disk, with k ends on the boundary of the disk)
in a based disk (a disk with a base point marked on its boundary). Likewise, if
s is a string of in (↑) and out (↓) symbols with a total length of |s|, let T 0(s)
denote the collection of all |s|–ended oriented tangle diagrams in a based disk
with incoming/outgoing strands as specified by s, starting at the base point
and going around counterclockwise. Let T (k) and T (s) denote the respective
quotient of T 0(k) and T 0(s) by the three Reidemeister moves (so those are
spaces of tangles rather than tangle diagrams).

Clearly every d–input unoriented planar arc diagram D defines operations (de-
noted by the same symbol)

D : T 0(k1) × · · · × T 0(kd) → T 0(k) and D : T (k1) × · · · × T (kd) → T (k)
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by placing the d input tangles or tangle diagrams into the d holes of D (here
ki are the numbers of arcs in D that end on the i’th input disk and k is the
number of arcs that end on the output disk). Likewise, if D is oriented and
si and s are the in/out strings read along the inputs and output of D in the
natural manner, then D defines operations

D : T 0(s1) × · · · × T 0(sd) → T 0(s) and D : T (s1) × · · · × T (sd) → T (s)

These operations contain the identity operations on T (0)(k or s) (take “radial”
D of the form ) and are compatible with each other (“associative”) in a
natural way. In brief, if Di is the result of placing D′ into the ith hole of D
(provided the relevant k/s match) then as operations, Di = D ◦ (I ×· · ·×D′×
· · · × I).

In the spirit of Jones [8] we call a collection of sets P(k) (or P(s)) along with
operations D defined for each unoriented planar arc diagram (oriented planar
arc diagram) a planar algebra (an oriented planar algebra), provided the radial
D ’s act as identities and provided associativity conditions as above hold. Thus
as first examples of planar algebras (oriented or not) we can take T (0)(k or s).

I =
Another example of a planar algebra (unoriented) is the full
collection Obj(Cob3

/l) of objects of the category Cob3
/l —

this is in fact the “flat” (no crossings) sub planar algebra
of (T (k)). An even more interesting example is the full col-
lection Mor(Cob3

/l) of morphisms of Cob3
/l — indeed, if D is

a d–input unoriented planar arc diagram then D × [0, 1] is a vertical cylinder
with d vertical cylindrical holes and with vertical curtains connecting those.
One can place d morphisms of Cob3

/l (cobordisms) inside the cylindrical holes

and thus get an operation D : (Mor(Cob3
/l))

d → Mor(Cob3
/l). Thus Mor(Cob3

/l)
is also a planar algebra.

A morphism Φ of planar algebras (oriented or not) (Pa(k)) and (Pb(k)) (or
(Pa(s)) and (Pb(s))) is a collection of maps (all denoted by the same symbol)
Φ: Pa(k or s) → Pb(k or s) satisfying Φ ◦D = D ◦ (Φ× · · · ×Φ) for every D .

We note that every unoriented planar algebra can also be regarded as an ori-
ented one by setting P(s) := P(|s|) for every s and by otherwise ignoring all
orientations on planar arc diagrams D .

For any natural number k let Kob(k) := Kom(Mat(Cob3
/l(Bk))) and likewise let

Kob/h(k) := Kom/h(Mat(Cob3
/l(Bk))) where Bk is some placement of k points

along a based circle.

Geometry & Topology, Volume 9 (2005)



1466 Dror Bar-Natan

Theorem 2

(1) The collection (Kob(k)) has a natural structure of a planar algebra.

(2) The operations D on (Kob(k)) send homotopy equivalent complexes to
homotopy equivalent complexes and hence the collection (Kob/h(k)) also
has a natural structure of a planar algebra..

(3) The Khovanov bracket [[·]] descends to an oriented planar algebra mor-
phism [[·]] : (T (s)) → (Kob/h(s)).

We note that this theorem along with the results of the previous section com-
plete the proof of Theorem 1.

Abbreviated Proof of Theorem 2 The key point is to think of the opera-
tions D as (multiple) “tensor products”, thus defining these operations on Kob
in analogy with the standard way of taking the (multiple) tensor product of a
number of complexes.

Start by endowing Obj(Mat(Cob3
/l)) and Mor(Mat(Cob3

/l)) with a planar alge-

bra structure by extending the planar algebra structure of Obj(Cob3
/l) and of

Mor(Cob3
/l) in the obvious multilinear manner. Now if D is a d–input planar

arc diagram with ki arcs ending on the i’s input disk and k arcs ending on the
outer boundary, and if (Ωi, di) ∈ Kob(ki) are complexes, define the complex
(Ω, d) = D(Ω1, . . . ,Ωd) by

Ωr :=
⊕

r=r1+···+rd

D(Ωr1

1 , . . . ,Ωrd

d )

d|D(Ω
r1
1

,...,Ω
rd
d

) :=
d
∑

i=1

(−1)
P

j<i rjD(IΩ
r1
1

, . . . , di, . . . , IΩ
rd
d

).

(3)

With the definition of D(Ω1, . . . ,Ωd) so similar to the standard definition of a
tensor product of complexes, our reader should have no difficulty verifying that
the basic properties of tensor products of complexes transfer to our context.
Thus a morphism Ψi : Ωia → Ωib induces a morphism D(I, . . . ,Ψi, . . . , I) :
D(Ω1, . . . ,Ωia, . . . ,Ωd) → D(Ω1, . . . ,Ωib, . . . ,Ωd) and homotopies at the level
of the tensor factors induce homotopies at the levels of tensor products. This
concludes our abbreviated proof of parts (1) and (2) of Theorem 2.
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D
1 2 3

T
Let T be a tangle diagram with d crossings, let D be the d–
input planar arc diagram obtained from T by deleting a disk
neighborhood of each crossing of T , let Xi be the d crossings
of T , so that each Xi is either an ! or an " (possibly
rotated). Let Ωi be the complexes [[Xi]]; so that each Ωi

is either
[[!]] =

( H K // 1 ) or
[["]] =

( 1 L // H )
(possibly rotated, and we’ve underlined the 0’th term in each complex). A
quick inspection of the definition of [[T ]] (ie, of Figure 1) and of Equation (3)
shows that

[[D(X1, . . . ,Xd)]] = [[T ]] = D(Ω1, . . . ,Ωd) = D([[X1]] , . . . , [[Xd]]).

This proves part (3) of Theorem 2 in the restricted case where all inputs are
single crossings. The general case follows from this case and the associativity
of the planar algebras involved.

6 Grading and a minor refinement

In this short section we introduce gradings into the picture, leading to a refine-
ment of Theorem 1. While there isn’t any real additional difficulty in the state-
ment or proof of the refinement (Theorem 3 below), the benefits are great — the
gradings allow us to relate [[·]] to the Jones polynomial (Sections 7 and 10) and
allow us to easily prove the invariance of the extension of [[·]] to 4–dimensional
cobordisms (Section 8).

Definition 6.1 A graded category is a pre-additive category C with the fol-
lowing two additional properties:

(1) For any two objects O1,2 in C , the morphisms Mor(O1,O2) form a graded
Abelian group, the composition maps respect the gradings (ie, deg f ◦g =
deg f + deg g whenever this makes sense) and all identity maps are of
degree 0.

(2) There is a Z–action (m,O) 7→ O{m}, called “grading shift by m”, on
the objects of C . As plain Abelian groups, morphisms are unchanged
by this action, Mor(O1{m1},O2{m2}) = Mor(O1,O2). But gradings do
change under the action; so if f ∈ Mor(O1,O2) and deg f = d, then as
an element of Mor(O1{m1},O2{m2}) the degree of f is d + m2 − m1 .
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We note that if an pre-additive category only has the first property above, it can
be ‘upgraded’ to a category C′ that has the second property as well. Simply let
the objects of C′ be “artificial” O{m} for every m ∈ Z and every O ∈ Obj(C)
and it is clear how to define a Z–action on Obj(C′) and how to define and grade
the morphisms of C′ . In what follows, we will suppress the prime from C′ and
just call is C ; that is, whenever the morphism groups are graded, we will allow
ourselves to grade-shift the objects of C .

We also note that if C is a graded category then Mat(C) can also be considered
as a graded category (a matrix is considered homogeneous of degree d iff all
its entries are of degree d). Complexes in Kom(C) (or Kom(Mat(C))) become
graded in a similar way.

Definition 6.2 Let C ∈ Mor(Cob3(B)) be a cobordism in a cylinder, with
|B| vertical boundary components on the side of the cylinder. Define deg C :=
χ(C) − 1

2 |B|, where χ(C) is the Euler characteristic of C .

Exercise 6.3 Verify that the degree of a cobordism is additive under vertical
compositions (compositions of morphisms in Cob3(B)) and under horizontal
compositions (using the planar algebra structure of Section 5), and verify that
the degree of a saddle is −1 (degK = −1) and that the degree of a cap/cup
is +1 (deg# = degN = +1). As every cobordism is a vertical/horizontal
composition of copies of K, # and N, this allows for a quick computation of
degrees.

Using the above definition and exercise we know that Cob3 is a graded category,
and as the S , T and 4Tu relations are degree-homogeneous, so is Cob3

/l . Hence

so are the target categories of [[·]], the categories Kob/h = Kom/h(Mat(Cob3
/l))

and Kob/h = Kob/(homotopy).

Definition 6.4 Let T be a tangle diagram with n+ positive crossings and
n− negative crossings. Let Kh(T ) be the complex whose chain spaces are
Khr(T ) := [[T ]] {r + n+ − n−} and whose differentials are the same as those of
[[T ]]:

[[T ]] : [[T ]]−n−

−→ · · · −→ [[T ]]n+

Kh(T ) : [[T ]]−n−

{n+ − 2n−} −→ · · · −→ [[T ]]n+ {2n+ − n−}
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Theorem 3

(1) All differentials in Kh(T ) are of degree 0.

(2) Kh(T ) is an invariant of the tangle T up to degree-0 homotopy equiva-
lences. That is, if T1 and T2 are tangle diagrams which differ by some
Reidemeister moves, then there is a homotopy equivalence F : Kh(T1) →
Kh(T2) with deg F = 0.

(3) Like [[·]], Kh descends to an oriented planar algebra morphism (T (s)) →
(Kob(s)), and all the planar algebra operations are of degree 0.

Proof The first assertion follows from degK = −1 and from the presence
of r in the degree shift {r + n+ − n−} defining Kh. The second assertion
follows from a quick inspection of the homotopy equivalences in the proofs of
invariance under R1 and R2 in section 4.3, and the third assertion follows from
the corresponding one for [[·]] and from the additivity of n+ and n− under the
planar algebra operations.

7 Applying a TQFT and obtaining a homology the-

ory

So Kh is an up-to-homotopy invariant of tangles, and it has excellent composi-
tion properties. But its target space, Kob, is quite unmanageable — given two
formal complexes, how can one decide if they are homotopy equivalent?

In this section we will see how to take the homology of Kh(T ). In this we lose
some of the information in Kh(T ) and lose its excellent composition properties.
But we get a computable invariant, strong enough to be interesting.

Let A be some arbitrary Abelian category8. Any functor F : Cob3
/l → A ex-

tends right away (by taking formal direct sums into honest direct sums) to a
functor F : Mat(Cob3

/l) → A and hence to a functor F : Kob → Kom(A).
Thus for any tangle diagram T , FKh(T ) is an ordinary complex, and applying
F to all homotopies, we see that FKh(T ) is an up-to-homotopy invariant of
the tangle T . Thus the isomorphism class of the homology H(FKh(T )) is an
invariant of T .

If in addition A is graded and the functor F is degree-respecting in the obvious
sense, then the homology H(FKh(T )) is a graded invariant of T . And if F is

8You are welcome to think of A as being the category of vector spaces or of Z–
modules.
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only partially defined, say on Cob3
/l(∅), we get a partially defined homological

invariant — in the case of Cob3
/l(∅), for example, its domain will be knots and

links rather than arbitrary tangles.

We wish to postpone a fuller discussion of the possible choices for such a functor
F to Section 9 and just give the standard example here. Our example for F
will be a TQFT — a functor on Cob3(∅) valued in the category ZMod of graded
Z–modules which maps disjoint unions of to tensor products. It is enough to
define F on the generators of Cob3(∅): the object © (a single circle) and the

morphisms #, N, and (the cap, cup, pair of pants and upside down
pair of pants).

Definition 7.1 Let V be the graded Z–module freely generated by two ele-
ments {v±} with deg v± = ±1. Let F be the TQFT defined by F(©) = V

and by F(#) = ǫ : Z → V , F(N) = η : V → Z, F( ) = ∆: V → V ⊗ V and

F( ) = m : V ⊗ V → V , where these maps are defined by

F(#) = ǫ :
{

1 7→ v+

F(N) = η :
{

v+ 7→ 0 v− 7→ 1

F( ) = ∆ :

{

v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−

F( ) = m :

{

v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0.

Proposition 7.2 F is well defined and degree-respecting. It descends to a
functor Cob3

/l(∅) → ZMod.

Proof It is well known that F is well defined — ie, that it respects the relations
between our set of generators for Cob3 , or the relations defining a Frobenius

algebra. See eg, [10]. It is easy to verify that F is degree-respecting, so it only
remains to show that F satisfies the S , T and 4Tu relations:

• S . A sphere is a cap followed by a cup, so we have to show that η◦ǫ = 0.
This holds.

• T . A torus is a cap followed by a pair of pants followed by an upside
down pair of pants followed by a cup, so we have to compute η ◦m◦∆◦ǫ.
That’s not too hard:

1
ǫ

7−→ v+
∆
7−→ v+ ⊗ v− + v− ⊗ v+

m
7−→ v− + v−

η
7−→ 1 + 1 = 2.
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• 4Tu. We will show that the equality L = R holds in V ⊗4 , where L
is given by

(

F( ) + F( )
)

(1) and likewise R is given by
(

F( ) + F( )
)

(1). Indeed,
(

F( )
)

(1) = ∆ǫ1 ⊗
ǫ1 ⊗ ǫ1 = v− ⊗ v+ ⊗ v+ ⊗ v+ + v+ ⊗ v− ⊗ v+ ⊗ v+ =: v−+++ + v+−++

and similarly
(

F( )
)

(1) = v++−+ + v+++− and so L = v−+++ +
v+−++ + v++−+ + v+++− . A similar computation shows R to be the
same.

Thus following the discussion at the beginning of this section, we know that for
any r the homology Hr(FKh(K)) is an invariant of the knot or link K with
values in graded Z–modules.

A quick comparison of the definitions shows that H⋆(FKh(K)) is equal to
Khovanov’s categorification of the Jones polynomial and hence that its graded
Euler characteristic is the Jones polynomial Ĵ (see [10, 3]). In my earlier
paper [3] I computed H⋆(FKh(K)) ⊗ Q for all prime knots and links with up
to 11 crossings and found that it is strictly a stronger knot and link invariant
than the Jones polynomial. (See some further computations and conjectures at
[12, 19]).

8 Embedded cobordisms

8.1 Statement

Let Cob4(∅) be the category whose objects are oriented based9 knot or link
diagrams in the plane, and whose morphisms are 2–dimensional cobordisms
between such knot/link diagrams, generically embedded in R3 × [0, 1]. Let
Cob4

/i(∅) be the quotient of Cob4(∅) by isotopies (the /i stands for “modulo
isotopies”).

A 2−knot by Carter and Saito

From [4]
Note that the endomorphisms in Cob4

/i(∅)
of the empty link diagram are simply 2–
knots, 2–dimensional knots (or links) in
R3 × (0, 1) ≡ R4 . Hence much of what
we will say below specializes to 2–knots.
Some wonderful drawings of 2–knots and
other cobordisms in 4–dimensional space are in the book by Carter and Saito, [4].

9“Based” means that one of the crossings is starred. The only purpose of the basing
is to break symmetries and hence to make the composition of morphisms unambiguous.
For most purposes the basing can be ignored.
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Figure 10: Elementary string interactions as movie clips and 3D projections of their
4D realizations, taken from [4]. (All clips are reversible.)

Thinking of the last coordinate in R3 × [0, 1] as time and projecting R3 down
to the plane, we can think of every cobordism in Cob4(∅) as a movie whose
individual frames are knot/link diagrams (with at most finitely many singular
exceptions). And if we shoot at a sufficiently high frame rate, then between
any consecutive frames we will see (at most) one of the “elementary string
interactions” of Figure 10 — a Reidemeister move, a cap or a cup, or a saddle.
Thus the category Cob4(∅) is generated by the cobordisms corresponding to the
three Reidemeister moves and by the cobordisms #, N and K (now thought
of as living in 4D).

We now define a functor Kh : Cob4(∅) → Kob(∅). On objects, we’ve defined Kh

already as the (formal) Khovanov homology of a given knot/link diagram. On
the generating morphisms of Cob4(∅) we define Kh as follows:

• Reidemeister moves go to the chain complex morphisms inducing the ho-
motopy equivalences between the ‘before’ and ‘after’ complexes, as con-
structed within the proof of the invariance theorem (Theorem 1) in Sec-
tion 4.3.

• The cobordism K : H → 1 induces a morphism
[[K]] :

[[H]]→ [[1]] just
as within the proof of invariance under R3, and just as there it can be
interpreted in a ‘skein theoretic’ sense, where each symbol K, H or 1
represents a small neighborhood within a larger context. But [[K]] differs
from Kh(K) only by degree shifts, so the cobordism K : H → 1 also
induces a morphism Kh(K) : Kh(H) → Kh(1), as required.
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• Likewise, the cobordisms # : ∅ → © and N : © → ∅ induce morphisms
of complexes Kh(#) : Kh(∅) → Kh(©) and Kh(N) : Kh(©) → Kh(∅)
(remember to interpret all this skein-theoretically — so the ∅ symbols
here don’t mean “the empty set”, but just “the empty addition to some
existing knot/link”).

Theorem 4 Up to signs, Kh descends to a functor Kh : Cob4
/i(∅) → Kob/h(∅).

Precisely, let Kob/± denote the projectivization of Kob — same objects, but
every morphism is identified with its negative, and likewise let Kob/±h denote

the projectivization of Kob/h . Then Kh descends to a functor Kh : Cob4
/i(∅) →

Kob/±h(∅).

The key to the proof of this theorem is to think locally. We need to show that
circular movie clips in the kernel of the projection Cob4 → Cob4

/i (such as the
one in Equation (1)) map to ±1 in Kob(∅). As we shall see, the best way to
do so is to view such a clip literally, as cobordisms between tangle diagrams,
rather than symbolically, as skein-theoretic fragments of “bigger” cobordisms
between knot/link diagrams.

Cobordisms between tangle diagrams compose in many ways to produce bigger
cobordisms between tangle diagrams and ultimately to produce cobordisms
between knot/link diagrams or possibly even to produce 2–knots. Cobordisms
between tangle diagrams (presented, say, by movies) can be concatenated to
give longer movies provided the last frame of one movie is equal to the first
frame of the following movie. Thus cobordisms between tangle diagrams form
a category. Cobordisms between tangle diagrams can also be composed like
tangles, by placing them next to each other in the plane and connecting ends
using planar arc diagrams. Hence cobordisms between tangle diagrams also
form a planar algebra.

Thus our first task is to discuss those ‘things’ (called “canopolies” below) which
are both planar algebras and categories. Ultimately we will prove that Kh is
a morphism of canopolies between the canopoly of tangle cobordisms and an
appropriate canopoly of formal complexes.

8.2 Canopolies and a better statement

Definition 8.1 Let P = (P(k)) be a planar algebra. A canopoly over P
is a collection of categories C(k) indexed by the non-negative integers so that
Obj(C(k)) = P(k), so that the sets Mor(C(k)) of all morphisms between all
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objects of C(k) also form a planar algebra, and so that the planar algebra oper-
ations commute with the category operations (the compositions in the various
categories). A morphism between a canopoly C1 over P1 and a canopoly C2

over P2 is a collection of functors C1(k) → C2(k) which also respect all the
planar algebra operations. In a similar manner one may define ‘oriented’ ca-
nopolies (C(s)) over oriented planar algebras (P(s)) and morphisms between
such canopolies. Every unoriented canopoly can also be regarded as an ori-
ented one by setting P(s) := P(|s|) and C(s) := C(|s|) and otherwise ignoring
all orientations.

A good way to visualize a canopoly is to think of (Mor(C(k)))
as a collection of ‘cans’ with labels in (P(k)) on the tops and
bottoms and with k vertical lines on the sides, along with compo-
sitions rules that allow as to compose cans vertically when their
tops/bottoms match and horizontally as in a planar algebra, and
so that the vertical and horizontal compositions commute.

Example 8.2 Cob3 and Cob3
/l are canopolies over the planar algebra

of crossingless tangles. A typical ‘can’ is shown on the right.

5 4

3

1

2

Example 8.3 For any finite set B ⊂ S1 let
Cob4(B) be the category whose objects are tan-
gle diagrams in the unit disk D with boundary B
and whose morphisms are generic 2–dimensional
cobordisms between such tangle diagrams em-
bedded in D× (−ǫ, ǫ)× [0, 1] with extra bound-
ary (beyond the top and the bottom) the vertical
lines B × (−ǫ, ǫ)× [0, 1]. For any non-negative k , let Cob4(k) be Cob4(B) with
B some k–element set in S1 . Then Cob4 :=

⋃

k Cob4(k) is a canopoly over
the planar algebra of tangle diagrams. With generic cobordisms visualized as
movies, a can in Cob4 becomes a vertical stack of frames, each one depicting an
intermediate tangle diagram. In addition, we mod Cob4 out by isotopies and
call the resulting canopoly Cob4

/i .

Example 8.4 The collection Kob =
⋃

k Kob(k), previously regarded only as a
planar algebra, can also be viewed as a canopoly. In this canopoly the ‘tops’ and
‘bottoms’ of cans are formal complexes and the cans themselves are morphisms
between complexes. Likewise Kob/h = Kob /(homotopy), Kob/± = Kob / ± 1
and Kob/±h := Kob/h/ ± 1 can be regarded as canopolies.
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We note that precisely the same constructions as in Section 8.1, though re-
placing the empty boundary ∅ by a general k element boundary B , define a
functor Kh0 : Cob4(B) → Kob(B) for any B . As these constructions are local,
it is clear that these functors assemble together to form a canopoly morphism
Kh0 : Cob4 → Kob from the canopoly of movie presentations of four dimensional
cobordisms between tangle diagrams to the canopoly of formal complexes and
morphisms between them.

We also note that the notion of a graded canopoly can be defined along the
lines of Section 6 — grade the cans (but not the planar algebras of the “tops”
and “bottoms”) and insist that all the can composition operations be degree-
additive. One easily verifies that all the above mentioned canopolies are in fact
graded, with the gradings induced from the gradings of Cob3 and of Cob4 (Cob3

was given a grading in Definition 6.2 and Exercise 6.3, and the same definition
and exercise can be applied without changing a word to Cob4 ). Clearly Kh0 is
degree preserving.

The following theorem obviously generalizes Theorem 4 and is easier to prove:

Theorem 5 Kh0 descends to a degree preserving canopoly morphism Kh :
Cob4

/i → Kob/±h from the canopoly of four dimensional cobordisms between
tangle diagrams to the canopoly of formal complexes with up to sign and up to
homotopy morphisms between them.

8.3 Proof

We just need to show that Kh0 respects the relations in the kernel of the pro-
jection Cob4 → Cob4

/i . These are the “movie moves” of Carter and Saito [4],
reproduced here in Figures 11, 12 and 13. In principle, this is a routine ver-
ification. All that one needs to do is to write down explicitly the morphism
of complexes corresponding to each of the clips in those figures, and to verify
that these morphisms are homotopic to identity morphisms (in some cases) or
to each other (in other cases).

But this isn’t as simple as it sounds, as many of the complexes involved are
quite complicated. The worst is of course MM10 of Figure 12 — each frame
in that clip involves a 6-crossing tangle, and hence a 6-dimensional cube of 64
smoothings, and each of the 8 moves in MM10 is an R3 move, so the morphism
corresponding to it originates from the morphism displayed in Figure 9. Even if
in principle routine, it obviously isn’t a simple task to show that the composition
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MM1 MM5MM2 MM4MM3

Figure 11: Movie moves as in Carter and Saito [4]. Type I: Reidemeister and inverses.
These short clips are equivalent to “do nothing” identity clips.

MM6

MM10

MM7

MM9

MM8

Figure 12: Movie moves as in Carter and Saito [4]. Type II: Reversible circular clips
— equivalent to identity clips.

MM13 MM14 MM15MM11 MM12

Figure 13: Movie moves as in Carter and Saito [4]. Type III: Non-reversible clips (can
be read both from the top down and from the bottom up).
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of 8 such beasts is homotopic to the identity automorphism (of a 6-dimensional
cube).

This is essentially the approach taken by Jacobsson in [6], where he was able
to use clever tricks and clever notation to reduce this complexity significantly,
though much complexity remains. At the end of the day the theorem is proven
by carrying out a number of long computations, but it remains a mystery
whether these computations had to work out, or is it just a concurrence of
lucky coincidences.

Our proof of Theorem 5 is completely different, though it is very similar in
spirit to Khovanov’s proof [13]. The key to our proof is the fact that the
complexes corresponding to many of the tangles appearing in Figures 11, 12
and 13 simply have no automorphisms other than up-to-homotopy ±1 multiples
of the identity, and hence Kh0 has no choice but to send the clips in Figures 11
and 12 to up-to-homotopy ±1 multiples of the identity.

We start with a formal definition of “no automorphisms” and then prove 4
short lemmas that together show that there are indeed many tangles whose
corresponding complexes have “no automorphisms”:

Definition 8.5 We say that a tangle diagram T is Kh–simple if every degree
0 automorphism of Kh(T ) is homotopic to a ±1 multiple of the identity. (An
automorphism, in this context, is a homotopy equivalence of Kh(T ) with itself).

Lemma 8.6 Pairings are Kh–simple (a pairing is a tangle that has no
crossings and no closed components, so it is just a planar pairing of its
boundary points).

Proof If T is a pairing then Kh(T ) is the 0–dimensional cube of the 20

smoothings of T — namely, it is merely the one step complex consisting of
T alone at height 0 and of no differentials at all. A degree 0 automorphism of
this complex is a formal Z–linear combination of degree 0 cobordisms with top
and bottom equal to T .

Let us take one such cobordism and call it C . By the defini-
tion of degrees in Section 6 it follows that C must have Euler
characteristic equal to the number of its boundary components
(which is the same as the number of components of T and half
the number of boundary points of T ). If C has no connected
components with no boundary, this forces C to be a union of
disks embedded vertically (as “curtains”) as on the right. Any tori (whose Euler
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characteristic is 0) in C can be reduced using the T relation and any higher
genus boundaryless components (with negative Euler characteristic) must be
balanced against spherical components (whose Euler characteristic is positive).
But the latter are 0 by the S relation.

Hence C is the identity and so Kh(T ) is a multiple of the identity. But being
invertible it must therefore be a ±1 multiple of the identity.

Lemma 8.7 If a tangle diagram T is Kh–simple and a tangle diagram T ′

represents an isotopic tangle, then T ′ is also Kh–simple.

Kh(T ′)
F //

α′

��

Kh(T )
G

oo

α

��
Kh(T ′)

F // Kh(T )
G

oo

Proof By the invariance of Kh (Theorems 1 and 2),
the complexes Kh(T ′) and Kh(T ) are homotopy equiv-
alent. Choose a homotopy equivalence F : Kh(T ′) →
Kh(T ) between the two (with up-to-homotopy inverse
G : Kh(T ) → Kh(T ′)), and assume α′ is a degree 0 au-
tomorphism of Kh(T ′). As T is Kh–simple, we know
that α := Fα′G is homotopic to ±I and so α′ ∼ GFα′GF = GαF ∼ ±GF ∼
±I , and so T ′ is also Kh–simple.

TNow let T be a tangle and let TX be a tangle obtained from T by
adding one extra crossing X somewhere along the boundary of T ,
so that exactly two (adjacent) legs of X are connected to T and two remain
free. This operation of adjoining a crossing is “invertible”; one can adjoin the
inverse crossing X−1 to get TXX−1 which is isotopic to the original tangle T .
This fact is utilized in the following two lemmas to show that T is Kh–simple
iff TX is Kh–simple.

But first a word about notation. In a canopoly there are many
operations and two of them will be used in the following proof.
Within that proof we will denote the horizontal composition of putting things
side by side by simple juxtaposition (more precisely, this is the planar algebra
operation corresponding to the planar arc diagram on the right). Thus starting
with a tangle T and a crossing X we get TX as in the previous paragraph.
The vertical composition of putting things one atop the other will be denoted
by ◦.

Lemma 8.8 If TX is Kh–simple then so is T .
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Proof Let α : Kh(T ) → Kh(T ) be a degree 0 automorphism. Using the pla-
nar algebra operations we adjoin a crossing X on the right to T and to α to
get an automorphism αIX : Kh(TX) → Kh(TX) (here IX denotes the identity
automorphism of Kh(X)). As TX is Kh–simple, αIX ∼ ±I . We now adjoin
the inverse X−1 of X and find that αIXX−1 : Kh(TXX−1) → Kh(TXX−1) ∼
±I . But XX−1 is differs from 1 by merely a Reidemeister move, so let
F : Kh(1) → Kh(XX−1) be the homotopy equivalence between Kh(1) and
Kh(XX−1) (with up-to-homotopy inverse G : Kh(XX−1) → Kh(1)). Now
α = αI

Kh(1) ∼ α(G ◦F ) = (IKh(T )G) ◦ (αIXX−1) ◦ (IKh(T )F ) ∼ ±(IKh(T )G) ◦ I ◦
(IKh(T )F ) = ±IKh(T )(G ◦ F ) ∼ ±I, and so T is Kh–simple.

Lemma 8.9 If T is Kh–simple then so is TX .

Proof Assume T is Kh–simple. By Lemma 8.7 so is TXX−1 . Using Lemma 8.8
we can drop one crossing, the X−1 , and find that TX is Kh–simple.

We can finally get back to the proof of Theorem 5. Recall that we have to show
that Kh0 respects each of the movie moves MM1 through MM15 displayed in
Figures 11, 12 and 13. These movie moves can be divided into three types as
follows.

Type I Performing a Reidemeister and then its inverse (Figure 11) is the same
as doing nothing. Applying Kh0 we clearly get morphisms that are homotopic
to the identity — this is precisely the content of Theorem 3.

Type II The reversible circular movie moves (“circular clips”) of
Figure 12 are equivalent to the “do nothing” clips that have the
same initial and final scenes. This is the hardest and easiest type of
movie moves — the hardest because it includes the vicious MM10 . The easiest
because given our machinery the proof reduces to just a few sentences. Indeed,
Kh0(MM10) is an automorphism of Kh(T ) where T is the tangle beginning and
ending the clip MM10 . But using Lemma 8.9 we can peel off the crossings of T
one by one until we are left with a crossingless tangle (in fact, a pairing), which
by Lemma 8.6 is Kh–simple. So T is also Kh–simple and hence Kh0(MM10) ∼
±I as required. The same argument works for MM6 through MM9 . (And in
fact, the same argument also works for MM1 through MM5 , though as seen
above, these movie moves afford an even easier argument).

Type III The pairs of equivalent clips appearing in Figure 13. With some
additional effort one can adapt the proof for the type II movie moves to work
here as well, but given the low number of crossings involved, the brute force
approach becomes sufficiently gentle here. Indeed, we argue as follows.
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• For MM11 : Going down along the left side of MM11 we get

a morphism F : Kh
( )

→ Kh
( )

. Both Kh
( )

and Kh
( )

are one-step complexes, and re-

spectively, and F is just the cobordism ◦ =

which is isotopic to the identity cobordism → . Go-
ing up along MM11 , you just have to turn all these figures
upside down.

• For MM12 : At the top of MM12 we see the empty tangle ∅
and Kh(∅) = (∅) is the one-step complex whose only “chain

group” is the empty smoothing ∅. At the bottom, Kh
( )

is the two step complex ©© → ©. Going down the right
side of MM12 starting at Kh(∅) we land in the height 0

part ©© of Kh
( )

and as can be seen from the proof

of invariance under R1, the resulting morphism ∅ → ©© is the difference
FR = − . Likewise going along the left side of MM12 we get the
difference FL = − . We leave it as an exercise to the reader to
verify that modulo the 4Tu relation FL+FR = 0 (hint: Equation (4) below)
and hence the two side of MM12 are the same up to a sign. Going up MM12

is even easier.

• For MM13 : The height 0 part of Kh(/) is H so going down
the two sides of MM13 we get two morphisms H→ H, and
both are obtained from the morphism F 0 of Figure 5 by
composing it with an extra saddle. Tracing it through, we

find that the left morphism is FL = − and the

right morphism is FR = − (here all cobordisms are

shown from above and denotes a vertical curtain with an extra handle

attached and denotes two vertical curtain connected by a horizontal

tube). We leave it as an exercise to the reader to verify that modulo the
4Tu relation FL + FR = 0 (hint: (4)) and hence the two side of MM13 are
the same up to a sign. Going up MM13 is even easier.
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• For MM14 : The two height 0 parts of Kh
( )

are |◦ and

◦|, and using the map F of Figure 6 we see that the four
morphisms | → |◦ and | → ◦| obtained by tracing MM14

from the top to the bottom either on the left or on the right
are all simple “circle creation” cobordisms (ie, caps) along
with a vertical curtain. In particular, the left side and the
right side of MM14 produce the same answer. A similar argument works for
the way up MM14 .

• For MM15 : Quite nicely, going down the two sides of MM15

we get the two morphisms ΨL and ΨR of Figure 7, and
these two are the same. Going up MM15 we get, in a similar
manner, the two sides of the other variant of the R3 move,
as at the end of the invariance under R3 proof on just above
Lemma 4.5.

This concludes the proof of Theorems 5 and 4.

9 More on Cob
3
/l

In Section 7 we’ve seen how a functor Cob3
/l → ZMod can take our theory (which

now includes Theorems 4 and 5 as well) into something more computable. Thus
we seek to construct many such functors. We start, right below, with a sys-
tematic construction of such “tautological” functors. Then in Sections 9.1–9.3
we will discuss several instances of the tautological construction, leading back
to the original Khovanov theory (Section 9.1), to the Lee [14] variant of the
original Khovanov theory (Section 9.2) and to a new variant defined only over
the two element field F2 (Section 9.3).

Definition 9.1 Let B be a set of points in S1 and let O be an object of
Cob3

/l(B) (ie, a smoothing with boundary B ; often if B = ∅ we will choose

O to be the empty smoothing). The tautological functor FO : Cob3
l → ZMod

is defined on objects by FO(O′) := Mor(O,O′) and on morphisms by com-
position on the left. That is, if F : O′ → O′′ is a morphism in Cob3

/l(B)

then FO(F ) : Mor(O,O′) → Mor(O,O′′) maps G ∈ Mor(O,O′) to F ◦ G ∈
Mor(O,O′′).

At the moment we don’t know the answer to the following question.
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Problem 9.2 Is the tautological construction faithful? Is there more infor-
mation in Kh beyond its composition with tautological functors? Beyond the
homology of its composition with tautological functors?

The groups of morphisms of Cob3
/l appear to be difficult to study. Hence we

will often simplify matters a bit by composing tautological functors with some
extra functors that forget some information. Examples follow below.

9.1 Cutting necks and the original Khovanov homology theory

As a first example we take B = ∅ and O = ∅, we forget all 2–torsion by
tensoring with some ground ring in which 2−1 exists (eg, Z(2) := Z[1/2]) and
we mod out by all surfaces with genus greater than 1:

F1(O
′) := Z(2) ⊗Z Mor(∅,O′)/((g > 1) = 0).

Taking C to be a disjoint union of two twice-punctured disks in the specification
of the 4Tu relation in Section 4.1.2 we get the neck cutting relation

2 = + (4)

If 2 is invertible, the neck cutting relation means that we can “cut open” any
tube inside a cobordism (replacing it by handles that are localized to one side
of the tube). Repeatedly cutting tubes in this manner we see that Z(2) ⊗Z

Mor(∅,O′) is generated by cobordisms in which every connected component
touchs at most one boundary curve. Further reducing using the S , T and ((g >
1) = 0) relations we get to cobordisms in which every connected component has
precisely one boundary curve and is either of genus 0 or of genus 1. So if O′ is
made of k curves then F1(O

′) = V ⊗k where V is the Z(2)–module generated

by v+ := and by v− := 1
2 .

Exercise 9.3 Verify that with this basis for V the (reduced) tautological
functor F1 becomes the same as the functor F of Definition 7.1, and hence
once again we reproduce the original Khovanov homology theory.
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Hint 9.4 Using the bra-
ket notation of quantum me-
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∣ respectively. Thus, for example, the coefficient of v− within the

product v−v+ is
〈 ∣

∣

∣

∣

∣

∣

1
2

〉

= 1
2 〈cactus〉 = 1

2

〈 〉

= 1.

9.2 Genus 3 and Lee’s theory

At first glance it may appear that the relation ((g > 1) = 0) was unnecessary in
the above discussion — every high genus surface contains several “necks” and
we can cut those using (4) to get lower genus surfaces. This clearly works if the
genus g is high enough to start with (g ≥ 4 is enough). Cutting the obvious
neck in the genus 2 surface and reducing tori using the T relation we
find that = 0 automatically. But the genus 3 surface with no boundary

cannot be reduced any further.

Thus setting

F2(O
′) := Z(2) ⊗Z Mor(∅,O′)/( = 8)

we find that as a Z(2)–module F2(O
′) is as in the previous example and as in

Definition 7.1 (except that the grading is lost), but ∆ and m are modified as
follows:

∆2 :

{

v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v− + v+ ⊗ v+

m2 :

{

v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ v+.

This is precisely the Lee [14] variant of the original Khovanov theory (used by
Rasmussen [16] to give a purely combinatorial proof of the Milnor conjecture).

9.3 Characteristic 2 and a new homology theory

The other extreme is to tensor multiply with F2 (ie, to take all linear combina-
tions with coefficients in F2 ). In this case it is convenient to take the “target
object” O to be a single boundariless cycle © and set

F3(O
′) := F2 ⊗Z Mor(©,O′).
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= + + H

Figure 14: A local picture and the corresponding 4Tu relation (over F2[H ] , so signs
can be disregarded and handles replaced by H ’s).

=
Over F2 the neck drops off the neck cut-
ting relation (4) and what remains is a
relation (shown on the right) saying that
handles can be moved from one component to another. We introduce a new
variable H with deg H = −2 and with the relation H = , so H stands

for “a handle inserted somewhere (anywhere) into a cobordism”. As modules
over F2[H] the morphisms of F2 ⊗ Cob3

/l are generated by cobordisms with no
handles, ie, by punctured spheres. (An exception needs to be made for cobor-
disms with no boundary at all, in Cob3

/l(∅). Our morphisms all have a source
O = © and hence they always have at least one boundary component so this
exception is irrelevant in what follows.)

Let ©k = ©© · · ·© (k circles) be a

Figure 15: v+−−++−
∈ F3(©6)

typical object of Cob3
/l(∅) and consider

F3(©
k) = F2 ⊗Z Mor(©,©k). Over

F2[H] this module is generated by sur-
faces whose components are punctured
spheres with an overall number of k+1
punctures, k of which corresponding to
the k circles in the “target object” ©k and a special puncture corresponding to
the “source object” ©. The 4Tu relation of Figure 14 can be used to dissolve
any component that has more than one puncture and that does not contain
the special puncture into components that either contain just one puncture or
contain the special puncture. Hence F3(©

k) is generated by cobordisms such
as the one in Figure 15, in which there is a special spherical component whose
boundary contains the source object (and possibly several other circles from the
target object) and possibly several disjoint disks that cap the remaining parts
of the target object. As in Figure 15, these generators are in a natural bijective
correspondence with the elements of V ⊗k where V (as before) is generated by
two elements v± with deg v± = ±1 (though this time v+ and v− cannot be
identified with the disk and half a punctured torus as in Sections 9.1 and 9.2).
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Exercise 9.5 Check that with this identification of F3(©
k) with V ⊗k , the

generating morphisms of Cob3
/l(∅) map to

∆3 :

{

v+ 7→ v+ ⊗ v− + v− ⊗ v+ + Hv+ ⊗ v+

v− 7→ v− ⊗ v−

m3 :

{

v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ Hv−.

We know nothing in general about the homology of F3Kh(L) associated with
a knot/link L and/or its relationship with the original Khovanov homology
H(FKh(L)). Let us describe here the results of some sporadic computations
that we have performed. We took H = 1 in the above formulas (losing the
grading, of course) and obtained a filtered theory, where G≥jF

1
3Kh(L) denotes

the subcomplex of F1
3Kh(L) made of chains of degrees greater than or equal to

j . We then computed the Betti numbers b3
rj(L) := dimF2

Hr(G≥jF
1
3Kh(L)) and

compared them with the Betti numbers of the original Khovanov homology over
Q and over F2 (ie, with bQ

rj(L) := dimQ H(Q ⊗ FKh(L)) and with bF2

rj (L) :=
dimF2

H(F2 ⊗ FKh(L))), for several knots and links with up to 10 crossings.
The results of these computations are best displayed as two dimensional arrays
of numbers, as in Figure 16.

1

1

1
1 1
1

1
1

knight tetris shifted
move piece pawn

Readers familiar with [12, 19, 3] will notice that
every “knight move” in the array describing bQ

rj gets

replaced by a “tetris piece” in the array for bF2

rj and

by a “shifted pawn move” in the array for b3
rj , while

the special pawn in column 0 of bQ
rj stays put for bF2

rj and gets replaced by a

column with entries (1, 2, 2, . . .) in the array for b3
rj . This observation repeats

for all the knots that we have tested but we don’t know a general explanation
(though see Conjecture 1 below).

10 Trace groups, Euler characteristics and skein mod-

ules

We wish to push the relationship between Kh and the Jones polynomial a little
further10. Both Kh and Ĵ can be computed locally, first for small tangles

10 This section was inspired by a talk AS Sikora gave at the George Washington
University on May 2004 and by [2]. The results in [2] partially overlap ours.
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H
H

H
H

j
r

−2 −1 0 1 2

5 1,1,1
3 0,1,0 0,1,1
1 1,1,1 1,1,0
−1 1,1,1 1,1,2
−3 0,1,0 0,1,1 0,0,2
−5 1,1,0 0,0,2

< −5 0,0,2

H
H

H
H

j
r

−4 −3 −2 −1 0 1 2 3

9 1,1,1
7 1,2,1 0,1,1
5 1,2,1 1,2,1
3 2,3,2 1,2,1
1 1,3,1 2,4,3
−1 1,2,1 2,3,1 1,1,2
−3 1,2,1 1,2,1 0,0,2
−5 0,1,0 1,2,1 0,0,2
−7 1,1,0 0,0,2

< −7 0,0,2

Figure 16: The knots 41 and 10136 (as drawn by [18]) and their Betti numbers in a
tabular form. Each box contains the three numbers bQ

rj , bF2

rj and b3
rj in order. Empty

boxes mean that all three Betti numbers are zero.

and then, by composing small tangles, the computations can be carried out for
bigger tangles and whole links. But the relationship with the Jones polynomial
discussed in Section 7 only works at the level of whole links. In this section we
will see how an appropriate notion of “Euler characteristic” intertwines Kh and
Ĵ while respecting the planar algebra structure (so progressive computations
of Kh and Ĵ “run in tandem”).

10.1 Traces

We first have to generalize the notions of Euler characteristic, dimension and
trace to complexes over arbitrary pre-additive categories.

Definition 10.1 A “trace” on a category C with values in an Abelian group
A is an additive map τ :

⊕

O∈Obj(C) Mor(O,O) → A defined on all the en-
domorphisms of objects in C and with values in A, which satisfies the “trace
relation” τ(FG) = τ(GF ) whenever F and G are morphisms so that both FG
and GF are endomorphisms (ie, whenever F : O1 → O2 and G : O2 → O1 for
some O1,2 ∈ Obj(C)).
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This definition is analogous to the standard definition of the trace of a ma-
trix, which is defined only for square matrices but satisfies the trace relation
tr(FG) = tr(GF ) even for non-square F and G, provided both FG and GF
are square.

Exercise 10.2 If τ is a trace on C and if (Fij) is an endomorphism of some
object in Mat(C), set τ((Fij)) :=

∑

i τ(Fii) and show that the newly defined τ
is a trace on Mat(C).

Assuming the presence of some fixed trace τ on a pre-additive category C ,
we can now proceed to define dimensions, Euler characteristics and Lefschetz
numbers:

Definition 10.3 The dimension (more precisely, the “τ –dimension”) of an
object O of C or in Mat(C) is the trace of the identity: dimτ O := τ(IO). If (Ωr)
is a complex in Kom(C) or in Kom(Mat(C)) we define its Euler characteristic
(more precisely, its “τ –Euler characteristic”) to be

χτ ((Ω
r)) :=

∑

r

(−1)r dimτ Ωr.

Finally, if F = (F r) is an endomorphism of Ω we define its Lefschetz number
(or “τ –Lefschetz number”) to be τ(F ) :=

∑

r(−1)rτ(F r). (All these quantities
are members of the Abelian group A which may or may not be our underlying
group of scalars). Clearly, χτ (Ω) = τ(IΩ).

We claim that Lefschetz number and Euler characteristics are homotopy invari-
ant:

Proposition 10.4

(1) If Ω is a complex and F and G are homotopic endomorphisms F,G : Ω →
Ω then τ(F ) = τ(G).

(2) If the complexes Ωa and Ωb are homotopy equivalent then χτ (Ωa) =
χτ (Ωb).

Proof

(1) Let h be so that F −G = hd+ dh. Then, using the trace relation for the
last equality,

τ(F ) − τ(G) =
∑

r(−1)rτ(F r − Gr) =
∑

r(−1)rτ(hr+1dr + dr−1hr)

=
∑

r(−1)rτ(hr+1dr − drhr+1) = 0.
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(2) If F : Ωa → Ωb and G : Ωb → Ωa induce the homotopy equivalence then
GF ∼ IΩa and FG ∼ IΩb

and so

χτ (Ωa) = τ(IΩa) = τ(GF ) = τ(FG) = τ(IΩb
) = χτ (Ωb)

(using the trace relation once more, for the middle equality)

10.2 The trace group and the universal trace

Given a pre-additive category C it is interesting to find all traces defined on it.
Quite clearly, they all factor through the “universal trace” defined below:

Definition 10.5 The “trace group” Ξ(C) is11

Ξ(C) :=
⊕

O∈Obj(C)

Mor(O,O)

/

the trace relation: FG = GF whenever
F : O1 → O2 and G : O2 → O1 .

The map which takes any endomorphism in C to itself as a member of Ξ(C) is
denoted τ⋆ and called “the universal trace of C”. (It is, of course, a trace). We
denote dimensions and Euler characteristics defined using τ⋆ (hence valued in
Ξ(C)) by dim⋆ and χ⋆ .

Example 10.6 (Told by D Thurston; see also [20]) Let Mat(•) be the category
whose objects are non-negative integers and whose morphisms are rectangular
integer matrices of appropriate dimensions: Mor(n,m) = {m × n matrices}.
Then the trace group Ξ(Mat(•)) is generated by square matrices. The trace
relation

(

0 f
0 0

)

=

(

0 f
0 0

)(

0 0
0 1

)

=

(

0 0
0 1

)(

0 f
0 0

)

=

(

0 0
0 0

)

allows us to cancel off-diagonal entries (perhaps after extending the relation by
adding zero rows and columns). Diagonal matrices can be written as sums of
diagonal matrices that have just one non-zero entry on the diagonal, and then
empty row/column pairs can be removed using the trace relation

(

g 0
0 0

)

=

(

g
0

)

(

1 0
)

=
(

1 0
)

(

g
0

)

=
(

g
)

.

Thus Ξ(Mat(•)) is generated by the 1 × 1 matrix
(

1
)

, and so the ordinary
matrix trace is up to scalars the unique trace on Mat(•) and Ξ(Mat(•)) is
isomorphic to Z.

11S D Schack informed me that this notion is due to FW Lawvere and S H Schanuel.
It is also the same as “0th Hochschild–Mitchell homology of a category with coefficients
in itself”, but it is not the same as the “Grothendieck group” of an Abelian category.
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Example 10.7 It is likewise easy to show that the trace group of the category
of finite dimensional vector spaces and linear maps over some ground field F

is F itself (generated by the identity on a one-dimensional vector space) and
that (up to scalars) the unique trace on finite dimensional vector spaces is the
ordinary trace.

Exercise 10.8 Refine the argument in Example 10.6 to show that Ξ(Mat(C))
= Ξ(C) for any pre-additive category C .

Example 10.9 Let Vect0 be the category of finite dimensional graded vector
spaces (over a field F) with degree 0 morphisms between them. Then, loosely
speaking, the different homogeneous components don’t interact and so Ξ(Vect0)
has one generator in each degree. The generator in degree m can be taken to
be the identity on a one-dimensional graded vector space whose only non-zero
homogeneous component is in degree m. Denoting this generator by qm we
can identify Ξ(Vect0) with the ring of Laurent polynomials F[q, q−1] (where q
is a formal variable which is best thought of as carrying degree 1). Thus in this
case dim⋆ and χ⋆ are the q–dimension and q–Euler characteristic of the theory
of finite dimensional graded vector spaces (denoted qdim and χq in [3]).

10.3 The trace groups of Cob
3
0/l and skein modules

Theorems 1, 2 and 3 all provide us with invariants of tangles with values in
homotopy classes of complexes. In each case we can find the trace group of the
category underlying the target complexes and then compute universal Euler
characteristics, thus getting potentially simpler “non-homological” invariants.
Here we only do it for the most refined of the three invariants, Kh of Theo-
rem 3, though to keep things simpler, we also make the two simplifications of
Section 9.1 — we forget all 2–torsion by tensoring with Z(2) and we mod out by
all surfaces with genus greater than 1. As we shall see, this recovers the Jones
polynomial for tangles.

Some preliminary definitions are required. Let Bk be a collection of k points
in S1 . Recall from Section 6 that by allowing artificial degree shifts Cob3

/l(Bk)
can be considered as a graded category and from Theorem 3 that in as much as
Kh is concerned, we can restrict our attention to morphisms in Cob3

/l(Bk) that,

degree shifts considered, are of degree 0. Let Cob3
0/l be the restricted category,

tensored with Z(2) and modulo ((g > 1) = 0): the objects of Cob3
0/l are animals

of the form S{m} where S is a smoothing and m is an integer indicating a
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formal degree shift, and the morphisms from S1{m1} to S2{m2} are Z(2)–
linear combinations of cobordisms whose top is S1 and bottom is S2 and whose
degree in the sense of Definition 6.2 is m1 − m2 , taken modulo the S , T , 4Tu

and ((g > 1) = 0) relations. Let Ξk be the trace group Ξ(Cob3
0/l(k)) of the

category Cob3
0/l . The collection (Ξk) inherits a planar algebra structure from

the planar algebra structure of the morphisms of Cob3 and as the universal Euler
characteristic is homotopy invariant, the first part of the following theorem is
evident:

Theorem 6

(1) χ⋆ ◦ Kh is an invariant of tangles with values in (Ξk); in fact, χ⋆ ◦ Kh

is an oriented planar algebra morphism (T (s)) → (Ξ(s)) (where Ξ(s) :=
Ξ(|s|)).

(2) χ⋆◦Kh is the Jones polynomial for tangles (proof follows the proof Propo-
sition 10.10).

Recall from [15] that the Jones polynomial Ĵ for k–ended tangles12 can be
defined via the “skein relations” Ĵ : ! 7→ qH−q21 and Ĵ : " 7→ −q−21+q−1H.
It takes values in the “skein module” Sk for k–ended tangles — the collection of
Z[q, q−1]–linear combinations of k–ended crossingless tangles modulo the extra
relation © = q + q−1 .

Proposition 10.10 The trace group Ξk is naturally isomorphic to the skein
module Sk . If S a k–ended crossingless tangle (ie, a smoothing), the isomor-
phism σ : Sk → Ξk maps qmS to the identity automorphism of the object S{m}
of Cob3

0/l(k), regarded as a member of the trace group Ξk = Ξ(Cob3
0/l(k)).

Proof Ξk is spanned by pairs (S{m}, C) where S is a k–ended smoothing,
m is an integer indicating a formal degree shift, and C is a degree 0 cobordism
C : S → S . Such pairs are taken modulo the trace relation FG = GF of
Definition 10.5. We can visualize such a pair as a cylinder with C inside, with
S on the top and at the bottom and with extra qm coefficient placed in front,
(below left).

qm qm1

G

F

= qm1+1
F

G

12Our slightly non-standard normalization was chosen to make the statement of The-
orem 6 as simple as possible. For links, Ĵ(L)(q) = (q + q−1)J(L)(q2), where J is the
standard Jones polynomial, as normalized (say) in [9].
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Let F : S1{m1} → S2{m2} and G : S2{m2} → S1{m1} be arbitrary degree 0
morphisms in Cob3

0/l(k). That is, F and G are degree m1 − m2 and m2 − m1

cobordisms within a cylinder (degrees measured as in Definition 6.2), with tops
S1 and S2 and bottoms S2 and S1 (all respectively), see above right. The trace
relation states that C := GF , an endomorphism of S1{m1}, is equal to FG,
which is an endomorphism of S2{m2}. Setting m = m2 − m1 and visualizing
as before, the trace relation becomes “cut a degree m piece G off the top of
C and reglue it at the bottom while multiplying by extra factor of qm”. With
this interpretation of the trace relation it is easy to check that σ respects the
relation © = q + q−1 and is hence well defined. Indeed, using the neck cutting
relation 4, then the trace relation and then the T relation we get:

σ
−→ =

1

2
+

1

2
=

1

2
(q + q−1)

= (q + q−1) = (q + q−1)σ
( )

Now let (S{m}, C) be a general element in Ξk . Cutting necks in C using the
neck cutting relation (4) as in Section 9.1 and the relations S , T and ((g > 1) =
0), we can assume without loss of generality that every connected component
of C has precisely one boundary component (which is a cycle on the boundary
of the cylinder). Furthermore, using the trace relation as above, components
attached to top boundary components can be brought to the bottom (perhaps
at the cost of some powers of q), where they ‘cancel’ the corresponding bottom
boundary components and create boundary-free components of C . And again,
these can be removed using the S , T and ((g > 1) = 0) relations. So without
loss of generality C just has k/2 components with “rectangular” boundary,
made of an arc on the top of the cylinder, an arc on the bottom, and two
arcs on the sides. As deg C = 0 it follows from Definition 6.2 that all those
components of C must be disks, so C is simply S × I for a cycle-free k–ended
S . Hence σ is surjective.

We leave it to the reader to verify that the procedure described in the previous
paragraph does not depend on the choices within it (the only apparent choice is
the ordering of the necks for cutting) and hence it defines a well-defined inverse
for σ , concluding the proof of Proposition 10.10.

Proof of part (2) of Theorem 6 Given part (1) of the theorem, it is only

Geometry & Topology, Volume 9 (2005)



1492 Dror Bar-Natan

necessary to verify part (2) in the case of crossingless tangles (which is tau-
tological) the single-crossing tangles ! and ". The latter two cases follow
immediately from definition of the Jones polynomial, !→ qH− q21 and "→

−q−21+q−1H, the corresponding evaluations of Kh, !→
( H{1} // 1{2} )

and "→
( 1{−2} // H{−1}

)

, the definition of the Euler characteristic χ⋆

and the identification of Sk with Ξk via σ .

11 Odds and ends

11.1 A structural conjecture

We say that a complex in Kob(∅) is “basic” if up to degree and height shifts it
is either one of the following two complexes:

• The one term complex Ω1 : 0 // © // 0 whose only non-zero term
is a smoothing consisting of a single circle.

• The two term complex Ω2 : 0 // ©
d // © // 0 whose two non-

zero terms are both smoothings consisting of a single circle and whose

only non-zero differential d = is the genus 1 surface with a circle

boundary at the top and a circle boundary at the bottom.

We say that a link L with c components is Khovanov-basic if the complex Kh(L)
is homotopy equivalent to a direct sum of basic complexes and the number of
Ω1 terms appearing is 2c−1 .

One can verify that Khovanov-basic links have Betti numbers consistent with
the knight-tetris-pawn observations of the previous section and with Lee’s The-
orem 5.1 (see [14]). But the Betti numbers computed by Shumakovitch in [19,
Appendices A.4 and A.5] show that some links are not Khovanov-basic.

Conjecture 1 Alternating links are Khovanov-basic (and so are many other
links, but we’d rather remain uncommitted).

11.2 Dotted cobordisms

As an aside, in this section we briefly describe a weaker variant of our the-
ory which on links is equivalent to the original Khovanov theory13 but is still

13And so it does not project to Lee’s theory or to the “new” theory of Sections 9.2
and 9.3

Geometry & Topology, Volume 9 (2005)



Khovanov’s homology for tangles and cobordisms 1493

rich enough for our tangles and cobordisms discussion to go through mostly
unchanged.

Extend the category Cob3 to a new category Cob3
• that has the same objects

as Cob3 and nearly the same morphisms — the only difference is that we now
allow “dots” (of degree −2) that can be marked on cobordisms and moved
freely within each connected component of a given cobordisms. We then form
the quotient category Cob3

•/l by reducing Cob3
• modulo the local relations

= 0, = 1, = 0,

and = + .

Pretty much everything done with Cob3
/l can be repeated verbatim for Cob3

•/l

(indeed, the S , T and 4Tu relations follow from the above relations), and in
particular, the appropriately modified Theorems 1 through 6 hold. But now we
have a stronger neck cutting relation and tubes and handles can be removed
regardless of the ground ring. At the end we only need to consider cobordisms
in which every connected component is either a disk or a singly-dotted disk, and
these can be identified with v+ and v− of Section 7. Applying a tautological
functor as in Section 9 (with O = ∅) we get back to the standard Khovanov
homology without any restriction on the ground ring.

11.3 Abstract cobordisms

As defined, the cobordisms in the various variants of Cob3 considered in this
paper are all embedded into cylinders, and hence a full classification of the
morphisms in Cob3 could be as complicated as knot theory itself. Two comments
are in order.

• We could have just as well worked with un-embedded cobordisms —
cobordisms whose boundaries are embedded in cylinders so as to have
gluing operations as required in this paper, but whose insides are “ab-
stract surfaces”. All the results of this paper continue to hold in this
setting as well.

• In principle there are more embedded cobordisms than abstract cobor-
disms, so keeping track of the embeddings potentially yields a richer the-
ory. Though if 2 is invertible then the neck cutting relation (4) shows
that embedding information can be forgotten anyway and so in this case
the two theories are the same.
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11.4 Equivalent forms of the 4Tu relation

We have chosen to present the 4Tu relation the way we did because in its
present form it is handy to use within the proof Theorem 1. But there are
several equivalent or nearly equivalent alternatives.

Proposition 11.1 If the number 2 is invertible, the neck cutting relation of
Equation (4) is equivalent to the 4Tu relation.

Proof We’ve already seen in Equation 4 that the 4Tu relation implies the neck
cutting relation regardless of the ground ring. To go the other way, use 2−1 and
the neck cutting relation to cut the four tubes in the 4Tu relation and replace
them with 8 handles. These eight handles cancel out in pairs.

Proposition 11.2 The following two three-site relations are equivalent to each
other and to the 4Tu relation (over any ground ring):

3S1 :

3S2 :
∑

0◦, 120◦, 240◦

rotations

(

−

)

= 0

Proof 4Tu ⇒ 3S1 : The relation 3S1 is in fact the relation used in the proof
of invariance under R1; just as over there, it follows from the 4Tu relation
by specializing the general 4Tu relation to the case when two of the disks D1

through D4 that appear in the definition of the 4Tu relation are on the same
connected component of the “ambient” cobordism.

3S1 ⇒ 3S2 : First, by putting the two upper disks in the definition of 3S1 on the
same connected component, we see that 3S1 implies the neck cutting relation.
Now subtract the neck cutting relation corresponding to the left-most tube in
3S1 from the entire 3S1 relation. The result is 3S2 .

3S2 ⇒ 4Tu: As in the previous case, by putting the two upper disks in the
definition of 3S2 on the same connected component, we see that 3S2 implies the
neck cutting relation. Now consider a cobordism C with four special disks D1

through D4 as in the definition of the 4Tu relation. The 3S2 relation applied
to C at sites 1, 2, 3 is C12 + C23 + C13 − H1 − H2 − H3 where Cij are as in
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the definition of the 4Tu relation and where Hi is C with a handle added at
Di . Likewise, the 3S2 relation applied to C at sites 2, 3, 4 is C23 +C34 +C24−
H2−H3−H4 . The sum of these two 3S2 relations is (C12 +C34−C13−C24)+
(2C13 −H1 −H3) + (2C24 −H2 −H4) + (2C23 −H2 −H3), and that’s the sum
of the 4Tu relation and 3 neck cutting relations.

Thus either one of 3S1 or 3S2 could have served as an alternative foundation
for our theory replacing 4Tu.

11.5 Khovanov’s c

In his original paper [10] on categorification Khovanov introduced a more gen-
eral knot homology theory, defined over the polynomial ring Z[c] where deg c =
2. The more general theory is defined using a functor, which we will call Fc ,
which is similar to the functor F of Definition 7.1:

ǫc :
{

1 7→ v+

ηc :

{

v+ 7→ −c

v− 7→ 1

∆c :

{

v+ 7→ v+ ⊗ v− + v− ⊗ v+ + c v− ⊗ v−

v− 7→ v− ⊗ v−

mc :

{

v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0.

This more general theory remains little studied, and unfortunately, it doesn’t
fit inside our framework. The problem is that Fc does not satisfy the S and
the 4Tu relations, and hence it does not descend from Cob3 to Cob3

/l .

It is natural to seek for replacements for S and 4Tu which are obeyed by Fc and
to try to repeat everything using those replacements. A natural replacement for

the S relation may be the relation Sc : = −c, and the following relation

may be a suitable replacement for 4Tu (in its 3S2 guise; see Section 11.4):

3Sc :
∑

0◦ , 120◦ ,
240◦

rotations

(

−

)

= c − c2 .

Indeed, one may verify that Fc satisfies Sc and 3Sc .
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Problem 11.3 Is there a parallel for our theory with Sc and 3Sc replacing S
and 4Tu?

We’ve been able to prove invariance under R1 using Sc and 3Sc , but not invari-
ance under R2 (one may hope that invariance under R2 will imply invariance
under R3 as in Section 4.3, so only invariance under R2 is really missing).
Note, though, that the proof of Lemma 8.6, and hence of invariance under
movie moves (Theorems 4 and 5), depend in a fundamental way on the S rela-
tion. Hence there is no reason to expect that the theory defined by Fc would
have an invariant extension to Cob4

/i . Indeed Jacobsson [7] has shown that such
extension does not exist.

11.6 Links on surfaces

Almost everything done in this paper is local in nature, and so generalizes with
no difficulty to links or tangles drawn on surfaces (more precisely, embedded
in thickened surfaces; see Figure 17), in the spirit of [1]. The main challenge
seems to be to figure out the full collection of “TQFTs” that can be applied in
this case in order to get computable homology theories as in Section 7.

Figure 17: A 3–crossing 2–component (one closed, one open) 2–ended “tangle” drawn
on a genus 2 surface with one boundary component Σ1

1 (or embedded in Σ1
1 × I ).

12 Glossary of notation

We give a quick glossary of notation by section number:

[[·]] the formal Khovanov bracket,
2.1.

[·] height shift in complexes, 4.3.

{·} degree shift, 6.# the cap # : ∅ → ©, 4.3.

N the cup N : © → ∅, 4.3.

3Si the three-site relations, 11.4.

4Tu the four tube relation, 4.1.2.

α an automorphism of a com-
plex, 8.3.
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Γ the cone of a morphism, 4.3.

∂T boundary of T , 3.

∆ a part of F , 7.

ǫ a part of F , 7.

η a part of F , 7.

ξi an edge of a cube, 2.6.

Ξ the trace group, 10.2.

Ξk the trace group of Cob3
0/l(k),

10.3.

σ the isomorphism Sk → Ξk ,
10.3.

τ a trace or a Lefschetz number
10.1.

τ⋆ the universal trace, 10.2.

Φ a morphism of planar algebras,
1.1.2.

χ Euler characteristic, 6.

χτ τ –Euler characteristic, 10.1.

χ⋆ the universal Euler character-
istic, 10.2.

Ψ a morphism of complexes, 4.3.

Ωr a chain group, 3.

A an Abelian group, 10.1.

A an Abelian category, 7.

Alg the ‘algebraic picture’, 1.1.2.

B a finite set of points on S1 , 3.

c Khovanov’s c, 11.5.

C a cobordism, 1.

C a category, 3.

Cob3 either Cob3(∅) or Cob3(B),
3.

Cob3(∅) 3D cobordisms, no verti-
cal boundary, 3.

Cob3(B) 3D cobordisms, vertical
boundary B × I , 3.

Cob3
/l the quotient of Cob3 by

S , T and 4Tu. Likewise for
Cob3

/l(∅) and Cob3
/l(B). 4.1.2.

Cob3
0/l a variant of Cob3

/l , 10.3.

Cob3
• dotted cobordisms, 11.2.

Cob3
•/l dotted cobordisms mod-

ulo local relations, 11.2.

Cob4 either Cob4(∅) or Cob4(B),
8.

Cob4(∅) 4D cobordisms, no verti-
cal boundary, 8.

Cob4(B) 4D cobordisms, vertical
boundary B × I , 8.

Cob4
/i the quotient of Cob4 by iso-

topies. Likewise for Cob4
/i(∅) and

Cob4
/i(B). 8.

d, dr differentials, 3.

D a planar arc diagram, 5.

dimτ the τ –dimension, 10.1.

dim⋆ the universal dimension,
10.2.

F , G morphisms (mainly be-
tween complexes), 3.

F a TQFT functor, 1.1.2, 7.

F2 the two element field, 9.

g genus, 9.1.

G≥j a filtration, 9.3.

h, hr homotopies, 4.1.1.

H a handle, 9.3.

j a specific degree, 9.3.

Ĵ , J the Jones polynomial, 7,
10.

K a knot, 2.1.
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Kh Khovanov homology, 1, 6.

Kh0 Khovanov homology on
movies, 8.2.

Kob(·) Kom(Mat(Cob3
/l)), com-

plexes made of cobordisms, 4.2.

Kob/h(·) Kob(·) modulo homo-
topy, 4.2.

Kob/± projectivized Kob, 8.

Kob/±h projectivized Kob/h , 8.

Kom(·) complexes over a cate-
gory, 3.

Kom/h(·) Kom(·) modulo homo-
topy, 3.

m a part of F , 7.

Mat(·) matrices over a category,
3.

MMi movie moves, 8.3.

n number of crossings, 2.1.

n± number of ± crossings, 2.2.

L, Li links, 1.

Oi objects in a category, 6.

P(k) the sets making up an un-
oriented planar algebra, 5.

P(s) the sets making up an ori-
ented planar algebra, 5.

q a formal variable, 10.2.

r homological degree, 3.

Ri Reidemeister moves, 4.2.

S a smoothing, 10.3.

S the sphere relation, 4.1.2.

Sk a skein module, 10.3.

T a tangle or a tangle diagram,
1.1.1.

T the torus relation, 4.1.2.

T 0(k) unoriented k–ended tan-
gle diagrams, 5.

T 0(s) oriented k–ended tangle
diagrams, 5.

T (k) unoriented k–ended tan-
gles, 5.

T (s) oriented k–ended tangles,
5.

Top the ‘topological picture’,
1.1.2.

v± the generators of V , 7.

V the Z–module for a circle, 7.

X a crossing, 5, 8.3.

Z(2) Z localized at 2, 9.1.

ZMod Z–modules, 7.
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