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Abstract

Given an oriented rational homology 3{sphere M , it is known how to asso-
ciate to any Spinc{structure � on M two quadratic functions over the linking
pairing. One quadratic function is derived from the reduction modulo 1 of
the Reidemeister{Turaev torsion of (M;�), while the other one can be de�ned
using the intersection pairing of an appropriate compact oriented 4{manifold
with boundary M .

In this paper, using surgery presentations of the manifold M , we prove that
those two quadratic functions coincide. Our proof relies on the comparison be-
tween two distinct combinatorial descriptions of Spinc{structures on M : Tu-
raev’s charges vs Chern vectors.
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774 Florian Deloup and Gw�enaël Massuyeau

1 Introduction and statement of the result

1.1 Introduction

Any closed oriented 3{manifold M can be equipped with a complex spin struc-
ture, or Spinc{structure. While they seem to have been originally introduced
in the ’50s and ’60s [5], in the framework of Dirac operators and K{theory [8],
the revival of interest in Spinc{structures over the last decade is certainly due
to symplectic geometry and Seiberg{Witten invariants of 4{manifolds. For a
general introduction to Spinc{structures, the reader is referred to [8]. It was
observed somewhat more recently [16] that, in dimension 3, Spinc{structures
have a simple and natural interpretation: any Spinc{structure on a closed ori-
ented 3{manifold M can be represented by a nowhere vanishing vector �eld
on M . This enabled Turaev to reinterpret a topological invariant of Euler
structures on 3{manifolds, which he had introduced earlier, as an invariant
of Spinc{structures. Since this invariant is a re�nement of the Reidemeister
torsion, we call this invariant the Reidemeister{Turaev torsion.

We will be interested in the restriction of this invariant to the class of rational
homology 3{spheres. Our work is motivated by and based on two observations.

- On the one hand, there is the following special feature of the Reidemeister{
Turaev torsion �M;� of an oriented rational homology 3{sphere M with
a Spinc{structure � : its reduction modulo 1 induces a quadratic function
qM;� over the linking pairing �M [19].

- On the other hand, there is a canonical bijective correspondence, denoted
by � 7! �M;� , between Spinc{structures on M and quadratic functions
over the linking pairing �M [10, 4, 2]. The quadratic function �M;� can be
de�ned, extrinsically, using the intersection pairing of a compact oriented
4{manifold with boundary M and �rst Betti number equal to zero.

Thus, the question naturally arises to compare the quadratic functions qM;�

and �M;� .

1.2 Statement of the result

Let us begin by developing the above two observations and �xing some nota-
tions.

The Reidemeister{Turaev torsion of a closed oriented 3{manifold equipped with
a Spinc{structure is a fundamental topological invariant. A concise and almost
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Reidemeister{Turaev torsion modulo one 775

self-contained introduction is [14]. A broader introduction is [17], while the
monographs [11, 19] contain the most recent developments. We give here a
succinct presentation su�cient for our purpose.

Let M be a connected oriented 3{manifold, compact without boundary. All
homology and cohomology groups will be with integral coe�cients unless ex-
plicity stated otherwise. We set H = H1(M), the �rst homology group, written
multiplicatively. Let Q(H) denote the classical ring of fractions of the group
ring Z[H]. The maximal Abelian Reidemeister torsion �(M) of M is an ele-
ment in Q(H) de�ned up to multiplication by an element of �H � Q(H). This
invariant, de�ned in [13], can be thought of as a generalization of the Alexander
polynomial. Next, its indeterminacy in �H can be disposed of by specifying
two extra structures: a homology orientation of M and an Euler structure of
M (see [15]). On the one hand, using the intersection pairing, the choosen ori-
entation of M induces a canonical homology orientation. On the other hand,
the Euler structures on M , de�ned as punctured homotopy classes of nowhere
vanishing vector �elds on M , are in canonical bijective correspondence with
the Spinc{structures on M [16]. Therefore, if (M;�) is a connected closed
Spinc{manifold of dimension 3, one can de�ne its Reidemeister{Turaev torsion

�(M;�) 2 Q(H):

It has the following equivariance property:

8h 2 H; h � �(M;�) = �(M;h � �) 2 Q(H): (1.1)

Here, the left hand side involves a multiplication in Q(H) while, in the right
hand side, h � � involves the free and transitive action of H2(M) (or H1(M)
via Poincar�e duality) on the set Spinc(M): see, eg, [8].

Now and throughout the paper, we assume that M is an oriented rational
homology 3{sphere, ie, we suppose that

H�(M ;Q) = H�
(
S3;Q

�
:

Then H is �nite and Q(H) = Q[H]. Hence �(M;�) determines a function
�� : H ! Q such that

�(M;�) =
X
h2H

��(h) � h 2 Q[H]:

It has been proved in [16, Theorem 4.3.1] that the modulo 1 reduction of the
function �� satis�es the property that

8h1; h2 2 H; ��(h1h2)−��(h1)−��(h2)+��(1) = −�M(h1; h2) mod 1: (1.2)
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776 Florian Deloup and Gw�enaël Massuyeau

Here, �M : H�H ! Q=Z denotes the linking pairing of M : this is a symmetric
nondegenerate bilinear pairing, which gives partial information on the way knots
are linked in the manifold M [12]. It immediately follows from (1.2) that

8h 2 H; ��(h) = ��(1)− qM;�

(
h−1

�
mod 1;

where qM;� is a quadratic function over the linking pairing �M , in the sense
that it satis�es the following property:

8h; k 2 H; qM;�(hk)− qM;�(h)− qM;�(k) = �M (h; k):

It is also easily seen from (1.1) and (1.2) that

8h 2 H; qM;h�� = qM;� + �M (h;−) : (1.3)

This equation suggests to de�ne the following free transitive action of the group
H on the set Quad(�M ) of quadratic functions over �M :

H �Quad(�M )! Quad(�M ); (h; q) 7! h � q
where

8x 2 H; (h � q)(x) = q(x) + �M (h; x) :

On the other hand, it is known [10, 4, 2] (see [3] for arbitrary closed oriented
3{manifolds) how to de�ne another bijective H {equivariant correspondence

Spinc(M)! Quad(�M ); � 7! �M;�:

This map is de�ned combinatorially, starting from a surgery presentation of the
manifold M and using its linking matrix. (The detailed construction will be
recalled in subsection 2.4.)

Theorem For any oriented rational homology 3{sphere M equipped with a
Spinc{structure � , the quadratic functions qM;� and �M;� are equal.

In his monograph [11], Nicolaescu has proved the same result, with an analytic
proof based on the connection between the Reidemeister{Turaev torsion and the
Seiberg{Witten invariant. Our proof is combinatorial and purely topological.
A surgery presentation of M provides two combinatorial descriptions of Spinc{
structures on M . One description (called charges) is de�ned by Turaev in [18]
in terms of the complement in S3 of the framed surgery link, and is used there
to compute �(M;�). Another description (called Chern vectors) relies on the
4{manifold with boundary M associated to the surgery presentation, and is
well suited for the computation of �M;� . Our main contribution consists in
comparing those two descriptions of Spinc{structures.

Before going into the proof of the Theorem, let us discuss the following imme-
diate consequence.

Geometry & Topology, Volume 7 (2003)



Reidemeister{Turaev torsion modulo one 777

Corollary The quadratic function �M;� is determined by �(M;�) mod 1.

We claim that the converse of the Corollary does not hold. To justify this,
de�ne the \constant"

c� = ��(1) mod 1:

From (1.1), we obtain that

8h 2 H; ch�� = c� − �M;� (h) : (1.4)

Let also d� 2 R=Z be such that

exp (2i� d�) =
1p
jHj
�
X
x2H

exp (2i� �M;�(x)) 2 C:

Since �M;� is nondegenerate, the Gauss sum on the right hand side is well-
known to be a complex number of modulus 1. It can also be proved that
d� 2 Q=Z. Observe that

dh�� = d� − �M;� (h) : (1.5)

As an immediate consequence of (1.4) and (1.5), we obtain the following

Proposition The number c(M) = c� − d� 2 Q=Z is a topological invariant
of the oriented rational homology 3{sphere M .

Explicit computations can be performed on the lens spaces. For instance, we
�nd that 8c (L(7; 1)) = 3=7 6= 2=7 = 8c (L(7; 2)); since L(7; 1) and L(7; 2) have
isomorphic linking pairings, we deduce that c(M) can not be computed from
�M;� .

It is not di�cult to verify that c(M) is additive under connected sums, vanishes
if M is an integer homology 3{sphere and changes sign when the orientation
of M is reversed. Let �(M) 2 Q denote the Casson-Walker invariant of M in
Lescop’s normalization [9]. We ask the following

Question Does the invariant c(M) 2 Q=Z coincide with −�(M)=jHj mod 1?

Acknowledgements The �rst author is an EU Marie Curie Research Fellow
(HPMF 2001{01174) at the Einstein Institute of Mathematics, the Hebrew
University of Jerusalem.
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2 Chern vectors and charges

This section contains preliminary material for the proof of the Theorem (Section
3). The heart of this section is devoted to the presentation of two equivalent,
but distinct, combinatorial descriptions of complex spin structures on M . The
proof of this equivalence will be given in Section 3. Even though we shall not
need it, note that subsections 2.1, 2.2 and 2.3 are valid for any closed oriented
connected 3{manifold (ie, with arbitrary �rst Betti number).

As a convention, boundaries of oriented manifolds will be always given orienta-
tion by the \outward normal vector �rst" rule.

2.1 Surgery presentation

In this paragraph and throughout Section 2, we �x an ordered oriented framed
n{component link L in S3 , such that the oriented 3{manifold VL obtained
from S3 by surgery along L is di�eomorphic to our oriented rational homology
3{sphere M .

Let bij = lkS3(Li; Lj) for all 1 � i 6= j � n, and let bii be the framing number
of Li for all 1 � i � n. We denote by BL = (bij)i;j=1;:::;n the linking matrix of
L in S3 . We also denote by WL the trace of the surgery. In other words,

M = VL = @WL with WL = D4 [
n[
i=1

(
D2 �D2

�
i
;

where the 2{handle
(
D2 �D2

�
i

is attached by embedding −
(
S1 �D2

�
i

into
S3 = @D4 in accordance with the speci�ed framing and orientation of Li .
The group H2(WL) is free Abelian of rank n. It is given the preferred basis
([S1]; : : : ; [Sn]). Here, the closed surface Si is taken to be

Si =
(
D2 � 0

�
i
[ (−�i) ;

where �i is a Seifert surface for Li in S3 which has been pushed into the
interior of D4 as shown in Figure 2.1. Also, H2(WL) will be identi�ed with
Hom(H2(WL);Z) by Kronecker evaluation, and will be given the dual basis.
Note that the matrix of the intersection pairing � : H2(WL) � H2(WL) ! Z
relatively to the preferred basis of H2(WL) is BL .

Geometry & Topology, Volume 7 (2003)
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−�i

(
D2 � 0

�
i

Li Li

Figure 2.1: The preferred basis of H2 (WL)

2.2 Chern vectors

We de�ne the set of Chern vectors (associated to the link L) to be

~VL = fs = (si)ni=1 2 Zn : 8i = 1; : : : ; n; si � bii mod 2g :

Set VL =
~VL

2 � Im BL
. A basic result of [3] (where the reader is referred to for

full details) asserts that
Spinc(VL) ’ VL: (2.1)

This is our �rst combinatorial description of Spinc{structures on VL , which
we now recall briefly. Let � 2 Spinc(VL). Extend � to a Spinc{structure
~� 2 Spinc(WL). Thus the Chern class c(~�) 2 H2(WL) ’ Hom(H2(WL);Z) is
given by an element in Zn (according to the basis dual to the preferred basis).
The isomorphism (2.1) is induced by the map � 7! c(~�).

2.3 Charges

Charges were introduced by Turaev in [18], as a combinatorial description of
Euler structures. We give a brief description.

The set of charges (associated to the link L) is de�ned to be

Geometry & Topology, Volume 7 (2003)



780 Florian Deloup and Gw�enaël Massuyeau

~CL =

8<:k = (ki)ni=1 2 Zn : 8i = 1; : : : ; n; ki � 1 +
X

1�j�n; j 6=i
bij mod 2

9=; :

Set CL =
~CL

2 � Im BL
. We shall recall below that

Spinc(VL) ’ CL: (2.2)

We can alternatively view VL , without reference to WL , as

VL = E [
n[
i=1

Zi;

where E denotes the exterior of a tubular neighborhood of L in S3 and Zi
is a (reglued) solid torus, homeomorphic to S1 �D2 . A solid torus Z is said
to be directed when its core is oriented. We direct the solid torus Zj in the
following way: we denote by mj � E the meridian of Lj which is oriented so
that lkS3(mj; Lj) = +1, and we require the oriented core of Zj to be isotopic
in VL to mj .

In general, let N be a compact oriented 3{manifold with boundary @N en-
dowed, this time, with a Spin{structure � . There is a well-de�ned set of
Spinc{structures on N relative to � , denoted by Spinc(N;�). The Abelian
group H2(N; @N) acts freely and transitively on Spinc(N;�). Also, there is a
Chern class map

c : Spinc(N;�)! H2(N; @N)

which is a�ne over the square map (where H2(N; @N) is written multiplica-
tively). For details about relative Spinc{structures and their gluings, see [3].

The torus S1 � S1 has a canonical Spin{structure �0 , which is induced by its
Lie group structure. Hence @E can be endowed with a distinguished Spin{
structure, which is denoted by [ni=1�

0 . A directed solid torus Z has a dis-
tinguished Spinc{structure relative to the canonical Spin{structure �0 on @Z :
this is the one whose Chern class is Poincar�e dual to the opposite of the oriented
core of Z . Hence by gluing any Spinc{structure on E relative to [ni=1�

0 to
the distinguished relative Spinc{structures on the directed solid tori Zj ’s, we
de�ne a map

g : Spinc
(
E;[ni=1�

0
�
! Spinc(VL):

This map g is a�ne, via the Poincar�e duality isomorphisms P : H1(E) !
H2(E; @E) and P : H1(VL) ! H2(VL), over the natural inclusion homomor-
phism H1(E)! H1(VL). In particular, g is onto.

Geometry & Topology, Volume 7 (2003)
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Another useful general fact is that the Chern class c(�) of a Spinc{structure
� relative to a Spin{structure on the boundary has a nice explicit expression
modulo 2, which we briefly explain. Let S be a closed oriented surface. Denote
by Quad(S) the set of quadratic functions over the mod 2 intersection pairing
of S . Hence, an element q 2 Quad(S) is a map q : H1(S;Z2) ! Z2 such that
q(x+ y)− q(x)− q(y) = x � y for all x; y 2 H1(S;Z2), where � denotes the mod
2 intersection pairing. The Atiyah-Johnson correspondence [1, 6] is a bijective
H1(S;Z2){equivariant map

J : Spin(S)! Quad(S); � 7! J�:

Here, the function J� is de�ned, for any simple oriented closed curve γ , by
J�([γ]) = 1 or 0 according to whether (γ; �jγ) is homotopic to S1 with the
Spin{structure induced from the Lie group structure or not [7, pages 35{36].

Lemma 2.1 (See [3]) Let N be a compact oriented 3{manifold with bound-
ary, � 2 Spin(@N) and � 2 Spinc(N;�). Then

8y 2 H2(N; @N); hc(�); yi � J� (@�(y)) mod 2;

where h�; �i denotes Kronecker evaluation, and where @� : H2(N; @N)! H1(@N)
is the connecting homomorphism of the pair (N; @N).

A canonical bijection between Spinc
(
E;[ni=1�

0
�

and ~CL can be de�ned in the
following way: for any � 2 Spinc

(
E;[ni=1�

0
�
, calculate P−1c(�) 2 H1(E) and

identify H1(E) with Zn taking the meridians ([m1]; : : : ; [mn]) as a basis; it is a
consequence of Lemma 2.1 that the multi-integer we obtain is actually a charge
on L. Thus, since g is surjective and since Ker (H1(E)! H1(VL)) is generated
by the n characteristic curves of the surgery, it follows that the map g induces
a bijection

~CL
2 � Im BL

! Spinc(VL)

as claimed.

2.4 The quadratic function �M;�

In this paragraph, we recall how to compute the quadratic function �M;�

[10, 4, 2] from the surgery presentation L for M and a Chern vector s 2 Zn
representing � 2 Spinc(M). By the homology exact sequence associated to
the pair (WL; VL), the choice of the preferred basis for H2(WL) induces an
identi�cation

H ’ Coker BL = Zn=Im BL: (2.3)

Geometry & Topology, Volume 7 (2003)
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Let x 2 H and let X 2 Zn be a representative of x by (2:3). We have

�M;�(x) = −1
2
(
XT �BL−1 �X +XT �BL−1 � s

�
mod 1: (2.4)

Example 2.2 Suppose that the surgery link L is algebraically split (ie, BL
is diagonal). As before, denote by mi the meridian of Li oriented so that
lkS3(Li;mi) = +1 and let [mi] 2 H be its homology class in M . It follows
from (2.3) and the orientation convention that

�M;�([mi]) = − 1
2bii

(1− si) mod 1: (2.5)

3 Proof of the Theorem

A technical di�culty lies in the computation of qM;� from the torsion �(M;�).
Fortunately, �(M;�) can be computed from a surgery presentation of M and
a charge representing � (see [18] or [19]). In the previous section, we computed
�M;� from a surgery presentation of M and a Chern vector representing � .
Thus, the proof consists in two steps: 1. compare charges to Chern vectors
(there must be a bijective correspondence between them); 2. compare qM;� to
�M;� using surgery presentations.

We shall use the notations of the previous section. In particular, we have �xed
an ordered oriented framed n{component link L in S3 , such that the oriented
3{manifold VL obtained by surgery along L is di�eomorphic to our oriented
rational homology 3{sphere M .

The comparison of the two combinatorial descriptions of Spinc(VL) is contained
in the following

Claim 3.1 If � 2 Spinc(VL) corresponds to [k] 2 CL , then � corresponds to
[s] 2 VL , where

8j 2 f1; : : : ; ng; sj = 1− kj +
nX
i=1

bij: (3.1)

Remark 3.2 Claim 3.1 is true for any closed oriented connected 3{manifold
(ie, with arbitrary �rst Betti number).
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i{th handlej{th handle

Dj

�j
Aj

(lj)"
(
−�cut

j

�
" one of the (−Rjl)" ’s

(
S3
�
"

S3

Figure 3.1: A decomposition of the surface Sj

Proof of the Claim 3.1 We denote by �2 the distinguished relative Spinc{
structure in Spinc

�
[nj=1Zj ;[nj=1�

0
�

. Let also �1 2 Spinc(E;[nj=1�
0) be such

that
� = �1 [ �2 2 Spinc(VL):

Pick an extension ~� of � to WL and let � be the isomorphism class of U(1){
principal bundles determined by ~� 2 Spinc(WL). On the one hand, the �rst
Chern class c1(�) of � , when expressed in the preferred basis ([Sj]�)nj=1 of
H2 (WL) ’ Hom (H2(WL);Z), gives a multi{integer s 2 Zn ; then [s] 2 VL
corresponds to � . On the other hand, the Poincar�e dual to the relative Chern
class of �1 2 Spinc

�
E;[nj=1�

0
�

, when expressed in the preferred basis ([mj ])
n
j=1

of H1(E), gives a multi{integer k 2 Zn ; then [k] 2 CL corresponds to � . Thus,
proving that those speci�c integers k and s verify (3.1) modulo 2 � Im BL will
be enough.

In the sequel we denote by
(
S3
�
"

a collar push-o� of S3 = @D4 in the interior
of D4 . The surface Sj can be decomposed (up to isotopy) in WL as

Sj = Dj [Aj [
(
−�cut

j

�
"
[
[
l

(−Rjl)"

where the subsurfaces, illustrated on Figure 3.1, are de�ned as follows:

� Dj is a meridian disc of Zj such that @Dj is the characteristic curve �j
of the j{th surgery;
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784 Florian Deloup and Gw�enaël Massuyeau

� Aj is the annulus of an isotopy of −�j to Lj , union the annulus of an
isotopy of −Lj to (Lj)" , union the annulus of an isotopy of (−Lj)" to
(lj)" , where lj denotes the preferred parallel of Lj in S3 (ie, lkS3(lj ; Lj) =
0);

� �j is a Seifert surface for lj in S3 disjoint from Lj and in transverse
position with the Li ’s (i 6= j ). For each intersection point xl between �j

and a Li , remove a small disc Rjl so that �j = �cut
j [

S
lRjl .

By de�nition of s, we have sj = hc1(�); [Sj ]i = hc1(pjSj ); [Sj ]i where p is
representative for � and where c1(pjSj ) 2 H2(Sj) is the obstruction to trivialize
p over Sj . So P−1c1(pjSj ) = sj � [pt] 2 H0(Sj). Let tr be a trivialization of p on
@E and let tr" be the corresponding trivialization of p on (@E)" . A classical
argument (calculus of obstructions in compact oriented manifolds by means of
Poincar�e dualities) leads to the equality

H0(Sj) 3 P−1c1(pjSj ) = i�P
−1c1

(
pjDj ; trj�j

�
(3.2)

+ i�P
−1c1

�
pjAj ; trj−�j [ tr"j(lj)"

�
− i�P

−1c1

�
pj(�cut

j )
"

; tr"j(@�cut
j )

"

�
−
X
l

i�P
−1c1

�
pj(Rjl)" ; tr"j(@Rjl)"

�
;

where P denotes a Poincar�e duality isomorphism for the appropriate surface
(Dj , Aj , �cut

j or Rjl ). For an appropriate choice of p in the class � and for
an appropriate choice of tr, we have

c1 (pjE; tr) = c(�1) 2 H2(E; @E)
c1
(
pj[jZj ; tr

�
= c(�2) 2 H2 ([jZj ;[j@Zj)

c1
(
pjN(L); tr

�
= c(�3) 2 H2 (N(L); @N(L))

where, in this last requirement, N(L) is a tubular neighborhood of L in S3

and �3 is an arbitrary element of Spinc
(
N(L);[j�0

�
. For such choices, we now

compute separately each term of the right hand side of (3.2).

(1) The �rst term is of the form dj � [pt]. Here

dj = hc(�2); [Dj ]i = − (oriented core of Zj) � [Dj ] = +1;

where the intersection is taken in Zj . (Note that Zj =
(
D2 � S1

�
j

if
we denote by

(
D2 �D2

�
j

the 2{handle of WL corresponding to Lj ,
and be careful of the fact that the above speci�ed oriented core of Zj is
−
(
0� S1

�
j
.)
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(2) The second term is of the form aj � [pt]. Here aj = hc(�3); [Aj ]i where
Aj is regarded as a relative 2{cycle in (N(L); @N(L)) once the collar has
been squeezed. Since @Aj is −�j [ lj , [Aj] is −bjj times the class of
the meridian disc of Lj (oriented so that its oriented boundary is mj ) in
H2(N(L); @N(L)). Then, aj = −bjj � �j where �j is de�ned to be

�j = hc(�3); [meridian disc of Lj ]i 2 Z:

Note that �j � J�0([mj ]) � 1 mod 2 (by the Atiyah-Johnson correspon-
dence, see Lemma 2.1).

(3) The third term is −gj � [pt] where gj = hc(�1); [�cut
j ]i. But, that integer

is equal to

gj =
(
P−1c(�1)

�
� [�cut

j ] =

 X
i

ki[mi]

!
� [�cut

j ] =
X
i

ki�ij = kj

where the intersection is taken in E.

(4) The fourth term is given by −
P

l rjl � [pt]. Here rjl = hc(�3); [Rjl]i. For
each index l , denote by i(l) the integer i such that xl is an intersection
point of �j with Li , and denote by �(l) the sign of the intersection point
xl . Then, from the de�nition of �i (given for the second term), we have
rjl = �(l) � �i(l) . Hence X

l

rjl =
nX
i=1
i6=j

bij�i:

Putting those computations together, we obtain that (3.2) is equivalent to the
identity

sj = dj + aj − gj −
X
l

rjl

= 1− bjj�j − kj −
nX
i=1
i6=j

bij�i

=

 
1− kj +

nX
i=1

bij

!
−

nX
i=1

bij (�i + 1) :

The claim now follows from the fact that �i � 1 mod 2 for all i = 1; : : : ; n.

We are now able to prove the Theorem. Assume �rst that M is obtained by
surgery along an algebraically split link L, and that � is represented by a charge
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k on L. Then, according to [19, Chapter X, Section 5.4], we have that

qM;�([mj ]) =
1
2
− kj

2bjj
mod 1:

Substituting kj = 1 − sj +
P

i bij , we �nd that this formula agrees with (2.5)
of Example 2.2. This proves the Theorem in this particular case. Now consider
the general case, when L is not necessarily algebraically split. We shall use the
following observation due to Ohtsuki.

Lemma 3.3 Let M be an oriented rational homology 3{sphere. There ex-
ist non-zero integers n1; : : : ; nr such that M#L(n1; 1)# � � �#L(nr; 1) can be
presented by surgery along a framed link L algebraically split in S3 .

Here # denotes connected sum and L(n; 1) is the 3{dimensional lens space
obtained by surgery along a trivial knot with framing n 6= 0 in S3 . Apply that
lemma to the oriented rational homology 3{sphere M we are working with,
and consider the resulting manifold M 0 = M#L(n1; 1)# � � �#L(nr; 1). Set
�0 = �#�1# � � �#�r 2 Spinc(M 0) where �1; : : : ; �r denote arbitrary Spinc{
structures on the lens spaces. Then, we have qM 0;�0 = �M 0;�0 . By de�nition of
#, there is a small 3{ball B �M such that MnB �M 0 . This inclusion induces
a (injective) homomorphism i� : H1(M) ! H1(M 0). Since we can compute
�M 0;�0 from a split surgery presentation of M 0 using the surgery formula (2.4),
we have that �M;� = �M 0;�0 � i� . It follows from [19, Chapter XII, Section 1.2]
(which describes the behaviour of the Reidemeister{Turaev torsion under #)
that, similarly, qM;� = qM 0;�0 � i� . We deduce that qM;� = �M;� and we are
done.
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