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1 Introduction

The purpose of this article is to describe various moduli spaces of pseudoholo-
morphic subvarieties in the symplectization of a certain over twisted contact
1{form on S1 � S2 . This said, the motivation for such a study comes from
4{manifold di�erential topology using three key observations. Here is the �rst:
As explained in [19] and [20], every compact, oriented 4{manifold with pos-
itive sum of second Betti number and signature has a closed 2{form that is
symplectic where non-zero and whose zero set is a �nite, disjoint union of em-
bedded circles. Moreover, as explained in [20], this closed 2{form restricts to a
certain [0;1) � (S1 � S2) neighborhood of each of its vanishing circles as the
symplectization of a particular contact 1{form, the one of interest here.

Here is the second key observation stemming from [20]: Numerical invariants of
the moduli spaces of pseudoholomorphic subvarieties in the complement of the
zero circles most probably contain the 4{manifold’s Seiberg{Witten invariants.
An optimist would hope to �nd novel 4{manifold invariants here as well [21].

Granted the second key observation, here is the third: Hofer [8, 9, 10]; Hofer,
Wysocki and Zehnder [11, 12, 13] (see also the references in [10]); Eliashberg [2],
and Eliashberg with Hofer [3] have studied the salient issues that confront the
construction of numerical invariants from moduli spaces of pseudoholomorphic
subvarieties on non-compact symplectic manifolds with symplectization type
ends. In particular, they teach that such constructions require an understanding
of the analogous moduli spaces on the corresponding symplectizations. In any
event, given the 4{manifold circumstances just described, the symplectization
is that of the contact form in question on R� (S1 � S2).

With the preceding understood, it is time to be precise about the relevant
geometry. For this purpose, introduce coordinates (s; t; �; ’) for R� (S1 � S2)
where s is the coordinate for the R factor in R � (S1 � S2), t 2 R=2�Z is
the coordinate for the S1 factor and (�; ’) 2 [0; �] � (R=2�Z) are standard
spherical angle coordinates for the S2 factor. This done, the contact form in
question is

� � −(1− 3 cos2 �)dt−
p

6 cos � sin2 �d’: (1.1)

The resulting symplectic form on R� (S1 � S2) is

! = d(e−
p

6s�): (1.2)

In this regard, note that the convention here is such that the s ! 1 end of
R � (S1 � S2) is the concave side end in that j!j drops to zero as e−

p
6s in

this direction. Conversely, the end where s ! −1 is the convex end. Said
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di�erently, the contact form � is of concave type with S1 � S2 viewed as the
boundary of [0;1) � (S1 � S2).

By the way, the factor of
p

6 that enters above and subsequently propagates
throughout this article is a consequence of a desire to have ! de�ne a self-dual
2{form with respect to the standard product metric, ds2 +dt2 +d�2 +sin2 �d’2 ,
on R� (S1 � S2).

It proves convenient in the ensuing discussion to have introduced functions f
and h on R� (S1 � S2) de�ned as follows:

f � e−
p

6s(1− 3 cos2 �) and h �
p

6 e−
p

6s cos � sin2 �: (1.3)

This done, we have
! = dt ^ df + d’ ^ dh: (1.4)

The almost complex structure J used here to de�ne the term ‘pseudoholomor-
phic’ is speci�ed by the relations

J@t = g@f and J@’ = g sin2 �@h; (1.5)

where g �
p

6 e−
p

6s(1 + 3 cos4 �)1=2 . This almost complex structure is !{
compatible. This is to say that the bilinear form

g−1!(�; J(�)) (1.6)

de�nes a smooth metric on R � (S1 � S2). Infact, the metric in (1.6) is the
standard product metric, ds2 + dt2 + d�2 + sin2 �d’2 but written in terms of t,
f , ’ and h as

dt2 + g−2(df2 + sin−2 �dh2) + sin2 �d’2: (1.7)

Note that J is not integrable. By the way, J sends the vector �eld @s to a
multiple of the Reeb vector �eld, v̂ = −g−1[(1 − 3 cos2 �)@t +

p
6 cos �@’], the

unique vector �eld that contracts with � to give 1 and is annihilated by d�. In
addition, J is invariant under translations of the coordinate s on R�(S1�S2).
Thus, J is a standard almost complex structure for the ‘symplectization’ of the
contact structure de�ned by �.

As remarked, the almost complex structure in (1.5) de�nes the notion used here
of a pseudoholomorphic subvariety. A certain subset of the latter, called here
HWZ subvarieties, are of particular interest. Here is the de�nition:

De�nition 1.1 An HWZ subvariety, C � R � (S1 � S2), is a non-empty,
closed subset with the following properties:
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� The complement in C of a countable, nowhere accumulating subset is a
two-dimensional submanifold whose tangent space is J {invariant.

�
R
C\K ! <1 if K � R� (S1 � S2) is an open set with compact closure.

�
R
C d� <1.

The HWZ subvarieties are remarkably well behaved. As explained in the next
section, each intersects the large �s portions of R�(S1�S2) as a �nite, disjoint
union of cylinders. Moreover, each such cylinder intersects the appropriate
component of each large and constant jsj slice of R�(S1�S2) transversely and
the resulting s{parameterized family of circles in S1 � S2 converges pointwise
to multiply cover an embedded circle whose tangent lines are annihilated by
d�.

As indicated by the preceding remarks, the closed, integral curves in S1 � S2

of the kernel of d� play a prominent role in this story. They are called ‘closed
Reeb orbits’. Here is the full list of such circles:

� There are two distinguished ones, labeled (+) and (−), these being the
respective loci where � = 0 and where � = � .

� The others are labeled by data ((p; p0); �) where � 2 R=2�Z and where
(p; p0) are integers subject to three constraints:

(a) At least one is non-zero, if p = 0, then p0 = �1, if p0 = 0, then p = 1
and if both are non-zero, then they are relatively prime.

(b) jp0j=jpj >
p

3=
p

2 when p < 0.

(c) p > 0 when jp0j=jpj <
p

3=
p

2.

The Reeb orbit labeled by these data are the loci where

(1) p0t− p’ = �

(2) � is constant and such that p0(1− 3 cos2 �) = p
p

6 cos � with
p0 cos � � 0. (1.8)

As it turns out, the second constraint determines � in terms of (p; p0), and
vice-versa. What follows is a schematic drawing of the possible values of (p; p0)
as a function of the azimuthal angle � on the sphere.
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� = 0
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3

cos � = − 1p
3

� = �
2

p < 0
p0 > 0

p < 0
p0 < 0

p > 0
p0 > 0

p > 0
p0 < 0

(1.9)

A momentary digression is in order here to comment on the fact that the closed
Reeb orbits are not isolated in S1�S2 . In particular, this is a direct consequence
of the fact that the contact form � is invariant under an S1 � S1 subgroup,
T , of the isometry group of S1 � S2 . The convention used here takes the �rst
factor of S1 in T to rotate the S1 factor in S1 � S2 via translation of the
coordinate t; the second factor of S1 in T rotates the S2 factor of S1 � S2

via translation of the spherical angle ’. This understood, the � = 0 and �
Reeb orbits are the only closed Reeb orbits that are invariant under the whole
of T . Each of the others is preserved by no more than the product of a �nite
subgroup with a 1{parameter subgroup of T .

As indicated above, each end of an HWZ subvariety C determines a closed Reeb
orbit by the asymptotics of its constant s slices as either s!1 or s! −1.
This said, introduce the number, @C , of such convex side (s! −1) ends with
limit Reeb orbit where � is neither 0 nor � . This integer @C plays a key role
in the subsequent discussion.

A second integer, IC , also plays a key role here. What follows is an informal
de�nition of IC ; the somewhat technical formalities are relegated to Section 3.
The discussion starts with the observation that the full set of HWZ subvarieties
has a reasonable structure of its own. As explained later in Section 3, this
set enjoys a topology whereby a subvariety, C , has a neighborhood that is
homeomorphic to the zero set of a smooth map from a Euclidean ball of some
dimension NC to Euclidean space of a possibly di�erent dimension, nC . In this
regard, the di�erence, IC = NC − nC de�nes a locally constant function and
should be thought of as formal dimension at C of the space of HWZ subvarieties.
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For future reference, note that the assignment of the integer @C to an HWZ
subvariety C also de�nes a locally constant function in this topology.

A second integer, IC , also plays a key role here. What follows is an informal
de�nition of IC ; the somewhat technical formalities are relegated to Section 3.
The discussion starts with the observation that the full set of HWZ subvarieties
has a reasonable structure of its own. As explained later in Section 3, this
set enjoys a topology whereby a subvariety, C , has a neighborhood that is
homeomorphic to the zero set of a smooth map from a Euclidean ball of some
dimension NC to Euclidean space of a possibly di�erent dimension, nC . In this
regard, the di�erence, IC = NC − nC de�nes a locally constant function and
should be thought of as formal dimension at C of the space of HWZ subvarieties.
For future reference, note that the assignment of the integer @C to an HWZ
subvariety C also de�nes a locally constant function in this topology.

By the way, the interpretation of IC as a dimension is based on the following
observation: When nC can be taken to be zero, then nC can be taken zero on
a neighborhood of C . This said, the subset of those HWZ subvarieties C with
nC = 0 forms an open subset with a natural smooth manifold structure and IC
gives the dimension of this manifold at C .

The set of HWZ subvarieties with the topology just described is called the
\moduli space" of HWZ subvarieties and is denoted by M. Of interest in this
article are the components of M where IC � @C + 1. In particular, the most
prominent result of this article is a complete description of these IC � @C + 1
components. Theorems A.1{4 summarize many of the salient conclusions. The
author currently plans to discuss some of the IC > @C + 1 moduli spaces in a
sequel to this article.

The focus here on the IC � @C +1 components of M has its ultimate justi�ca-
tion in the proposed use of the constructs of Hofer and his coworkers to study
invariants of smooth 4{manifolds using two-forms that are symplectic where
non-zero. However, as such applications are dreams for now (and IC � @C + 1
cases surely enter such dreams) take the results of the theorems here as sim-
ply answers to the following question: What do the small dimensional, HWZ
moduli spaces look like?

The statements of Theorems A.1, A.2 and A.3 make explicit reference to the
fact that the group T acts on M as does the group R. The former via its
action on the S1�S2 factor in R� (S1�S2) and the latter by its action on the
R factor via translation of the coordinate s. As these group actions commute
with each other, so R� T acts on M. Moreover, this action is continuous and
smooth on the smooth manifold parts of M.

Geometry & Topology, Volume 6 (2002)
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Theorems A.1, A.2 and A.3 refer to ‘irreducible’ subvarieties. The term here
denotes a subvariety that cannot be disconnected by the removal of any �nite
set of points. These theorems also use as notation MC to denote the component
in M of a particular HWZ subvariety C .

Theorem A.1 Let C � X be an irreducible, HWZ pseudoholomorphic sub-
variety. Then the following are true:

� IC � @C .

� If IC = @C , then @C = 0; 1, or 2.

(a) @C = 0 if and only if C = R� γ where γ is a � 2 f0; �g closed Reeb
orbit from the �rst point in (1.8). In this case, MC � M consists of
the point C .

(b) @C = 1 if and only if C = R � γ where γ is a closed Reeb orbit
from the second point in (1.8). In this case, MC is a smooth manifold,
di�eomorphic to S1 , invariant under the action of R and a single orbit
under the action of T .

(c) @C = 2 if and only if C is a cylinder that is invariant under a 1{
parameter subgroup of T . Here, C is embedded and the limit Reeb
orbits from C are characterized as in (1.8) by data (�(p; p0); �) where
jp0j=jpj >

p
3=
p

2. In this case, MC is a smooth manifold, one orbit
under R� T and di�eomorphic to R� S1 .

� If IC = @C + 1, then @C = 1; 2 or 3.

(a) @C = 1 if and only if one of the following three scenarios prevail:

(1) C is an embedded disk invariant under the second factor of S1 in
T . Here, C is embedded and its limit Reeb orbit is a ((0;�1); �)
case from (1.8). In this case, MC is a smooth manifold, one orbit
under R� T , and di�eomorphic to R� S1 .

(2) C is an embedded cylinder, invariant under an S1 subgroup of T
with only one convex side limiting Reeb orbit. Here, C is embedded
and the convex side Reeb orbit is characterized by ((p; p0); �) with
p < 0 and jp0j is the least integer that is greater than p

p
3=
p

2.
Meanwhile, the concave side Reeb orbit is characterized, as in (1.8),
by either (+) or (−) with the sign in question that of p0 . In this case,
MC is a smooth manifold, one orbit under R�T , and di�eomorphic
to R� S1 .

Geometry & Topology, Volume 6 (2002)
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(3) C is an embedded cylinder, invariant under an S1 subgroup of T
with two convex side limiting Reeb orbits. Here, one is characterized
by ((p; p0); �) with p > 0, and with jp0j equal to the greatest integer
that is less than p

p
3=
p

2. Meanwhile, the second convex side limit
Reeb orbit is characterized, as in (1.8), by either (+) or (−) with
the sign in question opposite that of p0 . In this case, C is also
embedded. Again, MC is a smooth manifold, one orbit under R�T ,
and di�eomorphic to R� S1 .

(b) If @C = 2 or 3, then C is an immersed, thrice punctured sphere with
no limit Reeb orbits described, as in (1.8), by either (+) or (−). In
each case, MC is a smooth manifold. Theorems A.2 and A.3, below,
describe the classi�cation and structure of MC .

� All other cases have IC � @C + 2.

Note that Theorem A.4, below, describes the number of singular points in the
immersed subvarieties that appear Part b of the third point.

Theorem A.1 makes reference to HWZ subvarieties that are preserved by sub-
groups of R � T . In this regard, an irreducible subvariety is preserved by an
R � S1 subgroup of R � T if and only if it is the cylinder R� γ where γ is a
closed Reeb orbit. Such a cylinder is preserved by the whole of R�T if and only
if γ is either the (+) or (−) Reeb orbit in the notation of (1.8). Meanwhile,
an irreducible HWZ subvariety C that is moved by the R action but preserved
by an S1 subgroup of T is either a cylinder or a disk. All such are described
in great detail in Section 4 of this paper. Here is a table that summarizes the
sorts of subvarieties that appear in Theorem A.1:

� R� T invariant cylinders: The � = 0 and � = � loci.

� R� S1 invariant cylinders: R � (Closed Reeb orbit).

� S1 invariant disks: These have t = constant. The one end is on
the convex side with constant s slices that converge as s ! −1
onto a closed Reeb orbit where cos2 � = 1=3.

� S1 invariant cylinders: These can have either one or two convex
side ends. In any event, each � 62 f0; �g, closed Reeb orbit de-
termines exactly two S1 invariant cylinders with constant s slices
that converge to it as s! −1.

� Three-holed spheres with one concave side and two convex side
ends.

Geometry & Topology, Volume 6 (2002)



A compendium of pseudoholomorphic beasts in R� (S1 � S2) 665

� Three-holed spheres with no concave side and three convex side
ends. (1.10)

No thrice-punctured sphere from Theorem A.1 is �xed by a non-trivial element
in T . Nonetheless, much is known about these punctured spheres and the
moduli space components that contain them. The next theorem summarizes
what is known about the @C = 2 cases.

Theorem A.2 The @C = 2 components of M that appear in Part b of
the third point of Theorem A.1 consist solely of immersed, thriced punctured
spheres. Each such component is a smooth manifold. Moreover, these compo-
nents have the following classi�cation and structure:

Classi�cation The components are classi�ed by ordered sets of four integers
having the form ((p; p0); (q; q0)) subject to the following constraints:

(a) � � pq0 − p0q > 0.

(b) q0 − p0 > 0 unless p0q0 > 0
(c) If (m;m0) denotes either (p; p0) or (q; q0), then jm0j=jmj >

p
3=
p

2
when m < 0, and m > 0 when jm0j=jmj <

p
3=
p

2.

Structure The component of M that corresponds to ((p; p0), (q; q0)) is di�eo-
morphic to R� T . Moreover, this di�eomorphism is R� T equivariant.

The story on the @C = 3 cases from Theorem A.1 is provided by the next
result.

Theorem A.3 The @C = 3 components of M that appear in Part b of the
third point of Theorem A.1 consist solely of immersed, thrice punctured spheres.
Each such component is a smooth manifold. Moreover, these components have
the following classi�cation and structure:

Classi�cation The components are in 1{1 correspondence with the unordered
sets of three pair of integers that are constrained in the following way:
Such a set, L, can be ordered as f(p; p0); (q; q0); (k; k0)g with

(a) p+ q + k = 0 and p0 + q0 + k0 = 0.

(b) jk0=kj >
p

3=
p

2.

(c) f(p; p0); (q; q0)g obey the constraints in the �rst point of Theorem A.2.
In this regard, a set L with an ordering that satis�es these three con-
ditions has precisely two distinct orderings that satisfy the conditions.

Geometry & Topology, Volume 6 (2002)
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Structure The component of M that is labeled by L is a smooth manifold
that is di�eomorphic to (0; 1)�R� T . Moreover, this di�eomorphism is
R�T equivariant for the R�T action on (0; 1)�R�T that �xes the (0; 1)
factor and acts in the canonical fashion on the R� T factor. Finally, the
quotient, (0; 1), of this moduli space component by the R�T action has
a natural compacti�cation as [0; 1], where the two added points label the
R�T quotient of two components of the @ = 2 moduli space components
described in Theorem A.2. In this regard, the relevant components are
labeled by the �rst two pairs from the two possible orderings of L that
obey the three constraints given in the preceding point.

The �nal theorem in this section describes the number of singular points of the
thrice punctured spheres described in Theorems A.2 and A.3. For a subvariety
C , this number, mC , ‘counts’ the number of singular points in the immersion.
A precise de�nition of this count is given in Section 3a. In any event, mC = 0
if and only if C is embedded, and mC is the number of double points when all
singularities are locally transversal intersections of pairs of disks.

The statement of Theorem A.4 implicitly views S1 as the unit radius circle
about the origin in C.

Theorem A.4 Suppose that C is either described by Theorem A.2 and its
moduli space component is classi�ed by the data f(p; p0); (q; q0)g, or else C is
described by Theorem A.3 and its moduli space component is described by the
data set f(p; p0); (q; q0); (k; k0)g. In either case, the integer mC is one half of
the number of pairs (�; �0) 2 S1� S1 such that � 6= �0 , neither � nor �0 equals
1, and �p�q = �p

0
�q
0

= 1. Thus,

2mC = �− gcd(p; p0)− gcd(q; q0)− gcd(p + q; p0 + q0) + 2

where gcd(m;m0) denotes the greatest common divisor of m and m0 . For
example, mC = 0 and so C is embedded if and only if one of the following
conditions holds:

� jpq0 − p0qj is either 1 or 2.

� jpq0 − p0qj divides with integer remainder both members of at least one
of the pairs of integers (p; p0); (q; q0) and (k = −p− q; k0 = −p0 − q0).

The remainder of this article has �ve more sections that are organized along
the following lines:

Geometry & Topology, Volume 6 (2002)
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Section 2 states and proves a theorem that describes the behavior of a nat-
ural class of pseudoholomorphic subvarieties on a non-compact symplectic 4{
manifold whose ends are symplectomorphic to either the s > 0 or s < 0 portions
of R� (S1�S2). In this regard, the symplectomorphism is required to identify
the almost complex structure with that depicted in (1.5). Propositions 2.2 and
2.3 summarize the principle results of Section 2.

Section 3 considers the structure of the moduli spaces of the subvarieties from
Section 2. In particular, this section de�nes the topology for M and provides,
in Proposition 3.2, a local model for neighborhoods of points in M. In addition,
Proposition 3.6 provides an ‘index theorem’ that computes the analog of IC in
explicitly geometric terms.

Section 4 focuses on the explicit example of R� (S1�S2) and provides a proof
of Theorem A.1. By the way, the proof of Theorem A.1 derives additional
constraints on the possibilities for IC . The latter are summarized in Proposition
4.3.

Section 5 focuses on R� (S1 � S2) and proves Theorem A.2. This section also
proves the assertions of Theorem A.4 about Theorem A.2’s subvarieties.

Section 6 focuses on R � (S1 � S2) and contains the proof of Theorem A.3.
This section also contains the proofs of the assertions in Theorem A.4 about
the subvarieties from Theorem A.3.

2 Regularity

The discussion here and in the third section concerns an oriented, symplectic
4{manifold X that can be described in the following way: Start with a smooth,
oriented 4{manifold with boundary, X0 , where the boundary of X0 is a disjoint
union of copies of S1 � S2 . Suppose that this boundary can be written as
@−X0 [ @+X0 , where each component of @−X0 has a neighborhood with an
orientation preserving di�eomorphism to [0; 1)�(S1�S2), and each component
of @+X0 has one to (−1; 0]�(S1�S2). In this regard, view the latter as subsets
of R� (S1 � S2) with its orientation de�ned by the symplectic form in (1.2).

Given X0 , then X is obtained by attaching (−1; 0]� (S1 � S2) to each com-
ponent of @−X0 and attaching [0;1)� (S1�S2) to each component of @+X0 .
Meanwhile, the symplectic form, ! , on X is required to restrict to an open
neighborhood of each component of X−X0 as either the form in (1.2) or else as

Geometry & Topology, Volume 6 (2002)
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this form after passing to a suitable 2{fold cover. In this regard, the deck trans-
formation for this cover is the �xed point-free involution, � : S1� S2 ! S1�S2

that sends
(t; �; ’) �! (t+ �; � − �;−’) (2.1)

Note that � in (1.1) is invariant under the action of � , and thus ! is invariant
under the induced involution on R� (S1�S2). Therefore, both descend to the
associated quotient.

Here is some terminology used below: An end of X is a component of X −X0 .
A component of X − X0 that comes from a component of @−X0 is called a
convex end of X , while one that comes from a component of @+X0 is called a
concave end. Also, a component of X − X0 where ! restricts directly as the
form in (1.2) is said to have orientable z -axis line bundle. A component where
passage to the double cover is required is said to have non-orientable z -axis
line bundle.

Of course, the prime example in this paper of such an X is R� (S1�S2) with
the symplectic form in (1.2). In this case, there is one convex end and one
concave end. Moreover both ends of X have an orientable z{axis line bundle.
As explained in [20], other examples come from compact 4{manifolds with 2{
forms that are symplectic where non-zero and vanish on an embedded union of
circles. In the latter examples, all of the ends are concave, but there can be
some with a non-orientable z{axis line bundle.

By the way, when X comes from a compact 4{manifold as just described, a
result of Gompf [7] asserts that the parity of the number of ends of X with
orientable z{axis line bundle is opposite that of the sum of the �rst Betti
number, the second Betti number and the signature of the original compact
4{manifold. On the other hand, start with such a compact 4{manifold and,
according to Luttinger [15], the closed form can be manipulated so that the
resulting manifold X has only orientable z{axis ends.

Given X with its symplectic form as just described, there are almost complex
structures on X that are !{compatible and restrict to some open neighborhood
of each end of X as follows: If the end has orientable z{axis line bundle, then
J restricts as the almost complex structure in (1.5). On the other hand, if
the end has non-orientable z{axis line bundle, then J should restrict as the
push-forward of (1.5) via the covering map induced by � . In this regard, note
that (1.5) is �{invariant.

Unless explicitly noted otherwise, assume that every almost complex structure
that appears below has the properties just described. This said, �x such a J
and De�nition 1.1 has the following analog:

Geometry & Topology, Volume 6 (2002)
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De�nition 2.1 With X , ! and J as just described, a subset C � X is an
HWZ subvariety when the following conditions are met:

� C is closed, and the complement of a countable, non-accumulating set is
a smooth submanifold with a J {invariant tangent space.

� Let K � X be any open set with compact closure. Then
R
C\E ! <1.

� Let E � X − X0 be any component. Then
R
C\E d� < 1 where �

is the contact form in (1.1) when E has orientable z{axis line bundle;
otherwise, � is the push-forward of the form in (1.1) via the covering map
de�ned by � in (2.1).

With the preceding understood, it can now be said that the purpose of this
section is to state and then prove the two propositions that follow that describe
the ends of an HWZ subvariety in X . With regards to the proofs, note that they
introduce various constructions that are used in later portions of this article.

Proposition 2.2 Let C � X be an HWZ subvariety. Then:

� C has a �nite number of singular points.

� C intersects each su�ciently large and constant jsj slice of X−X0 trans-
versely.

� There is a �nite union, Γ, of disjoint closed Reeb orbits in @X0 , thus
integral curves of the distribution kernel (d�), with the following signi�-
cance:

(a) Let U � @X0 be any tubular neighborhood of Γ. Then C ’s intersection
with each su�ciently large and constant jsj slice of X −X0 lies in U .

(b) Fix a tubular neighborhood projection from U to Γ and then C ’s
intersection with each su�ciently large and constant jsj slice of X−X0

projects to each component of Γ as a �nite to one covering map.

� There exists a complex curve C0 with a �nite set of cylindrical ends
together with a proper, pseudoholomorphic map into X whose image is
C and which embeds the complement of a �nite set.

The curve C0 will be called ‘the model curve’ for C . The set Γ will be called
the ‘limit set’ for C . Note that the closed Reeb orbits are listed in (1.8) for the
components of @X0 with orientable z{axis line bundle. The closed Reeb orbits
in the unorientable z{axis line bundle components of @X0 are the images of
the orbits listed in (1.8) under the 2{1 covering map induced by the map � in
(2.1).
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It follows from Proposition 2.2 that the jsj ! 1 limit of the constant jsj slices
of C on X −X0 converge to some union of closed Reeb orbits. The following
proposition gives a more detailed picture of this convergence:

Proposition 2.3 Let C � X be an HWZ subvariety. There exists a �nite
union, Γ � @X0 , of closed Reeb orbits, and, after a tubular neighborhood of Γ
is identi�ed via an exponential map with Γ � D with D � R2 an open disk,
there exists s0 > 0 such that

� The intersection of C with each constant jsj � s0 slice of X −X0 lies in
Γ�D .

� Each component of the jsj � s0 portion of C ’s intersection with X −X0

can be parameterized by [s0;1) � S1 via a map which sends (s; �) to
(�s; γ(mγ�); �(s; �)) where mγ is a positive integer, γ 2 Γ and � is a
smooth map from [s0;1) � S1 to D . Here, the + sign is used with a
component in a concave end of X and the − sign with a component in a
convex end.

� There exists � > 0 and, for each integer k � 0, a constant �k � 0 such
that the Ck{norm of � is bounded by �k e

−�jsj .

Note that these two propositions would follow directly from Theorems 1.2 and
1.4 in [11] but for the fact that the latter assume a non-degeneracy condition
on the closed Reeb orbits that is not obeyed here.

The remainder of this section is occupied with the proofs of Propositions 2.2
and 2.3.

(a) Proof of Proposition 2.2

Before getting to speci�cs, note that the assertions of the proposition are local
to the ends of X and so no generality is lost by assuming that the ends have
orientable z{axis line bundle. This is because the almost complex structure
in (1.5) is �{invariant and thus � preserves the conditions for the appellation
HWZ subvariety. Thus, the setting for a non-orientable z{axis line bundle end
can be pulled up via the double cover map induced by � in (2.1) and viewed
as a �{equivariant example of the orientable z{axis line bundle case. This
understood, all ends in the subsequent discussion are implicitly assumed to
have orientable z{axis line bundle.

To begin the proof, remark �rst that the �rst and fourth points follow directly
from the second and third. Thus, the argument below focuses on the latter two
points. This argument is broken into ten steps.
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Step 1 For each integer n � 2, let Cn denote the intersection of C with the
portion of X −X0 where jsj 2 [n − 2; n + 2]. Via the evident identi�cation of
this cylinder with W � [−2; 2]�@X0 , each Cn can be viewed as a proper, pseu-
doholomorphic subvariety of W . In this regard, note that ! = d(e−

p
6 s�) is a

symplectic form on W . The �rst claim here is that there is an n{independent
upper bound to the symplectic area of Cn . This follows from the �niteness of
d�’s integral over C \ (X − X0). Indeed the fact that d� has �nite integral
has two key implications:

� limn!1
R
Cn

d� = 0.

� Fix a component of @X0 and then the sequence of numbers (in-
dexed by n) obtained by integrating � over the intersection of C
with the jsj = n slice of the corresponding component of X −X0

is convergent. (2.2)

Note that the second point implies the assertion about the upper bound for the
symplectic area of Cn .

Step 2 Use the compactness theorem of Proposition 3.3 in [22] to conclude
that any subsequence of fCng has inside it, a subsequence (hence renumbered
consecutively from 1) which converges to a proper, pseudoholomorphic subva-
riety C 0 �W . This convergence is in the following sense:

First, the sequence�
supx2C0dist(x;Cn) + supx2Cndist(x;C 0)

}
(2.3)

converges with limit zero.

Second, C 0 can be written as a �nite union fC 0�g1���N for some integer N � 1,
where each C 0� is a proper, pseudo-holomorphic subvariety and the intersection
of C 0� with C 0�0 is �nite when � 6= �0 . Moreover, there is a corresponding
sequence of positve integers fm�g such that the set pairs c � f(C 0�;m�)g has
the property that for any 2{form � on W , the sequence�Z

Cn

�

�
(2.4)

converges with limit X
(C0;m)2c

m

Z
C0

� : (2.5)

Step 3 It follows from the preceding step that d� vanishes on C 0 , and this
implies that C 0 has the form [−2; 2]�Γ, where Γ is a �nite union of closed Reeb
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orbits. These closed Reeb orbits are listed in (1.8). Were they are isolated, it
would follow from the discussion in Step 1 that the data c = f([−2; 2] � γ;m) :
γ 2 Γ and m 2 f1; 2; � � � gg describing the limit of fCng is uniquely de�ned
from C . However, in the present case, the closed Reeb orbits are not isolated.
Even so, one can still draw this same conclusion:

Lemma 2.4 Let C � X be an HWZ subvariety. Then all limits of the corre-
sponding sequence fCng produce the same data set c as limit. In particular,
there is a �nite union, Γ, of closed Reeb orbits with the following signi�cance:
Given � > 0, there exists s� such that each point of C 0 s intersection with any
constant jsj � s� portion of X −X0 has distance � or less from Γ. Conversely,
each point of Γ has distance � or less from a point in C 0 s intersection with any
constant jsj � s� portion of X −X0 .

This lemma is proved below in the �nal step of the proof of Proposition 2.3, so
accept it for the time being.

Before continuing to Step 4, note that the remainder of the proof of Proposition
2.2 (including that of Lemma 2.4) will assume that the component of @X0 in
question is concave. In this regard, the arguments for the convex case are
identical save for some notational changes.

Step 4 To begin, re-introduce the coordinate functions (t; f; h; ’) for R�(S1�
S2) as de�ned in (1.3). In this regard, note that the submanifolds where (t; f)
are constant are pseudoholomorphic cylinders or pairs of disks (when f = 0),
while those where (’; h) are constant are pseudoholomorphic cylinders.

Fix attention on a component, γ of Γ and remember from (1.8) that γ can be
labeled either (+), (−) or ((p; p0); �). In all cases, the spherical angle � is a
constant, �0 , on γ .

The value of �0 forces two cases to be distinguished: Case 1 has γ 6= ((0;�1); �),
which is equivalent to the condition that cos2 �0 6= 1=3. Meanwhile, Case 2 has
γ = ((0;�1); �) and therefore cos2 �0 = 1=3. The discussion below focus on the
case where cos2 �0 6= 1=3 and this condition will be assumed implicitly. The
discussion for the cos2�0 = 1=3 case is essentially identical to that below after
switching the roles which are played by the coordinates t and ’ and also by f
and h. For this reasons, the discussion in the cos2 �0 = 1=3 case is omitted.

With the preceding understood, return to the loop γ , and observe that in the
case where �0 =2 f0; �g, this loop has a parameterization by a periodic variable
� 2 R=(2�jpjZ) via
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� t = � ,

� � = �0 ,

� ’ = ’0 + �p0=p. (2.6)

Here, ’0 2 R=(2�Z) is a constant. In the case where �0 2 f0; �g, the param-
eterization of γ is also given by (2.6) with the last two lines absent. Even so,
take p = −1 when �0 2 f0; �g. In any case, the projection from S1�S2 to the
S1 factor restricts to γ as an jpj to 1 covering map.

Note that the functions f and h in (1.3) restricts to γ to obey

h = (p0=p) sin2(�0)f: (2.7)

Step 5 Lemma 2.4 implies that at all large values of s, the intersection of
C with some �xed radius tubular neighborhood of fsg � γ lies very close to
fsg�γ . In particular, take the tubular neighborhood in question to have disjoint
closure from the other components of Γ. With this noted, there must exist f1

such that C has empty intersection with the boundary of the closure of this
tubular neighborhood where jf j � f1 . In particular, there is an unambiguous
component of the intersection between C and R � (S1 � S2) where jf j � f1

which lies in the given tubular neighborhood. Given the preceding, agree to
restrict attention to the just mentioned jf j � f1 portion of C . By the way,
note that on this portion of C , the limits jf j ! 0 and s!1 can be assumed
equal by constraining the tubular neighborhood of γ so j ln((1− 3 cos2 �)=(1−
3 cos2 �0))j < 1 on it.

In the subsequent steps, this particular jf j � f1 portion of C will still be
denoted by C .

With these last remarks understood, it then follows from Lemma 2.4 and (2.6)
that C intersects each constant (t; f) pseudoholomorphic subvariety in mjpj
points counting multiplicities. Here, m is the weight which appears with γ
in the set c from Step 3. Note that all of the multiplicities here are positive.
Moreover, because of (2.7), these intersection points are grouped in subsets of
m points (counting multiplicities), where each of the jpj points in the set�

(’ = ’0 + t+ 2�kp0=p; h = (p0=p) sin2(�0)f) : 1 � k � jpj
}

(2.8)

is very close to a unique such subset. Indeed, the following assertion is a direct
consequence of Lemma 2.4:

Fix � > 0, and � > 0 exists such that if jf j < � , t 2 R=(2�jpjZ)
and � is a point in (2.8), then the m(’; h) values near � coming
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from points in C with coordinates (t; f) have distance � or less
from � . (2.9)

Agree to use � to denote the map which assigns the coordinates (t; f) 2 S1�R
to the points in R� (S1�S2). The restriction of � to C has the following key
property: There exists a countable, non-accumulating set � � C such that �
restricts to C−� as an mjpj to 1 covering map. That is, if x 2 �(C−�), then
the multiplicity of each point in �−1(x) is precisely 1. On the other hand, if
x 2 �, then

�−1(�(x)) contains less than mjpj points; thus some of them have
multiplicty greater than 1. (2.10)

By the way, it is important to note that each point in � is either a singular point
of C or a smooth point of C but a critical point of � . (These last assertions
and (2.10) all follow more or less directly from the fact that the constant (t; f)
surfaces are pseudoholomorphic. A detailed argument can be had by mimicking,
almost verbatim, the discussion in Part a of the Appendix to [22].)

With regards to �, the key observation now is that if � is �nite, then any
small, positive and constant jf j slice of C projects as �nite to one covering
map over the analogous slice of the (t; f) cylinder. This said, Steps 6{8 of the
proof demonstrate that � is �nite; the ninth step shows how the points of the
proposition then follow.

Step 6 This step introduces the space ��C which consists of the triples
(w; �−; �+) with (w; ��) 2 C and �(w; ��) = w . Here, �� consists of the
2{tuple (’�; h�).

The local structure of ��C can be analyzed by mimicking the discussion in Part
a of the Appendix to [22]. What follows is a summary of some of the important
features. First, C embeds in ��C as the diagonal where �− = �+ . In what
follows, C and its image in ��C will not be notationally distinguished. Second,
��C is a smooth manifold except near points (w; �−; �+) where one or both of
(w; ��) 2 �. Meanwhile, the structure of ��C near one of these singular points
can be described in detail as Part a of the Appendix in [22]. In any event, the
projection � mapping (w; �−; �+) to w restricts over the complement of �(�)
as an (mjpj)2 to 1 covering map. Third, let ��C denote the closure in ��C of
��C − C . Then ��C 0 \ C = � � C . Indeed, this follows from (2.10).

There is one more crucial point to make about ��C , namely: If f1 > 0 is
su�ciently small, then:
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’+−’− is a bona�de, real-valued function on ��C ; in fact, given
� > 0, there exists � > 0 such that when jf j < � , then j’+−’−j �
�: (2.11)

This assertion is an immediate consequence of (2.8) and (2.9). Thus, it is a
corollary to Lemma 2.4, and this is essentially the only place in the argument
for Proposition 2.2 that requires Lemma 2.4. However, the conclusion expressed
in (2.11) is absolutely crucial for the subsequent arguments.

Step 7 Introduce the set G � ��C which consists of the points (w; �−; �+)
where the function h � h+−h− is zero. This set is an example of an ‘embedded
graph’. This is to say that G is a locally compact subset with the following
additional properties: First, G has a distinguished subset, Gv , which is a locally
�nite collection of points. Elements in Gv are called vertices. Meanwhile,
G−Gv is a locally �nite set of properly embedded, open intervals in ��C 0−Gv .
The closure of each component of G−Gv is called an edge. Finally, each vertex
has a neighborhood in ��C whose intersection with G consists of a �nite union
of properly embedded images of the half open interval [0; 1) by an embedding
which sends 0 to the vertex in question. Moreover, these embedded intervals
intersect pairwise only at the given vertex.

In the present case, G has some additional properties which are summarized
below:

� Each vertex of G is either an h = 0 critical point of h in the smooth
part of ��C or else a point (w; �+; �−) 2 ��C where one or both of
(w; ��) 2 �.

� Let ’ � ’+ − ’− . The 1{form d’ is non-zero on the tangent space
of G − Gv . Infact, at all points on the interior of each edge,the 2{form
d’ ^ dh orients ��C 0 so that � is an orientation preserving map.

� The intersection of G with some open neighborhood of each vertex is
a �nite union of embedded, half open arcs with endpoints lying on the
vertex, but disjoint otherwise. Moreover, the tangent lines to the arcs
at the vertex are well de�ned and disjoint. The interior of each arc is
part of an edge of the graph. The number of such arcs is non-zero and
even. Exactly half of the arcs are oriented by d’ so ’ increases towards
the vertex while half are oriented by d’ so that ’ decreases towards the
vertex.

� If f2 2 (0; f1) is chosen to be su�ciently generic, then the jf j = f2 locus
in ��C intersects only the smooth part of ��C , and where df 6= 0. In
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addition, Γ intersects this jf j = f2 submanifold of ��C as a �nite set of
points, all in the interior of edges and this intersection is transverse.

(2.12)

These points are proved by copying the arguments in Steps 3{5 of Part b in the
Appendix to [22]. In this regard, note that the observation that d’ is non-zero
on G−Gv (where h = 0) plays a starring role in the next step.

By the way, the conclusion of the second point about d’ orienting G−Gv is a
speci�c consequence of the fact that J from (1.5) maps dh to a ’{independent
multiple of d’. Indeed, because C is pseudoholomorphic, the pair (’; h) obey a
Cauchy Riemann like equation on C−� as functions of the variables (t; f). This
equation can be written schematically as d’ = j �dh. Here, j is a function of f
and h only; in particular, j is independent of ’. One consequence of this equa-
tion d’ = j dh, is that the function ’ = ’+ − ’− on ��C − �−1(�(�)), when
viewed as a function of (t; f), obeys d(’+ −’−) = j(f; h+)dh+ − j(f; h−)dh− .
In particular, where h+ = h− , this reads d’ = j(f; h)dh ; and this last equation
directly implies the assertion in the second point of (2.12).

Step 8 To complete the proof that � is �nite (modulo the proof of Lemma
2.4), note �rst that each point of C \ ��C 0 is a vertex of G. Moreover, these
are precisely the vertices of G where ’ = 0. Thus, it is su�cient to show that
there are at most a �nite number of ’ = 0 vertices of G. In fact, the claim is
that the number of ’ = 0 vertices of G where jf j < f2 is no greater than the
number of points where jf j = f2 on G. This last number is �nite by virtue of
the �nal point in (2.12)).

To prove the preceding claim, choose a ’ = 0 vertex of G and then follow some
edge out from this vertex where ’ is increasing. The existence of such an edge
is guaranteed by the third point in (2.12). Continue to travel along this edge.
According to the second point of (2.12), the function ’ continues to increase.
Either this edge eventually hits another vertex of G where jf j � f2 , or else it
hits the jf j = f2 locus of G. In this regard, note that jf j is bounded away
from zero on such an edge, since j’j converges to zero along any path in ��C
where jf j limits to zero because of (2.11). Indeed, remember that j’j started
at zero and then increases along the edge.

If the edge ends in a second vertex of G, then ’ > 0 at this vertex, and there
is another edge coming into this vertex on which ’ is increasing in the outward
pointing direction (by the fourth point in (2.12).) Continue out on this new
edge. Note that ’ still is increasing. Iterate this procedure. As ’ always
increases, the path so traced out remains in a compact subset of the jf j � f2
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portion of ��C 0 . Meanwhile, no vertices are hit by this piecewise smooth path
in G more than once. By compactness, the path must end, and the only possible
way to do so is to hit the jf j = f2 locus.

With the preceding understood, let G(1) � G denote the compliment of the
interiors of the edges which are traversed by the path just described. Note
that G(1) is also described by (2.12) except that G(1) may have some isolated
vertices. Agree to ignore these as they play no role in what follows. By the
way, observe that the intersection of G(1) with the jf j = f2 locus contains one
fewer point then that of G.

Given G(1) , repeat the procedure just described in the previous three para-
graphs, but with G(1) replacing G. The result is a G(2) � G(1) which is
described by (2.12) (except maybe for some isolated vertices). Note that G(2)

has two fewer intersection points with the jf j = f2 locus as did G. Of course,
one can continue in this vein, creating G(3); : : : ; etc., each time reducing by
one the size of the set of intersections with the jf j = f2 locus. Eventually, this
�nite set of jf j = f2 intersections is exhausted, say for G(k) , in which case G(k)

has no non-isolated ’ = 0 vertices. In particular, this means that the original
number of ’ = 0 vertices in G is no greater than the size of the jf j = f2 locus
in G.

Step 9 Given that the set � is �nite, it follows that there exists some f1 > 0
such that when jf j < f1 , then the constant jf j slice of C de�nes an mjpj to
1 covering map over the corresponding slice of the (t; f) cylinder. This un-
derstood, then C can be parameterized as a multiple cover of the appropriate
component of the jf j < f1 portion of the (t; f) cylinder. One such parameteri-
zation uses coordinates (�; �) where � 2 R=(2�mjpjZ) and � 2 (�0;1). In the
case where � =2 f0; �g, the latter parameterize the jf j < f1 portion of C via
the map that sends (�; �) to

� t = � ,

� f = sign(p)e−�� ,

� ’ = ’0 + �p0=p+ x(�; �),

� h = e−�� sin2 �0(p0=p+ �−1sign(p)w(�; �)), (2.13)

where � = 6−1=2(1 + 3 cos4 �0)−1=2j1 − 3 cos2 �0j. Meanwhile, as � and ’ are
not good coordinates near the poles of S2 , the parameterization in case when
�0 2 f0; �g replaces the latter by the functions

a1 � 6−1=4jf j−1=2jhj1=2 cos(’) and a2 � 6−1=4jf j−1=2jhj1=2 sin(’): (2.14)

Geometry & Topology, Volume 6 (2002)



678 Cli�ord Henry Taubes

This done, the parameterization sends (�; �) to (t = � ,f = −e−
p

6 � , a1(�; �),
a2(�; �)).

Here is the point of such a parameterization: Introduce the 2{component, col-
umn vector �, with either top entry x and bottom entry w or top entry a1 and
bottom entry a2 as the case may be. By virtue of (1.5) and the fact that C is
pseudoholomorphic, this vector obeys a di�erential equation with the schematic
form

@��+ L0�+R(�; �� ) = 0: (2.15)

Here, L0 in (2.15) denotes the operator

L0 =
�
−� 0 −@�
@� −�

�
(2.16)

where � 0 and � are constants. Meanwhile, R(�; �) is a�ne linear in the second
factor and obeys

jR(a; b)j � �(jaj2 + jajjbj) ; (2.17)

where � is independent of �, a and b where � is large and jaj is small. Equation
(2.15) also exhibits the notation, used subsequently, where the partial derivative
of a function by a parameter is denoted by the function’s symbol adorned with
the parameter as subscript.

As a solution to (2.15), the vector � also obeys the asymptotic condition

lim
�!1

j�j = 0 (2.18)

by virtue of the fact that the constant and large � slices of C converge to the
Reeb orbit in question.

Observe now that the equation in (2.15) is, for small j�j, uniformly elliptic. This
noted, and given (2.18), standard elliptic regularity arguments as in Chapter
6 of [17] apply to (2.15) and �nd that derivatives of � to all orders converge
to zero as � tends to in�nity. For future reference, this conclusion is stated
formally as the following lemma.

Lemma 2.5 Given a non-negative integer k and � > 0, there exists �� such
that jr⊗k�j < � at all points with � > �� .

This observation of Lemma 2.5 implies the assertions of Proposition 2.2. For
example, the transversal intersection of C with the large and constant jsj slices
follows after �rst pulling the di�erential ds back to C while noting that ds =
−
p

6(f df + h dh). This done, write h in terms of the components of � and
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the � ! 1 limit of zero for jr�j implies that @�s 6= 0 at large � on C . The
assertions of the third point of the proposition follow in a similar vein.

Step 10 This step is devoted to the following proof.

Proof of Lemma 2.4 A digression comes �rst to summarize certain observa-
tions made prior to the statement of the lemma. To begin the digression, recall
that the possible limits are described by sets of the form f(mγ ;R�γ) : γ 2 Γg,
where mγ is a positive integer weight, and where Γ is a �nite set of distinct
closed Reeb orbits in S1 � S2 . Moreover, the function � on S2 has some con-
stant value, �0 , on each circle. In this regard, the possible �0 values which
can appear for some γ 2 Γ, and the corresponding weight mγ are uniquely
determined as the set of possibilities for these data is discrete. In fact, these
parameters can be distinguished by intersection numbers of C with various
pseudoholomorphic submanifolds of R � (S1 � S2). This is to say that there
might be di�erent sets Γ which appear as limits, but each such set has the
same collection of �0 values, and the multiplicities mγ for the elements γ 2 Γ
depend only on these �0 values and so are the same for all of the possible sets
Γ which could appear.

With regard to these �0 values, the argument for Lemma 2.4 given here are
valid for the elements in Γ with cos2 �0 6= 1=3. The argument for the elements
with cos2 �0 = 1=3 are left to the reader in as much as they are essentially the
same as those given below after switching the roles of (’; h) with those of (t; f).

With the digression now complete, suppose that Γ is as above and γ 2 Γ has
cos2 �0 6= 1=3. Then γ 2 Γ can be parameterized as in (2.6). Of course, the
key point is that the �0 value in (2.6) determines γ only up to the constant
’0 2 R=(2�Z). Thus, the di�erent possible limits are distinguished by having
di�erent values for ’0 , and it is this possibility that will now be ruled out.

To begin this task, �rst focus on a point in C −� which is very close to R� γ
for a particular γ 2 Γ. Here, suppose that γ is parameterized by (2.6) for some
choice �0 and ’0 . With respect to this question of ’0 , remember that for any
�xed � > 0, but small, the points of C where jf j < � that have identical (t; f)
coordinates form some jpj subsets, each with m � mγ members. All members
of the same subset have ’ coordinates which di�er by a very small amount,
while members of di�erent subsets have ’ coordinates which di�er by 2�k=p
where k 6= 0 mod(p).

In any event, some neighborhood of the chosen point in C − � has a parame-
terization by coordinates (�; u) with � periodic and u small in absolute value
and with sign that of p via
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� t = � ,

� f = u,

� ’ = ’0 + � p0=p+ x(�; u),

� h = (p0=p) sin2(�0)u+ y(�; u). (2.19)

Here, jxj and jyj=juj are small and, in particular, much less than 2�=jpj. By
virtue of (1.5), the fact that C is pseudoholomorphic manifests itself in the fact
that x and y obey the di�erential equation

� xu = −g−2 sin−2(�)y� ,

� x� = sin−2(�)yu + (p0=p)(sin2(�0)= sin2(�)− 1). (2.20)

Here, g =
p

6 e−
p

6s(1 + 3 cos4 �)1=2: Note that the subscripts ‘� ’ and ‘u’
on the variables x and y indicate the partial derivative by the corresponding
coordinate. This notation is used frequently in the subsequent discussions.

In this last equation, both � and g are functions of the variables � and u,
but the � dependence is only implicit, through the dependence of y in (2.19)
on � . Thus, view � and g as functions of f and h, the former via h=f =p

6 cos � sin2 �(1 − 3 cos2 �)−1 , and the latter via the relation g =
p

6(f2 +
h2 sin−2 �)1=2 . This understood, the right side of the �rst line in (2.19) can by
written as the � derivative of the restriction to C of a function Q on R� (S1�
S2). Indeed, Q can be any function of the variables f and h whose partial
derivative in h is −g−2 sin−2(�). For example,

Q = −
p

6 f−1 ln(csc� + cot �): (2.21)

In any event, with Q chosen, the �rst line in (2.21) reads

xu = Q� : (2.22)

With (2.22) understood, remember that there are some m members of C which
are very close to the chosen point and have the same (t; f) value. Thus, C deter-
mines not just one pair of functions (x; y) as in (2.19), but a set, f(xj ; yj)1�j�mg
of m such pairs. Note that this set can only be ordered locally near each point
in the compliment of �(�). The ordering may be permuted around circles which
enclose points of �(�) or around the u = constant circle. In any event, �jxj
is a bona�de function of (�; u), and

x(u) �
Z

0���2�jpj
�jxj(�; u) d� (2.23)

is a function just of the coordinate u.
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The claim here is that x is the constant function. Indeed, this claim is a
consequence of the observation that �jQ(yj) is also a bona�de function of
(�; u); and thus it follows from (2.22) that the derivative of x is zero.

The fact that x is constant implies that the group of m points under observation
must keep the same ’0 value no matter the size of u. Indeed, a change in ’0

must change x, as can be seen from (2.19). As argued at the outset, the
constancy of ’0 implies the assertion of Lemma 2.4.

(b) Proof of Proposition 2.3

The �rst two points of Proposition 2.3 are simply restatements from Proposition
2.2. The only point at issue here is the last one. As remarked at the outset, the
last point in the proposition would follow directly from Theorem 1.4 of [11] were
the closed orbits of the Reeb vector �eld non-degenerate in a certain technical
sense which is satis�ed here only for the closed orbits with �0 2 f0; �g and, in
the non-orientable z{axis line bundle case, that for which the fundamental class
generates the �rst homology over Z. However, the degeneracies here are due
entirely to the fact that the contact form � is invariant under the T = S1�S1

subgroup of isometries of S1 � S2 , those that �x the poles of S2 . This fact
can be used to modify the arguments in [11] to apply here. Although such a
modi�cation is straightforward, the presentation of the details would be lengthy,
and thus an alternate proof is o�ered below.

Before embarking on the details of the proof, there are some preliminary com-
ments to be made. First, the proof of the last point in Proposition 2.3 is given
below only for the case where the end in question is concave and has orientable
z{axis line bundle. As in the proof of Proposition 2.2, the argument for the
convex end case is identical in all essential aspects and thus left to the reader.
Meanwhile, as the assertions are local to the ends of X , the non-orientable
z{axis line bundle case can be treated as a �{equivariant example of the ori-
entable z{axis line bundle case. Moreover, as the assertions in the third point
of Proposition 2.3 are local to each end of C , attention can be restricted to a
single end. This said, there is but one limit closed Reeb orbit involved.

The �nal comment here is that the proof of the last point of Proposition 2.3
is broken into six steps, and all but the �nal step assume that the limit Reeb
orbit for the end in question has neither cos2 �0 = 1=3 nor �0 2 f0; �g. The
case where the Reeb orbit has cos2 �0 = 1=3 can be dealt with using simple
modi�cations of the arguments given below; basically, the modi�cations involve
the switching of the roles played by the pair (t; f) with those of (’; h). As the
details add nothing novel, they will be left to the reader. Likewise, the essentials
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of the argument in the case where �0 2 f0; �g are the same as those given
below, however, there are some speci�c di�erences which deserve comment. In
particular, these comments constitute the �nal step of the proof. (As remarked
previously, the case of Proposition 2.3 where the Reeb orbit has �0 2 f0; �g is
also directly a consequence of some general results in [11].)

With the preceding understood, what follows are the details of the proof of the
third point of Proposition 2.3.

Step 1 To set the stage, return to the notation used in Step 9 of the proof of
Proposition 2.2. Thus, the end in question of C is referred to henceforth as C ;
and its small jf j portion is parameterized as in (2.13). This done, re-introduce
the two component column vector � from (2.15) and (2.18). Concerning the
equation in (2.15), note that the constant � 0 that appears in L0 from (2.16) is
zero while � > 0. In fact,

� = 61=2 sin2 �0(1 + 3 cos2 �0)(1 + 3 cos4 �0)−1=2j1− 3 cos2 �0j−1: (2.24)

The operator L0 is a formally self-adjoint operator on the R2 valued functions
on S1 and so has a complete set of eigenvectors. Having constant coe�cients,
the eigenvalues and eigenvectors can be readily found. In particular, the corre-
sponding eigenvalue set isn

2−1(−� � (�2 + 4n2=(mjpj)2)1=2) : n = 0; 1; 2; : : :
o
: (2.25)

Note that there is a single zero eigenvalue, one of the n = 0 cases in (2.25). The
corresponding eigenvector is the constant column vector e− with top entry 1
and lower entry 0. The other n = 0 eigenvalue is −� and it also has multiplicity
one with a constant eigenvector. The n 6= 0 eigenvalues have multiplicity 2 and
the components of the eigenvectors are linear combinations of the functions
sin(n�=(mjpj)) and cos(n�=(mjpj)).

Step 2 Introduce the L2{orthogonal projections, �+;−;0 , of the vector � in
(2.15) onto the respective spans of the eigenvectors of L0 with eigenvalues where
are positive (�+), negative (�−) and zero (�0).

Here is a key fact:

The L2{orthogonal projection, �0 , of the vector � in (2.15) onto
the kernel of L0 is zero. (2.26)

Indeed, �0 is constant by virtue of (2.22) as its bottom entry is zero and its
top entry is the average value of x(�; �) around the � = constant circles. This
understood, the constant in question is zero by virture of (2.18).
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Step 3 The purpose of this step is to prove that the function f+(�) =R
d� j�+j2(�; �) and the analogously de�ned function f−(�) both decay expo-

nentially fast to zero as � tends to in�nity. To see that such is the case, �rst
let E denote the smallest of the absolute values of the non-zero eigenvalues of
L0 . Second, use Lemma 2.5 to �nd �0 so that the � > �0 versions of the R
term in (2.15) obey jR(�;r�)j � 10−2Ej�j. Third, for �xed � > �0 , consider
(2.15) to be an equality between R2{valued functions on the circle. This done,
then the L2 inner product on the � parameterized circle of both sides of (2.15)
with �+(�; �) leads to the inequality

2−1@�f
+ + Ef+ − 10−2E(f+ + f−) � 0: (2.27)

Meanwhile, the analogous inner product of both sides of (2.15) with �− leads
to

2−1@�f
− − Ef− + 10−2E(f+ + f−) � 0: (2.28)

It now follows from these last two equations that f � f− − 0:2f+ obeys the
di�erential inequality

2−1@pf − 0:97Ef � 0: (2.29)

This last equation can be integrated to �nd that when �0 is large and � > �0 ,
then

f(�) � e2�(�−�0)f(�0); (2.30)

where � = 0:97E .

There is one immediate conclusion to draw from (2.30) which is this: As f is
supposed to have zero for its � ! 1 limit, it follows from (2.30) that f(�) is
nowhere positive. This is to say that for all su�ciently large �,

f− � 0:2f+: (2.31)

The preceding inequality can now be inserted into (2.27) to yield

2−1@�f
+ + 0:97Ef+ � 0: (2.32)

This equation can be readily integrated to see that

f+(�) � e−2�(�−�0)f+(�0) (2.33)

whenever �0 is large and � > �0 . Here, � = 0:97E . Together, (2.26), (2.31) and
(2.33) assert that the function g(�) =

R
d� j�(�; �)j2 has exponential decay to

zero as � tends to in�nity.

Step 4 This step proves the following assertion: For any integer k � 0, the
function gk(�) �

R
d� j(r⊗k�)(�; �)j2 has exponential decay to zero as � tends

to in�nity.
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Here is the argument: First, remark that r commutes with both @� and L.
Second, remark that r⊗k�+ is in the span of the eigenvectors of L0 with
positive eigenvalue while r⊗k�− is in the span of those with negative eigenvalue.
Third, di�erentiate both sides of (2.27) and (2.28) k{times, and then take the
respective L2 inner products with r⊗k�+ and r⊗k�− . Fourth, let f�(�) now
denote

R
d� jr⊗k��j2 . Fifth, invoke Lemma 2.5 to conclude that when � is

large (with lower bound depending on k), this new f� obeys (2.27) and the new
f− obeys (2.28). Fifth, repeat the argument in the preceding step to obtain
the desired conclusion.

Step 5 The third point in Proposition 2.3 follows from the conclusions of the
previous step using standard Sobolev inequalities.

Step 6 This step assumes that the closed Reeb orbit under consideration has
�0 2 f0; �g, and infact, �0 = 0 as the discussion for the �0 = � case is identical
save for some innocuous sign changes. The purpose of this step is to point out
the two places in the argument for the �0 = 0 case where the modi�cations
to the just concluded argument are more than cosmetic. In particular, the
argument here requires the parameterization of C using the functions (a1; a2)
as in (2.14). This done, the only other signi�cant modi�cation to the argument
involves the constants � 0 and � that appear in (2.16). In this �0 = 0 case, these
are � 0 = � =

p
3p
2

. This said, then the spectrum of the operator L0 in (2.16) is
the set n

−
p

3=
p

2 + n=m : n 2 Z
o
: (2.34)

Here, each eigenspace is two-dimensional; and the components of the eigenvector
for any given n are linear combinations of sin(n�=m) and cos(n�=m).

With the preceding understood, the rest of the argument for the �0 = 0 case is
even simpler than that for the cases considered previously because the �0 = 0
version of L0 has no zero eigenvalue.

3 Deformations

Let C be an irreducible, HWZ pseudoholomorphic subvariety in X: Here, X
is as described in the introduction to the previous section, with some ends
concave and others convex, some with orientable z{axis line bundle and others
with the latter non-orientable. After a preliminary discussion on C s topology,
the focus here is on deformations of C which preserve both the topology and its
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status as an HWZ pseudoholomophic subvariety. In this regard, note that the
conclusions of the subsequent discussions are summarized by Propositions 3.1,
3.2 and 3.6. In particular, Proposition 3.1 asserts an adjunction formula that
generalizes a formula for compact pseudoholomorphic subvarieties that relates
the self-intersection number and intersection number with the canonical divisor
to the Euler characteristic. Next, Proposition 3.2 asserts that the set of HWZ
subvarieties in X has a natural topology that gives C a neighborhood that is
homeomorphic to the zero locus of a smooth map from a neighborhood of the
origin in RN to Rn for a suitable choice of integers N and n. Here, RN and Rn
naturally appear as kernel and cokernel of a Fredholm operator on C . Finally,
Proposition 3.6 provides a geometric formula for the index, IC � N −n, of this
Fredholm operator.

(a) The Euler characteristic of C

The Euler characteristic of any embedded, compact, connected, pseudoholomor-
phic submanifold C � X is determined via the adjunction formula from the
class, [C] of C in H2(X;Z). In this regard, remember that the symplectic form
pulls back without zeros to C and so endows C with a canonical orientation.
In any event, the adjunction formula reads:

−�(C) = he; [C]i + hc1; [C]i; (3.1)

where, h; i denotes the pairing between cohomology and homology, e 2 H2(X)
is the image of the Poincar�e dual to [C], and c1 2 H2(X) is the �rst Chern class
of the canonical line bundle K � �2T 1;0X . Here, T 1;0X is the J {holomorphic
part of the complexi�ed cotangent bundle of X .

Now, suppose that C is required only to be an irreducible subvariety whose sin-
gularities are purely transversal double points with local intersection number 1.
In particular, C is the image of a connected surface, C0 , via an immersion. Let
mC denote the number of double points in X . The corresponding adjunction
formula in this case reads:

−�(C0) = he; [C]i + hc1; [C]i − 2mC : (3.2)

In the general case where C is irreducible and has singularities other than
transverse double points, there is still an adjunction formula which gives the
Euler characteristic of the smooth model for C . This is to say that C is the
image in X of a compact, complex curve, C0 , via a pseudoholomorphic map
which is an embedding o� of a �nite set in C0 . And, the Euler characteristic
of C0 is given by the left-hand side of (3.2) where mC now denotes the num-
ber of double points in a symplectic deformation of the map from C0 into X
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which immerses C0 with only transversal double points self intersections that
have local intersection number 1. Indeed, the existence of such a deformation
follows from the fact that the singularities of a pseudoholomorphic variety are
essentially those of a complex curve in C2 as shown by [16]. In any event, make
such a deformation and then (3.2) applies.

The next order of business is to introduce a version of the adjunction formula
that applies to a non-compact pseudoholomorphic subvariety C � X . In this
case, the right-hand sides of (3.1) and (3.2) are presently meaningless as [C] is
in H2(X;X − X0) while both e and c1 are in H2(X). However, a pairing of
a class � 2 H2(X;Z) with [C] can be unambiguously de�ned with the choice
of a suitably constrained section of the restriction to C of the complex line
bundle E� ! H with �rst Chern class �. In particular, the section must have
a compact zero set on C . With such a section chosen, a generic, compactly
supported perturbation produces a section which vanishes transversely at a
�nite set of points in the smooth part of C . Then, the count of these points with
the standard �1 weights de�nes the pairing h�; [C]i. Note that this number is
unchanged when the chosen section of E� is deformed through sections whose
zero sets all lie in a �xed, compact subset of C .

To put the just described count de�nition for h�; [C]i in a slightly larger context,
note �rst that the chosen section of E�jC can be extended as a section of E�
over the whole of X . The zero set of this extended section then carries a �ducial
two-dimensional, relative homology class that represents the Poincar�e dual of
�. For example, if the original section over C and its extension to X are chosen
to have transversal zero set, then this relative two-dimensional homology class
is the fundamental class of the zero set. In this case, the pairing h�; [C]i is
simply the intersection number of C with the zero set of the extended section.

This de�nition of h�; [C]i needs some elaboration when � � e and [C] is e’s
Poincar�e dual. To proceed with this elaboration, remark �rst that when C is
embedded in X , then Ee is de�ned by its transition function over the inter-
section of two coordinate patches. The �rst coordinate patch is X − C . The
second is the image in X via the metric’s exponential map of a certain open
disk bundle, N0 , in the normal bundle of C . Here, the �ber radius of N0 varies
smoothly over C to ensure that the exponential map’s restriction is an em-
bedding. This understood, identify N0 with its exponential map image. Now,
declare EjX−C to be the trivial bundle (X − C) � C and declare EjN0 to be
the pull-back via projection to C of C ’s normal bundle. Thus, EjN0−C has a
canonical section and thus a canonical trivialization with which to identify it
with the restriction to (N0 − C) of (X − C)� C.
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In the case where C is not embedded, there are perturbations of C in any
given neighborhood its singular points that result in an embedded, oriented
submanifold. Choose such a perturbation and use the resulting submanifold to
de�ne Ee as a proxy for C .

With the preceding understood, a three part digression is in order to de�ne the
appropriate sections over C of Ee and the canonical line bundle K .

Part 1 This �rst part of the digression simply recalls a de�nition from Propo-
sition 2.2. According to Propositions 2.2 and 2.3, each constant and large jsj
slices of C \ (X −X0) consists of a �nite union of embedded circles that con-
verges in the C1 topology as s ! 1 to a �nite union of closed Reeb orbits
on @X0 . Remember that this set of orbits, Γ, is called the limit set for C .
In particular, each end of C de�nes an element in Γ and each element in Γ
corresponds via the aforementioned limit to one or more ends of C .

Part 2 This part of the digression speci�es the section of EejC to be used
when de�ning he; [C]i. In this regard, it is enough to specify the section over
C ’s intersection with the jsj � s0 portion of X−X0 for any s0 � 0 and so this
is the purpose of the subsequent discussion. As previously noted, once such
a de�nition is made, then all extensions of this section to the remainder of C
give the same count for the he; [C]i. Thus, the focus below is the de�nition of
a nowhere zero section of the restriction of C ’s normal bundle to the large jsj
portion of C .

The task at hand begins with three remarks. The �rst remark is that Propo-
sition 2.2 asserts that when s0 is large, then C ’s intersection with jsj � s0

portion of X − X0 is an embedded submanifold with boundary. The second
remark is that with s0 so chosen, then the restriction of EejC to this intersec-
tion is to be identi�ed with C ’s normal bundle. Here is the �nal remark: It
follows from Propositions 2.2 and 2.3 that when s0 is large, then a speci�cation
of a nowhere zero section of the restriction to C ’s intersection with the jsj � s0

portion of X−X0 of C s normal bundle is determined, up to homotopy through
non-vanishing sections, by a nowhere zero section of the normal bundle in @X0

to C ’s limit set.

To elaborate on these last remarks, note �rst that a component, M = S1�S2 ,
of @X0 has two -dimensional homology whose generator is the image of the
fundamental class, [S2], of any 2{sphere of the form fpointg � S2 � S1 � S2 .
In this regard, these 2{spheres are oriented by the form sin �d� ^ d’ . This
said, then the pairing of e with [S2] determines, up to bundle equivalence,
the restriction of Ee to M and thus to [s0;1) �M . In the context at hand,
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this pairing is equal to the intersection number between C and any copy of
fpointg � S2 in [s0;1)�M .

A more explicit formula for this intersection number is available. However, a
digression is required before stating this formula. This digression explains how
the large jsj asymptotics of any given end, E , of C can be characterized in part
by a suitable pair, (p; p0), where p is an integer and p0 is either another integer,
or one of the symbols + or −. Here, the pair (p; p0) is deemed suitable when
the following requirement is met: If p0 = + or −, require p < 0. If p0 is an
integer and p < 0, require that jp0=pj >

p
3=
p

2; and if p0 is an integer with
jp0=pj <

p
3=
p

2, require that p > 0.

The meaning of (p; p0) is as follows: If p0 = + or −, then the large and constant
jsj slices of the end in question converge to the Reeb orbit with � = 0 or � = � ,
respectively. This understood, then m � jpj gives the multiplicity by which
these large jsj circles cover the Reeb orbit. If p0 is an integer, let m � 1 denote
the greatest common divisor of p and p0 . Then, the pair (p=m; p0=m) determine
a circles worth of closed Reeb orbits as dictated in (1.8), and the large jsj slices
of the end in question are asymptotic to one of the latter. Meanwhile, the
integer m gives the multiplicity by which these large jsj slices of the end cover
the Reeb orbit.

With the digression complete, remark that the intersection number in question
is the sum of the �rst components from the integer pairs (p; p0) that come from
the ends of C that lie in the component given by M of X −X0 .

Now, suppose that the large jsj slices of the end, E , is asymptotic, in the
manner described by Propositions 3.2 and 3.3, to a Reeb orbit γ � M . What
follows describes how nowhere zero sections of γ ’s normal bundle in M produce
nowhere zero sections of the large jsj portion of E ’s normal bundle. To begin
the story, let Nγ denote a small radius disk bundle in the normal bundle to γ in
M . Here, the radius should be such that the metric’s exponential map embeds
Nγ in M . This understood, identify Nγ with its exponential map image. With
these identi�cations made, then, Propositions 3.2 and 3.3 provide s1 > s0 and
a description of the jsj > s1 portion of E as the image over (s1;1) � γ of a
multi-valued section of Nγ . This is to say that there is a degree m covering
map � : S1 ! γ and a section, � , over (s1;1) � S1 of ��Nγ such that the
composition of � with the tautological map �̂ : ��Nγ ! Nγ maps (s1;1)�S1

di�eomorphically onto the jsj > s1 portion of E . This composition, of � with �̂
identi�es the normal bundle to the large jsj portion of E with that of the image
of � in ��N ! (s1;1)�S1 . Meanwhile, the latter is canonically isomorphic to
��N s pullback over itself via its de�ning projection to (s1;1) � γ . Following
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this chain of bundle isomorphisms produces a nowhere zero section of the large
jsj portion of E ’s normal bundle from a nowhere zero section of the Reeb orbit’s
normal bundle in M .

Now, to provide such a section of γ ’s normal bundle, consider �rst the case
where the component M has orientable z{axis line bundle. Also, suppose that
� = �0 =2 f0; �g on γ . Then, a nowhere zero section of γ ’s normal bundle is
de�ned by the vector �eld @� along γ .

If �0 = 0 or � on γ , the functions (x1 � sin � cos’, x2 � sin � sin’) are
zero on γ and the triple (t; x1; x2) are good coordinates for M near γ . With
this understood, the vector �eld tangent to any line through the origin in the
(x1; x2) plane de�nes along γ a nowhere vanishing section of γ ’s normal bundle.

Now consider the case where M � @X0 de�nes an end of X whose z{axis line
bundle is non-orientable. The �rst order of business is to write out the 2{1
covering map, �̂ : S1 � S2 ! M (= S1 � S2) whose deck transformations are
generated by � in (2.1). To do so, view S2 as the unit sphere in R3 and intro-
duce Cartesian coordinates (t; x1 = sin � cos’, x2 = sin � sin’, x3 = cos �) on
the domain S1�S2 . Let (t0; x01; x

0
2; x
0
3) denote the analogous coordinates for the

range. Then, the map is de�ned so that Cartesian coordinates of �̂(t; x1; x2; x3)
are

� t0 = 2t,

� x01 = x1 ,

� x02 = cos(t)x2 + sin(t)x3 ,

� x03 = − sin(t)x2 + cos(t)x3 . (3.3)

With �̂ de�ned, turn back to the task at hand. In this regard, each component
of the inverse image of a closed Reeb orbit under the map �̂ is either described
as in Step 4 of the proof of Proposition 2.2, or else lies in a constant t slice
where cos2 � = 1=3. In any event, �x attention on a closed Reeb orbit γ �M .
Here, there are two cases to consider, depending on whether [γ] is or is not a
generator of H1(M ;Z).

Consider �rst the case where γ is not an integral generator of H1 . Then γ will
necessarily be an even multiple of a generator. (This follows from the form of
� in (3.3) and the fact that � is constant on any inverse image of γ .) As an
even multiple of a generator of H1(M ;Z), the inverse image under the map in
(3.3) of γ must have two components where each is mapped di�eomorphically
by (3.3) onto γ . With this said, it follows that a nowhere vanishing section of
γ ’s normal bundle in M is de�ned via the following two-step procedure: First,
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take a section of the normal bundle in S1 � S2 of one of γ ’s inverse images
under (3.3) by the rules which were just described for the orientable z{axis line
bundle case. Second, use (3.3) to push this section down to M as a section of
the normal bundle to γ .

Next, consider the case where γ generates H1(M ;Z). In this case, the inverse
image of γ under (3.3) must be connected and (3.3) maps this inverse image
as a 2{1 covering map onto γ . Moreover, as � = constant on such an inverse
image, it follows that the functions x02 and x03 from (3.3) vanish on γ and
together with t0 de�ne good coordinates for M near γ . With this understood,
the vector �eld tangent to any line through the origin in the (x02; x

0
3) plane

de�nes along γ a nowhere zero section of γ ’s normal bundle.

Part 3 This part of the digression de�nes the desired section over C of the
canonical bundle K and thus gives meaning to hc1; [C]i. In this regard, note
that it is again su�cient to specify the section only over C ’s intersection with
each component of the jsj � s0 part of X − X0 for very large s0 . In the
discussion below, only the case of a concave component will be considered, as
the convex case can be directly obtained from the latter.

With the preceding understood, consider �rst the promised section of K over
C ’s intersection with [s0;1) �M where M � @X0 is a concave component
with orientable z{axis line bundle. In this regard, take s so large that C \
([s0;1)�M) is a union of cylindrical components with each de�ning in the limit
a particular loop in C ’s limit set. The speci�cation of a section of K over a given
component now depends on whether the corresponding loop in the limit set has
� 2 f0; �g or not. Consider �rst the case where � =2 f0; �g on the loop. Near
such a component, the complex valued 1{forms dt+ig−1df and sin2 �d’+ig−1dh
span T 1;0X and so their wedge product, (dt+ig−1df)^(sin2 �d’+ig−1dh) gives
a section of K . (Note that this section is de�ned over the whole of [0;1)�M ,
and its zero set is the locus where � 2 f0; �g.)
To consider the case where a limit set loop of a component of C\ ([s0;1)�M)
has � = 0 or � , �rst introduce the ‘Cartesian coordinates’ (x1 � sin � cos’;
x2 � sin � sin’). These are smooth coordinates near the � = 0 and � = � loci.
Furthermore, (dt+ids)^(dx1−idx2) speci�es a non-vanishing section of K over
the � = 0 locus while (dt+ ids)^ (dx1 + idx2) plays the same role for the � = �
locus. Now, the required section of K over a component of C \ ([s0;1)�M)
with limit set loop in the � = 0 locus is obtained by restriction of any smooth
extension of the section (dt+ ids) ^ (dx1 − idx2) to a tubular neighborhood of
this locus. The required section of K in the case where the limit set loop lies
in the � = � locus is de�ned analogously.
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Now consider the promised section of K over C ’s intersection with [s0;1) �
M where M � @X0 is a concave component with non-orientable z{axis line
bundle. For this purpose, it is important to keep in mind that the canonical
line bundle of [0;1)�M pulls up via the map in (3.3) to the canonical bundle
just studied for the orientable z{axis case.

With the preceding point taken, �x s large enough to insure that C\([s0;1)�
M) is a union of cylindrical components with each de�ning in the limit a par-
ticular loop in C ’s limit set. Now, the inverse image of this loop has � locally
constant and there are two cases, as before, depending on whether � 2 f0; �g or
not on this inverse image. Consider the latter case �rst. If the constant s slices
of the end in C converge as s !1 as a multiple cover of a closed Reeb orbit
with two inverse images under the map in (3.3), use the push-forward from one
of them of the section (dt+ig−1df)^(sin2 �d’+ig−1dh). If the constant s slices
of the end in question converge as s!1 as a multiple cover of a closed Reeb
orbit with a single inverse image under (3.3), proceed as follows to obtain the
appropriate section: Note �rst that the section (dt+ig−1df)^(sin2 �d’+ig−1dh)
changes sign under the involution in (2.1) but its product with eit does not.
Therefore, eit(dt+ ig−1df) ^ (sin2 �d’+ ig−1dh) is the pull-back via (3.3) of a
section over [0;1) �M of the canonical bundle of X . Use the latter section
for the de�nition of hc1; [C]i.
In the case where � 2 f0; �g on the inverse image of the limit loop, then the
inverse image under the map in (3.3) of the component of C \ ([s0;1) �M)
in question has two components, one with � very nearly zero and the other
with � very nearly equal to � . With this point understood, a section on the
component in question of C \ ([s0;1) �M) is obtained as follows: Use � to
push forward any nowhere zero section on a tubular neighborhood of the � = 0
locus whose restriction to the � = 0 locus equals (dt+ ids) ^ (dx1 − idx2).

With the digression now over, return to the original subject, which is an adjunc-
tion formula for the smooth model for C . In this regard, note that Proposition
2.2 asserts that C is the image of a complex curve, C0 , with cylindrical ends
via a pseudoholomorphic map which is an embedding o� of a �nite set of points.
Moreover, Propositions 2.2 and 2.3 imply that the Euler characteristic of C0

can be computed as the usual algebraic count of the zeros of a section of C0 ’s
tangent bundle if, on the large jsj portion of C0 , this same tangent vector
pushes forward to R via the composition of the pseudoholomorphic map with
the projection R �M ! R as a nowhere zero multiple of the vector @s . With
this last point understood, it then follows from the given choice of sections of
EejC and K for the respective de�nitions of he; [C]i and hc1; [C]i that �(C0)
is given by (3.2) where mC is de�ned as in the case where C was compact.
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Indeed, the argument for (3.2) in this case amounts to an essentially verbatim
recapitulation of a standard proof for the compact case as given in [5].

The following proposition summarizes the conclusions of the preceding adjunc-
tion formula discussion:

Proposition 3.1 Let X be as described in the introduction to Section 1. Let
C � X be an irreducible, pseudoholomorphic subvariety, and let C0 denote the
smooth model curve for C . Then �(C0) is given by

−�(C0) = he; [C]i + hc1; [C]i − 2mC ;

where:

� The cohomology-homology pairings are de�ned as described above.

� mC denotes the number of double points of any perturbation of the de�n-
ing map from C0 onto C which is symplectic, an immersion with only
transversal double point singularities with locally positive self-intersection
number, and which agrees with the original on the complement of some
compact set.

If C is immersed, then this formula can be rewritten as

−�(C0) = degree(N) + hc1; [C]i;

where degree(N) is the degree of the normal bundle to the immersion as de�ned
using a section that is non-vanishing at large jsj and is homotopic at large jsj
through non-vanishing sections to that described in Part 2, above.

Some readers may prefer the formula that writes −�(C0) in terms of degree(N)
because the pairing he; [C]i is not invariant under deformations of C unless C ’s
large jsj slices converge with multiplicity 1 to a set of distinct, limit Reeb orbits.

(b) A topology on the set of pseudoholomorphic subvarieties

The �rst task is the introduction of a certain topology on the set me, Me;�

of irreducible, pseudoholomorphic subvarieties in X with fundamental class
Poincar�e dual to the given class e 2 H2(X;Z) and with the given number
� equal to the Euler characteristic of the model curve C0 . The topology in
question comes from the metric for which the distance between a pair C , C 0 �
Me;� is

supx2Cdistance(x;C 0) + supx02C0distance(C; x0) : (3.4)
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Given this de�nition, then the next order of business is a structure theorem
for a neighborhood in Me;� of any given subvariety. The following proposition
summarizes the story:

Proposition 3.2 Let C �Me;� . There exists a Fredholm operator D and a
homeomorphism from a neighborhood of C in Me;� to the zero set of a smooth
map from a ball in the kernel of D to the cokernel of D .

The proof of this proposition is given in the next subsection.

The description of D is simplest when C is compact and the associated pseu-
doholomorphic map ’: C0 ! X is an immersion. In this case, there is a well
de�ned ‘normal bundle’, N ! C0 that is a real 2{plane bundle whose restriction
to any open K � C0 embedded by ’ is the ’{pullback of the normal bundle
to ’(K). The almost complex structure on X endows N with the structure
of a complex line bundle over C0 , and the associated Riemannian metric from
X can then be used to give N the structure of a Hermitian line bundle with a
holomorphic structure. The induced d{bar operator on the space of sections of
N will be denoted by @ . (The @ operator used here is twice the usual @=@z .)

In the case at hand, the operator in Proposition 3.2 is the �rst order, R{linear
operator from C1(N) to C1(N ⊗ T 0;1C0) that sends a section � of N to

D� � @�+ ��+ ��: (3.5)

Here � and � are respective sections of T 0;1C0 and N2 ⊗ T 0;1C0 that are
determined by the 1{jet of the almost complex structure J along C . Although
the kernel dimension may depend on � and �, the index � dim(kernel) {
dim(cokernel) of D does not. In fact, the index is the same as that of (as an
R{linear operator) namely: index(D) = 2 degree(N) + �(C0 ). As �C0) obeys
(3.2) and degree(N) = he; [C]i− 2mC , this index can also be written in various
equivalent ways, for example:

� index(D) = he; [C]i − hc1; [C]i − 2mC .

� index(D) = −�(C0)− 2hc1; [C]i. (3.6)

When C �Me;� , still compact, is not immersed, Proposition 3.2’s operator D
is more complicated. What follows is a brief description of this new operator.
The de�nition of D requires, as a preliminary step, the introduction of a �rst-
order di�erential operator, D , which sends a section of ’�T1;0X to one of
’�T1;0X ⊗ T 0;1C0 . Here and below, T1;0 denotes the holomorphic part of the
corresponding complexi�ed tangent bundle. The operator D di�ers from the
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corresponding @ by a zeroth order, R{linear multiplication operator and thus
has the same schematic form as depicted on the right-hand side of (3.5). This
operator D is de�ned so that its kernel provides the vector space of deformations
of the map ’ which remain, to �rst-order, pseudoholomorphic as maps from
C0 into X . In this regard, D is not quite the sought after operator as its
use in Proposition 3.2 would allow only those deformations which preserve the
induced complex structure on the image curve. The point is that the cokernel
of D is too large when � � 0. Meanwhile, when � � 0, the kernel of D is too
big as it contains deformations which come from holomorphic automorphisms
of C0 .

To address these problems, introduce, �rst of all, the usual @ operator which
sends sections of T1;0C0 to T1;0C0 ⊗ T 0;1C0 . The kernel of this operator, V ,
is trivial when �(C0) < 0, but not trivial otherwise. (Its dimension over C
is � + 1.) Meanwhile, let V� denote the cokernel of this same version of @ .
The complex dimension of V� is −3�=2 when � < 0, one for a torus and zero
for a sphere. Fix some favorite subspace of smooth and compactly supported
sections of T1;0C0 ⊗ T 0;1C0 that projects isomorphically to the cokernel of @
and identify the latter with V� .

Next, remark that as ’ is pseudoholomorphic, its di�erential provides a C{
linear map, @’: T1;0C0 ! ’�T1;0X and thus one, also denoted by @’, from
T1;0C0 ⊗ T 0;1C0 to ’�T1;0X ⊗ T 0;1C0: In particular, note that the appro-
priate version of @’ sends V and V� injectively into the respective kernel
and target space of D . With this understood, then D induces an operator,
the desired D , that maps C1(C0;’�T1;0X)=@’(V ) to the L2 complement in
C1(C0;’�T1;0X ⊗ T 0;1C0) of @’(V�). The conclusions of Proposition 3.2 hold
for this D when C is not immersed.

By the way, note that the index of this new D is still given by the formula in
(3.6) where mC is now interpreted as in Proposition 3.1.

The remainder of this subsection describes Proposition 3.2’s D in the case
where C � X is a non-compact, pseudoholomorphic subvariety. The discussion
has been divided into three parts.

Part 1 As the story is simplest when C is immersed, this condition will be
assumed until the �nal part. In this regard, note that the removal of the
immersion assumption requires no new technology since a pseudoholomorphic
subvariety is, in any event, embedded where jsj is large on X −X0 .

The �rst remark is that the operator D is formally the same as that which is
described in (3.5). In particular, N is de�ned as before, while the hermitian
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structure on N and the Riemannian structure on TC0 are both induced by
the Riemannian metric on X . However, there is some subtlety with the range
and domain of D . In particular, these are de�ned as follows: First, a very
small � > 0 must be chosen. There is an upper bound to the choice which is
determined by the properties of C 0s limit set. In any event, with � chosen, the
domain of D is the (Hilbert space) completion of the set of smooth sections of
N for which Z

e−�jsj(jr�j2 + j�j2) (3.7)

is �nite; moreover, (3.7) de�nes the square of the relevant norm. Here, and
below, the function s which was originally speci�ed only on X −X0 has been
extended to the remainder of X as a smooth function. By the way, the inte-
gration measure in (3.7) and in subsequent integrals is the area form from the
Riemannian metric on C that is induced by the metric on X . Of course, given
that C is pseudoholomorphic, this measure is the same as that de�ned by the
restriction to C of j!j−1! .

Meanwhile, the range space for D is the completion of the set of smooth sections
of N for which Z

e−�jsjj�j2 (3.8)

is �nite; in this case (3.8) gives the square of the relevant norm. Let L1 denote
the just de�ned domain Hilbert space for D and let L0 denote the range.

With the preceding understood, here is the key lemma:

Lemma 3.3 If � is positive, but su�ciently small, then the operator D as just
described extends as a bounded, Fredholm operator from L1 to L0 . Moreover,

� The index of D as well as the dimensions of the kernel and cokernel of D
are independent of � .

� In fact, the kernel of D is the vector space of sections of � of N with
D� = 0 and supj�j <1.

� Polarize the norm square in (3.8) to obtain an inner product on L0 and
represent the cokernel of D as the orthogonal complement to D ’s image.
Then, multiplication by e−�jsj identi�es cokernel(D) with the space of
sections � of N ⊗ T 0;1C0 with

R
j�j2 <1 and which are annihilated by

the formal L2 adjoint, D� , of D .

� There exists �1 which is independent of � and which has the following
signi�cance: Let P1 be an R{linear bundle homomorphism from T �C0

to Hom(N ;T 0;1C0) with norm jP1j < �1 . Also, let P0 be an R{linear
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bundle homomorphism from N to N ⊗ T 0;1C0 . Moreover, suppose that
e2�jsj(jP0j+jP1j) is bounded. Then, D+P1(r)+P0 extends as a bounded,
Fredholm operator from L1 to L0 whose index is the same as D ’s.

This lemma is also proved below.

Part 2 This part of the discussion describes the operator D in the case when
C is not immersed. But keep in mind that there exists s0 such that C ’s
intersection with the jsj > s0 portion of X − X0 is nonetheless a disjoint
union of embedded cylinders which intersect the constant jsj slices of X −X0

transversely.

As in the case where C is compact, the operator D is constructed by �rst
introducing the operator D that is de�ned just as in the compact case. Thus,
D maps sections of ’�T1;0X to those of ’�T1;0X⊗T 0;1C0 . By analogy with the
case where C0 is immersed, the domain for D is the completion of the space of
sections of ’�T1;0X for which the expression in (3.7) is �nite; and (3.7) de�nes
the square of the norm for this completion. Meanwhile, the range of D is the
completion of the space of sections of ’�T1;0X⊗T 0;1C0 for which (3.8) is �nite,
and (3.8) de�nes the square of the norm for the completion in this case. The
domain Hilbert space will be denoted by L1 and the range by L0 .

Also needed in this discussion are vector spaces which play the role here that
the kernel and cokernel of @ : T1;0C0 ! T1;0C0 ⊗ T 0;1C0 play in the compact
case. In this regard, the two versions of the linear map @’ are still available as
’ is, in any event, pseudoholomorphic. With this understood, let V denote the
vector space of sections T1;0C0 which are annihilated by @ and for which (3.7)
is �nite. Meanwhile, let V� denote the space of sections of T1;0C0 ⊗ T 0;1C0 for
which (3.8) is �nite and whose product with e−�jsj is annihilated by the formal,
L2 adjoint of @ .

The linear map @’ maps V injectively into D ’s kernel in L1 , and it maps V�
injectively into L0 . Thus, D induces an operator, D , from L1 � L1=@’(V ) to
L0 � LT0 where LT0 denotes the orthogonal complement to @’(V�). One then
has:

Lemma 3.4 Whether or not C is immersed, the assertions of Lemma 3.3 hold
with the operator D : L1 ! L0 as just described in the preceding paragraph.

The proof of this lemma will be left to the reader in as much as its proof is
a straightforward marriage of the arguments given below for Lemma 3.3 with
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those given for the compact case. Note that were all closed Reeb orbits in C ’s
limit set isolated, then this lemma more or less restates results from [13].

Part 3 The remainder of this subsection contains the following proof.

Proof of Lemma 3.3 Although the lemma can be proved by modifying the
analysis in [13], an abbreviated argument will be provided. The argument below
has two steps.

Step 1 The argument presented here for the proof is based on some general
facts about elliptic di�erential operators on manifolds with cylindrical ends.
These facts were originally established in [14], but see also [23] which analyses
a �rst order elliptic operator in a context that has many formal analogies with
the context here. What follows here is simply a summary of those facts which
are relevant to the case at hand.

To set the stage for the subsequent discussion, consider a non-compact manifold,
Y , which comes with an open set having compact closure, and a di�eomorphism
from the complement of this open set to [−1;1)�Z . This di�eomorphism will
be used to identify [−1;1) � Z as a subset of Y . With this understood, let
�: Y ! [−2;1) be a smooth function which restricts to [0;1) � Z as the
projection to the �rst factor.

Now, suppose that D is a �rst-order, elliptic operator on Y taking sections
of one vector bundle, E , to those of a second, E� . Suppose further that
both of these bundles are provided with �ber metrics and metric compat-
ible connections. Parallel transport via these connections along the paths
[0;1)�fpointg � [0;1)�Z then identi�es these bundles with their respective
restrictions to f0g � Z , and this identi�cation will be explicit in what follows.
Note that the latter identi�cations make the �ber metrics �{independent on
[0;1)� Z . Use r to denote the covariant derivative of either connection.

Next, suppose that � is the Euclidean coordinate on the [0;1) factor of [0;1)�
Z and that the restriction of D here has the form:

D = A0@� + L0 + �1(r) + �0 (3.9)

where:

� A0 is a �{independent, isometric isomorphism between E and E� .

� L0 is a �{independent, �rst-order operator which di�erentiates only along
vectors which are tangent to Z . Require that Ay0L0 = Ly0A0 .
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� �1 is vector bundle homorphism from T �([0;1) � Z) into Hom(E;E�).
Here, it is required that j�1j should be small, where a precise upper
bound, �1 , depends on the norm of the symbol of L0 . However, �1 < 1=10
in any event.

� �0 is a section of Hom(E;E�).

� There exists � > 0 such that e��(j�1j+ j�0j) is bounded on
[0;1) � Z . (3.10)

To de�ne appropriate domain and range spaces for D , it is necessary to �rst
choose a Riemannian metric on X whose restriction to [0;1)�Z is the product
metric constructed using d�2 on the �rst factor and an �{independent metric
on the second.

The de�nition of the domain and range for D also requires the choice of � 2
R. With � chosen, the domain Banach space, L1 , is obtained by completing
the set of sections of E for which (3.7) is �nite using the expression in (3.7)
for the square of the norm after substituting p for s. Meanwhile, the range
Banach space is obtained by completing the set of section of E� for which the
corresponding version of (3.8) is �nite using the latter for the square of the
norm.

Under, the preceding assumptions, here is the fundamental conclusion from
[14]:

Lemma 3.5 If � 6= 0, but j�j is su�ciently small, then D de�nes a Fredholm
map from L1 to L0 . Moreover, the following are true:

� Each element in kernel(D) has a well de�ned �!1 limit on [0;1)�Z .
In addition:

(a) This limit is zero when � < 0, and it lies in the kernel of L0 when
� > 0.

(b) When � > 0, these limits de�ne a homomorphism �� : kernel(D) !
kernel(L0).

(c) Let � 2 kernel(D) and let k 2 f1; 2; : : :g. Then ej�j�=2jr⊗k�j is square
integrable on Y ; and if j�j ! 0 as �!1, then ej�j�=2j�j is also square
integrable on Y .

� Identify the cokernel of D with the orthogonal complement to the image
of D as de�ned by the inner product induced by the norm in (3.8) on
L0 . With this identi�cation understood, let � 2 � cokernel(D) and set
� � e−��� . Then � is annihilated by the formal L2 adjoint of D it has a
well de�ned �!1 limit on [0;1)� Z . In addition:
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(a) This limit is zero when � > 0, and it lies in the kernel of L0 when
� < 0.

(b) When � < 0, these limits de�ne a homomorphism �� : cokernel(D) !
kernel(L0).

(c) Let � � e−��� with � 2 cokernel(D) and let k 2 f1; 2; : : :g. Then,
ej�j�=2jr⊗k�j is square integrable on Y ; and if j�j ! 0 as � ! 1,
then ej�j�=2j�j is also square integrable on Y .

� If � > 0, then the images of �� and �−� are orthogonal, complementary
subspaces in kernel(L0).

With this last lemma understood, the proof of Lemma 3.3 is reduced to verifying
that the conditions in (3.9) and (3.10) are satis�ed in the present case.

Step 2 This step in the proof veri�es for certain cases that the operator D
which appears in Lemma 3.3 obeys the conditions in (3.10). This is accom-
plished using the fact that when s0 is large, then C ’s intersection with the
jsj � s0 part of X −X0 is a disjoint union of cylinders where the constant s
slice of each cylinder is very close to some closed Reeb orbit. Moreover, accord-
ing to Proposition 2.3, as jsj ! 1, this constant jsj slice converges in the Ck

topology for any k exponentially fast in jsj to some multiple covering of the
closed Reeb orbit. The implications of this observation are slightly di�erent de-
pending on whether the cylinder is in a component of X−X0 which is concave
or convex and has or does not have an orientable z{axis line bundle. In this
regard, only the concave case is presented below as the argument for the convex
case is identical save for changing various signs. With M now taken to de�ne
a concave end of X , the case with orientable z{axis line bundle is considered
in this step, and the non-orientable z{axis line bundle case is considered in the
next.

Until directed otherwise, assume that M = S1 � S2 � @X0 de�nes a concave
end of X with orientable z{axis line bundle. Now, suppose that γ � M
is an element in the limit set for C . Here, there are three cases which are
treated separately. The �rst case has � = �0 on γ with �0 =2 f0; �g and with
cos2 �0 6= 1=3. In this case, a component of C which lies in a small radius
tubular neighborhood of γ can be parameterized as (2.13). It then follows from
(2.15) that D has the form of (3.9) where A0 is the identity 2� 2 matrix and
where L0 is the operator L in (2.16). Moreover, the fact that � in (2.15) decays
exponentially fast to zero implies that the requirements in (3.10) are met in this
case.
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Next, consider the case where γ is such that cos2 �0 = 1=3. In this case,
the roles of (t; f) and (’; h) can be switched in the discussion of Step 9 of
Proposition 2.3 to �nd a parameterization of the part of C near [s0;1)� γ by
coordinates (�; �) for which D has the form in (3.9) where A0 is the identity
and L0 is again given by (2.16), but with � 0 = 0 and � = 2. In this case, the
coodinate � takes values in an interval of the form [�0;1) while � takes values
in [0; 2�m] where m is the number of times each large, but constant s slice of
C wraps around a given tubular neighborhood of γ . In this parameterization,
h = �e−2� with � either 1 or −1, and ’ = � . Meanwhile, the coordinates t
and f are parameterized as t = x(�; �), f = 3�e−2�w(�; �) and where x and
w are functions of � and � which are periodic in � and which decay to zero
exponentially fast as � tends to in�nity. Note that a column vector with x the
top entry and w the bottom obeys a di�erential equation with the schematic
form of (2.15).

The third case to consider is where �0 is either 0 or � on γ . The discussion here
concerns solely the �0 = 0 case as the �0 = � case has an identical story modulo
some inconsequential sign changes. In this case, use of the parameterization in
(2.14) �nds that the operator D has the form in (3.9) using the version of
L0 in (2.16) that has � 0 = � =

p
3=
p

2. By the way, note that in this case,
kernel(L0) = 0 because

p
6 is irrational.

Step 3 This step considers the form of D when the end of C in question lies
in a concave end of X with non-orientable z{axis line bundle. Here, there are
two cases to consider; they depend on whether the fundamental class of the
corresponding element, γ , of C ’s limit set does not or does generate H1(S1 �
S2;Z).

In the case where the fundamental class of γ does not generate H1(S1�S2;Z),
then the inverse image of γ via the map in (3.3) has two distinct components
which di�er in the sign of cos(�0). Likewise, the inverse image of the relevant
portion of C via the map in (3.3) has two components, one near each com-
ponent of the inverse image of [s0;1) � γ . Choose one such component and
parameterize it as in the previous step. The result gives an operator D of the
form in (3.9) which obeys the constraints in (3.10).

Now consider the case where the fundamental class of γ does generate H1(S1�
S2;Z). In this case, the inverse image of γ under the map in (3.3) is the circle,
γ0 , with �0 = �=2 and ’ = 0. This is to say that the coordinates (x01; x

0
2; x
0
3)

for the S2 factor which appear in (3.3) are either (1; 0; 0) or (−1; 0; 0) on
γ0 . Meanwhile, the corresponding inverse image of C will be very close to
[s0;1)� γ0 . In the case where this inverse image has two components, choose
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one and parameterize it as in Step 2. The resulting expression for D will
then have the form of (3.9) and obey the constraints in (3.10). In this regard,
note that the inverse image here will have two components precisely when the
constant s > s0 circles in this end of C are even multiples of a generator of
H1(M ;Z).

Finally, suppose that the inverse image of the relevant part of C has just one
component. In this case, C can be parameterized by coordinates � 2 [�0;1)
and � 0 2 [0; 2�m] where m is an odd, positive integer. This parameterization
writes the coordinates (s; t0; x02; x

0
3) for this end of C as (�;� 0; a0; b0) with a0 and

b0 functions of � and � 0 which are periodic in � 0 with period 2�m.

With these last points understood, it follows that the inverse image of C under
the map in (3.3) can be parameterized by the same function � and a function
� 2 [0; 2�m] which writes the coordinates (s; t; x2; x3) as (�; �; a; b) where a
and b are functions of � and � which obey

a(�; � + �m) = −a(�; �)and b(�; � + �m) = −b(�; �) : (3.11)

Moreover, the column vector � with top entry a and bottom entry b obeys an
equation with the schematic form given by (2.15) with � 0 = 0 and � =

p
6.

Finally, � decays exponentially fast to zero as � tends to in�nity. By the way,
note that the involution in (2.1) is realized on the inverse image curve by sending
� to � + �m.

In any event, these last remarks imply that the operator D on C has the form
given in (3.9) and satis�es the constraints in (3.10). Indeed, this is because
the pullback of D to C ’s inverse image curve is as described in Step 3 for
the �0 = �=2 case. However, be forwarned that the domain and range Hilbert
spaces on C , the spaces L0 and L1 in Lemma 3.5, pullback to the inverse image
curve as subspaces of R2 valued functions over the inverse image curve which
change sign when � is changed to � +� m. Here, D on C should be viewed as
an operator on R2 valued functions by trivializing C ’s normal bundle using the
restriction to C of the vector �elds which are tangent to the x02 and x03 axis.

(c) The proof of Proposition 3.2

The strategy and most of the technical details for the proof follow those for the
proof in the case where C is compact (see, for example, [18]). Certain special
cases of the proposition also follow from the analysis in [13].

The argument given below for Proposition 3.2 has two parts. The �rst �nds a
ball B � kernel(D), a smooth map, f , from B into the cokernel of D and an
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embedding from f−1(0) into a neighborhood of C in Me;� . The second part
of the argument proves that this embedding of f−1(0) into Me;� is onto an
open set. Both parts consist mostly of fairly straightforward generalization of
arguments that are used in the compact case and in [13]. Thus, the discussion
below will be brief, with many of the details left for the reader. In this regard,
the discussion that follows will consider only the case where C is immersed
with purely transversal double point self intersections; the general case is left
as an exercise. In any event, these two parts to the proof of Proposition 3.2
constitute Steps 1{6 and Step 7 of the seven steps into which the proof below
is divided.

Step 1 What follows is a brief summary of the formal set up for the �rst
part of the proof of Proposition 3.2 (as described above). In this regard, note
that the basic conclusions here in Step 1 follow more or less automatically
from an application of the implicit function theorem. However, there are two
subtle points in this application. The �rst such point involves the choice of
the appropriate spaces and the map between them. The second subtle point
involves a reference to a particular regularity theorem in [17].

To start the summary, the basic observation is that a constant �0 > 0 and an
‘exponential’ map, q , from the radius �0 disk bundle N0 � N to X can be
found with the following properties:

� q restricts to the zero section as ’ and embeds each �ber of N0 as a
pseudoholomorphic disk.

� At each point along the zero section, q ’s di�erential maps TN isomorphi-
cally to TX .

� If � is a section of N0 , then the image of q(�(�)) is a pseudoholomorphic
submanifold of X if and only if � obeys an equation with the schematic
form

D�+R(�;r�) = 0 ;

where R is a smooth, �ber preserving map from N0 � (N � T �C) to
N � T 0;1C that is a�ne in the second factor and obeys

jR(a; b)j � �(jaj2 + jaj jbj)

for some constant � .

� In fact, q can be constructed so that R(a; b) = R0(a) +R1(a)b1;0 where
R0 and R1 respectively map N0 to N ⊗T 0;1C and to HomC(T 1;0C;N ⊗
T 0;1C), and where b1;0 denotes the projection of b onto the (1; 0) sum-
mand in T �CC . (3.12)
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The map q can be constructed as described in Section 2 of [24]. Indeed, the
basic point is that q maps the �bers of N0 into X as pseudoholomorphic
disks. This understood, then a local, C{valued �ber coordinate � on N0 can
be found with respect to which the q pullback of T 1;0X is spanned by a form
that annihilates vertical vectors and e = d� + � where � vanishes on the zero
section and also annihilates vertical vectors. The various points in (3.12) then
follow by exploiting these last remarks.

With (3.12) understood, the goal is to use the implicit function theorem cou-
pled with various standard elliptic regularity theorems to describe the small
solutions to (3.12). To broaden the subsequent discussion so as to cover cer-
tain generalizations of (3.12), it proves useful to consider the form of R in the
third point of (3.12) without assuming the validity of the �nal point. Thus,
the subsequent discussion makes no reference to this �nal point of (3.12). It
also proves useful to set up the implicit function theorem in a weighted Sobolev
space of sections of N where �nite norm demands local square integrability
of the section and its covariant derivative, but makes no demand for an L1

bound. Were the purpose solely that of proving Proposition 3.2, a norm with
L1 implications can be used. In any event, with the lack of an L1 bound from
the norm, a trick is employed to handle the nonlinearity in R.

Here is the trick: First, introduce a smooth function �: [0;1) ! [0; 2) whose
value at t 2 [0;1) is 1 when t < 1, 1=t when t > 2. Given � > 0, set �� :
[0;1) ! [0; 2�) to denote the function whose value at t is �(t=�). Now, �x
�� 1 and the trick is to replace the given R in the third point of (2.14) with
R� : N0 � (N ⊗ T �C) ! N ⊗ T 0;1C whose value on (a; b) is R(��(jaj)a; b).
Solutions to the R� version of (3.12) are then found via a straightforward im-
plicit function theorem argument. This understood, and given that � is small,
Theorem 5.4.1 in [17] guarantees that these solutions are pointwise smaller than
� over the whole of C , and so they solve the desired R version of (3.12).

Solutions to the R� version of (3.12) are found in the following way: A certain
space of sections of N is split as kernel(D) � L while a corresponding space
of sections of N ⊗ T 0;1C0 is split as cokernel(D) � L0 . Then, for each � in
kernel(D)� L, the section D�+R�(�;r�) of N ⊗ T 0;1C0 is projected into L0

to de�ne a map from kernel(D) � L to L0 . The di�erential of this last map
at � = 0 (which is formally D) can be seen to identify L with L0 . Thus, the
implicit function theorem gives a ball B about the origin in kernel(D) and a
smooth map, �: B ! L with the following properties:

� When � 2 B , then �(�) = O(jj�jj2).
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� When � 2 B , set � � � + �(�) and then D� + R�(�;r�) projects to
zero in L0 . (3.13)

This ball B is the one that used in Proposition 3.2.

With (3.13) understood, de�ne a map f : B ! cokernel(D) by taking the
projection onto cokernel(D) of R�(� + �(�), r(� + �(�)). This is the map to
be used in Proposition 3.2. Indeed, if j�+ �(�)j is everywhere less than �, then
it follows from the third point in (3.12) and the second in (3.13) that the image
in X of the map q(�+ �(�)): C0 ! X is a pseudoholomorphic submanifold in
Me;� near to C if and only if f(�) = 0. Meanwhile, standard elliptic estimates
for D �nd some �D > 0 such that the following is true: If � < �D and if B is
de�ned so that its elements have supremum norm less than �=2, then j�+�(�)j
is guaranteed to have supremum norm less than � and so � = � + �(�) solves
D�+R(�;r�) = 0. Thus, f−1(0) is truly mapped to a neighborhood of C in
Me;� . Conversely, as � is smooth, some relatively standard s!1 estimates
on the sections of N in kernel(D) � L guarantee that the map just described
embeds f−1(0) in Me;� .

Step 2 This step introduces the important function spaces involved. For this
purpose, �x � > 0, but very small and �x k 2 f0; 1; : : :g. Let E denote either
N , N ⊗ T 0;1C0 or the tensor product of N with some multiple tensor product
of T �C0 . Let L2

k;�(E) denote the completion of the set of smooth, compactly
supported sections of E using the norm whose square is

jj�jj2k;� �
Z
e�jsj

X
0�p�k

jrk�j2 : (3.14)

Note that this norm uses the growing exponential e�s while those in (2.8) and
(2.9) use the shrinking exponential e−�s .

The following is a basic fact about these spaces which is left to the reader to
verify:

The covariant derivative extends to a bounded map from
L2

1;� to L2
0;� . (3.15)

Step 3 Reintroduce the operator D from (3.5). On each end of C , this
operator has the schematic form in (3.9) and thus associated to each end of C
is the kernel of the relevant version of the operator L0 . Note that each of these
kernels is either zero or one-dimensional. In any event, let W denote the direct
sum (indexed by the ends of C ) of these kernel(L0 ) vector spaces.
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Fix � > 0, but very small and, for the moment, consider D with its range and
domain as described in Lemma 3.3. Lemma 3.5 provides the homomorphism
�� : kernel(D)!W . Note that the kernel of �� is the intersection of kernel(D)
with L2

0;�(N) and thus equal to the kernel of this same operator D but viewed
as a map from L2

1;�(N) to L2
0;�(N ⊗ T 0;1C0). Use K to denote the kernel of

the latter version of D . Thus, kernel(D) can be split as

kernel(D) = image(��)�K : (3.16)

Viewed as mapping L2
1;�(N) to L2

0;�(N ⊗T 0;1C0), the operator D is Fredholm,
a fact implied by Lemma 3.5. Use K� � L2

0;�(N ⊗ T 0;1C0) to denote the
corresponding cokernel. In this regard, note that the domain for Lemma 3.5’s
map �� is this vector space K� . And, according to the second point of Lemma
3.5, the space K� can be split as

K� = image(��)� e−2�jsj kernel(D�) : (3.17)

The latter splitting is made in a canonical way by requiring the two summands
to be orthogonal with respect to the inner product on L2

0;�(N ⊗ T 0;1C0).

Step 4 The purpose of this step is to identify W as a subspace of sec-
tions of N over C0 . For this purpose, use Lemma 3.5 to decompose W =
image(��) � image(��). Then, identify the image(��) summand of W with the
corresponding subspace of kernel(D) in (3.16). (Note that the splitting in (2.18)
is not canonical.)

To identify the image(��) summand of W as space of sections of N , �rst use
the coordinates on each end of C which are described in the proof of Lemma
3.3 to view image(��) as a subspace of sections of N over the s > s0 portion
of C . In this regard, note that each such section of N is pointwise bounded.
Next, choose a smooth function, � , on R which has values between 0 and 1,
and which is zero on (−1; 2s0) and which is one on (3s0;1). Compose � with
the function s on C0 to view � as a function on C0 . Finally, embed image(��)
as a subspace of sections of N over the whole of C0 by sending w 2 image(��)
to �w . Note that with the latter embedding understood, the vector space
image(��) � W has now been identi�ed both as a subspace of sections of N
and also, via (3.17), as a subspace of sections of N⊗T 0;1C0 . These two versions
of image(��) will not be notationally distinguished.

Step 5 Let K1 � L2
1;�(N) denote the orthogonal complement of K as de-

�ned using the inner product on L2
0;�(N). (Note that this is meant to be the

analog of the L2 inner product as opposed to that of the L2
1 inner product.)
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Likewise, de�ne K?� � L2
0;�(N ⊗ T 0;1(C0). Also, introduce the corresponding

L2
0;�{orthogonal projection

Q
: L2

0;�(N ⊗ T 0;1(C0)! K?� .

The discussion in Step 1 referred to spaces L and L0 . In this regard, de�ne L
to be L � image(��)⊗K? and de�ne L0 to be L0 � image(��)�K?� . Note that
L0 sits in L2

0;�(N ⊗ T 0;1(C0), and let
Q

: L2
0;�(N ⊗ T 0;1(C0) ! L0 denote the

L2
0;�{orthogonal projection.

Step 6 With � > 0, but small, de�ne a map from kernel(D) � L to L0 by
sending (�;w) in the former space toY

(Dw +R�(� + w;r(� + w)) (3.18)

It is a straightforward task (which is left to the reader) to check that this map
has surjective di�erential at (0; 0) along the L summand of kernel(D) � L.
This understood, then the implicit function theorem �nds a ball B � kernel(D)
and a smooth map �: B ! L such that when � 2 B , then (�;�(�)) solves
(3.18). Moreover, the implicit function theorem also �nds �1 > 0 such that
any pair (�;w) solving (3.18) with � 2 B and jjwjj1;� < �1 has w = �(�).
This understood, de�ne f : B ! cokernel(D) by sending � to f(�) � (1 −Q

)(D�(�) +R�(�+ �(�); �+ �(�)). Thus, � � �+ �(�) solves the R� version
of (3.12) when � 2 f−1(0).

Here is one other automatic consequence of the implicit function theorem: The
graph of � in kernel(D)�L is homeomorphic to a neighborhood of (0; 0) in the
space of solutions to (3.18). Thus, f−1(0) is homeomorphic to a neighborhood
of 0 in the space of (�;w) 2 kernel(D) � L for which � � � + �(�) obeys the
R� version of (3.18).

Step 7 Theorem 5.4.1 in [17] now �nds some �3 2 (0; �) such that when � lies
in the centered, radius �3 ball in B , then � � �+ �(�) is everywhere bounded
in norm by �. Thus, � solves the R version of (3.12) and, as a consequence,
the map that sends � 2 f−1(0) to � + �(�) properly embeds f−1(0) in a
neighborhood of C in Me;� .

Meanwhile, an application of Proposition 2.3 �nds �2 2 (0; �) such that if � 2 L1

obeys the original, R version of (3.12) and has j�j < �2 everywhere, then
� = � + �(�) with � 2 f−1(0). Thus, the aforementioned map from f−1(0) to
Me;� is a homeomorphism onto an open neighborhood of C .
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(d) The index of D

It is useful to have a formula for the index of D that generalizes those in (3.6).
Such a formula is given in Proposition 3.6 at the end of this subsection. The
derivation of the analog of (3.6) is a six step a�air which follows this preamble.
However, before starting, note that the concave and convex end discussions are
not identical, but are completely analogous. Thus, the discussion below focuses
on the concave case while only summarizing the modi�cations that are required
when convex ends are present. In particular, the �rst four steps below involve
only the case where X has solely concave ends. Note here that this assumption
in Steps 1{4 about X is mostly implicit. Also, except for Step 6, the operating
assumption is that C is immersed in X with only transversal, double point
self-intersections.

Before starting, it is pertinent to remark on the absence in the subsequent
discussion of reference to a Maslov or Conley-Zehnder index as in [13]. The
�rst point is that the index formula for a Cauchy-Riemann operator on some
given completion of the space of sections of a bundle over a surface must have
the following schematic form: Index = 2 degree + � + ‘boundary correction’.
Here, � is the Euler characteristic of the surface, degree is a �rst Chern number
of the bundle in question and ‘boundary correction’ is just what it says. In this
regard, the de�nition of the degree requires some choice of trivialization of
the bundle along the ends of the surface and a di�erent choice might change
the degree. Of course, if it does, it will also change the ‘boundary correction’
term to compensate. In this regard, an index formula with a formal Conley-
Zehnder index term correction to the basic ‘2 degree + �’ simply reflects a
particularly natural choice for the trivialization of the normal bundle of the
pseudoholomorphic surface on its ends. In particular, these Conley-Zehnder
trivializations are trivializations that are induced from certain trivializations of
the normal bundles to the limiting closed Reeb orbits.

The preceding understood, remark that the formula given below in Proposition
3.6 also uses certain natural trivializations of the normal bundle to the surface
on its ends that are induced from those of the limiting closed Reeb orbits. In
fact, the latter were described previously in Part 2 of Section 3a. However, the
formal introduction of a ‘Conley-Zehnder’ index in this case is not done here
for three reasons. First, an integer valued Conley-Zehnder index is awkward
to de�ne in the present circumstances because the �rst Chern class of T 1;0X
evaluates with absolute value 2 on the S2 factors of the ends of X . Second,
the index formula for the non-isolated Reeb orbits necessarily has terms with
no analog in the index formula [13]. Third, the formula given in Proposition
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3.6 are, in any event, reasonably easy to use without the additional burden of
a Conley-Zehnder index computation.

Step 1 Consider �rst an end of C which lies in an end of X with orientable
z{axis line bundle. By virtue of Proposition 2.3, the large s part of the cor-
responding end of C0 has a product structure with special coordinates (�; �)
such that J maps @� to �@� . Here, � 2 R=(2�mjpjZ) while � 2 [�0;1) with
m > 0, p 6= 0 and both integers. In this regard, the integer m should be viewed
as the multiplicity by which the large and constant jsj slices of this end of C
wrap around the limiting Reeb orbit. This interpretation of m requires taking
p = −1 when the limiting Reeb orbit for this end is characterized as in (1.8) by
one of the symbols + or −. Note that these coordinates di�er from those in
(2.13) or its cos2 �0 = 1=3 analog; however, they di�er only by functions whose
derivatives to any order decay to zero at an exponential rate as s!1.

There is also a special trivialization of the normal bundle over the end in ques-
tion as the product R2 bundle for which J sends the column vector ( 1

0 ) to
� ( 0

1 ) With respect to this trivialization, the operator D de�nes an operator
on the R2 valued functions that has the form

D� = @��+ L0�+ P� : (3.19)

Here, � is a 2{component column vector, L0 is described by (2.16) and P is a
2� 2 matrix valued function that is small and drops to zero exponentially fast
as � ! 1. Meanwhile, � 0 and � are the constants in (2.16), and thus one of
the following hold:

� � 0 = 0 and � > 0.

� � 0 = � > 0. (3.20)

In this regard, the second case occurs only when the given end has its corre-
sponding �0 in f0; �g.

Because the coe�cients of P drop to zero exponentially fast at large �, the index
of D is the same as that of D0 � D − �(�)P , where �(�): [�0;1) ! [0; 1]
is 0 on a certain interval of the form [�0; �1] and �(�) is 1 on [2�1;1). Here,
�1 > �0 can be taken to be very large.

This operator D0 is introduced because its coe�cients are constant on [2�1;1)
�S1 . In particular, this implies (see [1]) that D0 has the same index as the
identical operator on the domain in C0 where � � 4�1 but with appropriate
spectral boundary conditions imposed on the � = 4�1 boundary of this domain.
By way of motivation, this translation to a spectral boundary condition problem
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is made so as to facilitate the comparison of the index of D0 with that of a
certain complex linear operator with known index.

In any event, there is one key observation that is used to determine the ap-
propriate spectral boundary conditions on the � = 4�1 circle: Any bounded
element in the kernel of D0 must restrict to the half cylinder S1 � [2�1;1) in
the span of the set�

e−E��E(�) : E � 0 and L0�E = E�E
}
: (3.21)

The eigenvalues E which appear above have the form

E = −2−1(� 0 + � − [(� 0 − �)2 + 4n2=(mjpj)2]1=2) : (3.22)

Here, n 2 f0; 1; : : :g is such as to make E � 0. In particular, with regard to this
last concern, note that when the �rst point of (3.20) holds, then E > 0 for all
positive n and E = 0 for n = 0. On the other hand, when the second point of
(3.20) holds, then E > 0 if and only if n > m

p
3=
p

2 because � 0 = � =
p

3=
p

2
and jpj = 1 in this case.

Concerning the eigenspace for the eigenvalue E , it is important to note that
this is a two-dimensional vector space over R if the integer n in (3.22) is strictly
positive. Such is also the case when n = 0 and the second point in (3.20) holds.
However, when � 0 = 0 in (3.20), then each of the n = 0 values of E has 1{
dimensional eigenspace. In any case, the components of the eigenfunctions �E
in (3.21) are certain linear combinations of cos(n�=(mjpj)) and sin(n�=(mjpj)).

It now follows directly from (3.21) that the index of D0 is the same as that
of the identical operator on the domain where � � 4�1 in C0 with spectral
boundary conditions on the � = 4�1 boundary of this domain which restrict
the sections of the normal bundle under consideration to lie in the set spanned
by [�E : E � 0 is given by (3.22)].

Step 2 Here and in Step 3, assume that C only intersects components of X−
X0 that have orientable z{axis line bundle. With this assumption understood,
the remainder of this step considers not D0 , but a particular C{linear operator
version of the @ operator on the sections of the normal bundle. The reason for
this digression should be apparent by the end of the next step.

The �rst order of business is to specify the version of @ to be used. In particular,
the operator is constrained only on the ends of C0 ; and on an end, in terms
of the coordinates (�; �) and the aforementioned trivialization of the normal
bundle, this operator sends an R2 valued function � to

@� � �� +
�

0 −@�
@� 0

�
� : (3.23)
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By the way, the di�erence of two @ operators for the same complex line bundle
is, as a C{linear operator, the tensor product with a section of T 0;1C0 . Were,
C0 compact, then the two operators would have the same index, but such an
event is not guaranteed when C0 is non-compact.

The index of the version of @ in (3.23) is readily computed with the help of the
Riemann-Roch theorem, and the computation yields the identity: index(@) =
2 �degree(N)+�(C0)+@T . Here, degree(N), �(C0) and @T denote the follow-
ing: First, degree(N) is the degree of the line bundle N as determined via the
sections over the end of C0 which are described in Part 2 of Section 3a; mean-
while � and @T respectively denote the Euler characteristic and the number of
ends of C0 .

The formula just described for the index of @ can be rewritten using Proposition
2.1 and the fact that degree(N) = he; [C]i − 2mC . For example, here is an
equivalent formula: index(@) = he; [C]i − hC1; [C]i − 2mC + @T .

Note that the kernel of @ on an end of C0 can also be written as in (3.21)
except that E = n=(mjpj) replaces the formula for E in (3.22). Here, n can
be any non-negative integer. For the case of @ , all of the eigenspaces are two-
dimensional.

As a constant coe�cient operator on the ends of C0 , the index of the @ operator
can also be identi�ed with the index of the same operator on the � � 4�1

domain in C0 with spectral boundary conditions on each � = 4�1 circle. In
particular, these boundary conditions restrict the sections of N on the � = 4�1

circle to be linear combinations from those column vectors with top component
cos(n�=(mjpj)) and bottom component sin(n�=mjpj) or else top component
− sin(n�=(mjpj)) and bottom component cos(n�=(mjpj)). Here, n 2 f0; 1; : : :g.

Step 3 This step compares the spectral boundary conditions for D0 and for @ .
In this regard, note that for both operators, the relevant boundary condition
for each boundary component restricts the sections of N to lie in a certain
direct sum of �nite dimensional spaces. In the case of @ , these summands are
indexed by integers n 2 f0; 1; 2; : : :g and each is two-dimensional. Meanwhile,
the summands in the case of D0 are subspaces of those for @ .

In particular, on an end of C0 for which the corresponding element in C ’s limit
set has �0 =2 f0; �g, the n > 0 summands for D0 are the same as those for @ ,
while the n = 0 summand for D0 is a 1{dimensional subspace of that for @ . On
the other hand, if the corresponding element in C ’s limit set has �0 2 f0; �g,
then there is some integer m0 � 1 such that the n � m0 summands for D0
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and for @ agree, while the n < m0 summands for D0 are all trivial (zero-
dimensional). Here, m0 is the least integer that is greater than m

p
3=
p

2 with
m de�ned as follows: The large and constant s slices of the end in question
de�ne a class in H1(S1 � S2;Z). Then m is the absolute value of the pairing
between this class and a generator of H1(S1 � S2;Z).

With this last paragraph understood, it now follows from the analysis in [1]
that the index of D0 is less than that of @ , with the de�cit, �, accounted for
by a contribution from each end of C0 . Here, an end E � C0 with �0 =2 f0; �g
contributes 1 to �, while one with �0 2 f0; �g has the non-zero contribution
2m0(E). Thus, with @0 denoting the sum, indexed by the ends E � C0 with
�0 2 f0; �g, of the corresponding quantities (1− 2m0(E)), the following formu-
lae hold: index(D) = 2 � degree(N) + �(C0) + @0 . Equivalently, index(D) =
hee; [C]i− hc1; [C]i−2mC +@0 , and also index(D) = −�(C0)−2hc1; [C]i+@0 .

Step 4 Now consider the possibility that C0 has some ends which lie in
[0;1) �M where M � @X0 is a component with non-orientable z{axis line
bundle. In this case, the index of D is computed via the route just used, �rst
through a deformation on the ends of C0 to a constant coe�cient operator, next
through a reinterpretation of the latter as an operator with spectral boundary
conditions, and �nally via a comparison with the index of the analogous spectral
boundary condition interpretation of a certain @ operator.

With regard to this @ operator, note that the latter will be Fredholm with
index(@) = 2 � degree(N) + �(C0) + @T . (As before, index(@) = he; [C]i −
hC1; [C]i − 2mC + @T is an equivalent formula.) The @ operator used here is,
once again, restricted on the ends of C0 . The restrictions described above for
@ are used for the ends of C0 which map to components of X −X0 where the
corresponding z{axis line is orientable. The restrictions on the remaining ends
of C0 are described below.

In any event, the resulting analysis �nds index(D) = index(@) − �, where �
is again a sum of contributions from each end of C0 . An end of C0 which
maps to a component of X − X0 where the corresponding z{axis line bundle
is orientable makes the same contribution to � as before. Meanwhile, the
description of this contribution for an end of C0 which lies where the z{axis
line bundle is non-orientable requires the distinction between two cases. The
�rst case discusses those ends where the constant s > s0 circles de�ne even
multiples of a generator of H1(M ;Z). Note that this case occurs automatically
when the corresponding element of C ’s limit set is not a generator of H1(M ;Z).
The second case discusses the situation when these circles are odd multiples of
a generator.
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In the �rst case, the inverse image in [s0;1)� (S1�S2) of the end in question
under the map in (2.3) has two components, and so determines a particular value
of �0 up to the replacement �0 ! � − �0 . Moreover, after the identi�cation of
the end with either of these components, the analysis for the orientable z{axis
line bundle case repeats here hitch free. In this regard, please note that the @
operator for use on C0 is restricted so as to yield (3.23) after the identi�cation
of the given end with one of its inverse images in [s0;1)� (S1 � S2)

With the preceding understood, here is the result of the analysis: The end in
question contributes 1 to the de�cit � if the corresponding �0 =2 f0; �g, and
otherwise the contribution is twice the value of the associated integer m0 .

Now turn to the case of an end of C0 where the corresponding large, constant jsj
circles is an odd multiple of a generator of H1(M ;Z). Let C01 � [s0;1)�(S1�
S2) denote the inverse image of C0 via the map in (3.3). As noted earlier, C01 is
a pseudoholomorphic cylinder with �0 = �=2 and with ’ asymptotic as s!1
to either 0 or � . Thus, C01 has the previously described parameterization by
coordinates (�; �) 2 [�0;1)� [0; 2�m] where m is an odd, positive integer. In
this regard, note that the assumptions in play here force the relevant element
in the limit set of C01 to have �0 = �=2, and this implies that the integer p is
equal to one. Use coordinates (�0; � 0) 2 [�0;1) � [0; 2�m] for C0 so that the
map in (3.3) restricts to C01 as that which writes �0 = � and � 0 = 2� .

Under the previously described identi�cation between the normal bundle of C01

and the pull back via (3.3) of the normal bundle of C0 , sections of C0 ’s nor-
mal bundle pull up as R2 valued functions on C 00 which obey �(�; � + m�) =
−�(�; �). This follows from (3.3) and the comments in the �nal paragraph of
Part 2 of Section 3a. The operator D on C0 then pulls up to be the corre-
sponding D on C01 , but with the domain and range restricted to the functions
which are odd under the involution � ! � +m� .

Given these last points, the analysis done for the other ends of C0 can be
repeated to �nd that the index of D on C0 is the same as that of this di�eren-
tial operator on the � � 4�1 portion of C0 with spectral boundary conditions
given as follows: The sections on the � = 4�1 boundary should pull up to C01

as a linear combination of two column vectors where one has top component
cos(n�=m) and bottom component sin(n�=m) while the other has top compo-
nent − sin(n�=m), and bottom component cos(n�=m). However, here n must
be a positive, odd integer.

Now consider the constraint for the @ operator on this end of C0 . To guarantee
that this operator has index equal to 2 degree(N)+�(C0)−@T , the constraint is
as follows: Use the coordinates (�0; � 0) on the end of C0 and trivialize the normal

Geometry & Topology, Volume 6 (2002)



A compendium of pseudoholomorphic beasts in R� (S1 � S2) 713

bundle over this end using the vectors tangent to the x02 and x03 coordinates
which appear in (3.3). With these coordinates and the bundle trivialization
understood, the @ operator acts on R2 valued functions. In this guise, the
operator should be that which sends a column vector function � to 2−1��0 +L0

where L0 is the matrix operator given by the second term in (3.23) with � 0

derivates replacing those of � .

To compare this @ operator with D , it proves convenient to pull the former
up to C01 and express it as an operator on the normal bundle to the latter.
In particular, the resulting operator di�ers from the operator in (3.23) by the
zero’th order operator which sends � to the operator which is given by (3.23)
but with @� replaced by @� + 1. As with the pullback to C01 of D , the range
and domain of this operator must be restricted to those R2 valued functions �
which obey �(�; � +m�) = −�(�; �).

With the preceding understood, the analysis previously done can be repeated
to �nd that the index of @ on C0 is the same as that of the same operator
on the � � 4�1 portion of C0 with spectral boundary conditions given as
follows: The sections on the � = 4�1 boundary should pull up to C01 as linear
combinations of two column vectors, one whose top component is cos(n�=m)
and whose bottom component is sin(n�=m) and the other whose top component
is − sin(n�=m) and whose bottom component is cos(n�=m). In this case, n
here must be an odd integer and no less than −m.

Given now all of the preceding, a comparison of the spectral boundary con-
ditions just described for D and for @ �nds that the given end of C0 con-
tributes m + 1 to the de�cit �. Now, each end E � C0 where the z{
axis line bundle is non-orientable and where the constant s > s0 circles de-
�ne odd multiples of a generator of H1(M ;Z) supplies a positive, odd integer
m � m(E) and the sum, indexed by such ends of C0 , of −m(E) de�nes an
integer @1 . Meanwhile, each end E � C0 where the corresponding �0 is in
f0; �g (whether or not the ambient z{axis line bundle is orientable) de�nes
an non-zero integer m0(E) (as described above). Use @0 to denote the sum,
indexed by this last set of ends, of (1 − 2m0(E)). Then, the index of D is
given by index(D) = 2�degree(N)+�(C0)+@0 +@1 , which is no di�erent than
saying that index(D) = he; [C]i − hc1; [C]i − 2mC + @0 + @1 or index(D) =
−�(C0)− 2hc1; [C]i+ @0 + @1 .

Step 5 This step considers the possibility that X has some convex ends that
are intersected by C . The �rst point to make is that the analysis for the convex
end case is completely analagous to that for the concave ends. Indeed, the
di�erence amounts to essentially considering the eigenvalues E of the operator
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L0 in (3.19) which are non-positive rather than non-negative. The result of this
analysis (whose details are left to the reader) follows.

To begin, let E �C be an end which lies in a convex end of X with orientable
z{axis line bundle. Then E adds a factor 1 to the previous index formula, 2
degree(N) +�(C0) + @0 + @1 , when the corresponding element in C ’s limit set
has �0 =2 f0; �g. On the other hand, when �0 2 f0; �g, then E contributes
2m0(E)− 1 to the integer @0 , where m0(E) is de�ned as in Step 3.

Next, let E � C denote an end which lies in a convex end of X with non-
orientable z{axis line bundle. In this case, the contribution of E to the index
formula again depends on whether the large, but constant s circles in E give
an even or an odd multiple of a generator of H1(S1�S2;Z). In the case where
these circles give an even multiple of a generator, then E contributes 1 to the
previous index formual when the components of the inverse image of the end
under the map in (3.3) de�ne limiting Reeb orbits with �0 2 f0; �g. On the
other hand, where such lifts produce limiting Reeb orbits with �0 2 f0; �g, then
E contributes 2m0(E)− 1 to the integer @0 , where m0(E) is de�ned as in Step
3 by either of the lifts.

In the case where the constant s circles in E give an odd multiple of a generator
of the �rst homology of S1 � S2 , then E contributes m(E) to the integer @1 .
Here, m(E) is the absolute value of this multiple.

Step 6 This step considers the general case and so drops the assumption that
C is immersed in X . For such C , the operator D is the one that Lemma 3.4
considers. But for a change of interpretation, its index is again index(D) =
he; [C]i − hc1; [C]i − 2mC + @0 + @1 . Here, the change concerns the integer mC

which now must be interpreted as in the second point of Proposition 3.1.

To justify the preceding formula, �rst remember that the given map from C0

to X has arbitrarily small, C1 perturbations for which the result satis�es the
requirements in the second point of Proposition 3.1. The perturbation can be
done so that the perturbed map is pseudoholomorphic for an appropriate almost
complex structure on X which di�ers from the original on a compact subset
of X . The operator D of Lemma 3.4 is de�ned for this new map, and if the
perturbation is small in the C2 topology, it will di�er from the original by an
operator with small norm; thus, the new and old versions of Lemma 3.4’s D
will have the same index. Meanwhile, the new map, being an immersion, has an
associated operator, call it D0 , which is given by (3.5) and is the one discussed
in Steps 1{4, above. It is left as an exercise to check that the operator D of
Lemma 3.4 and the operator in (3.5) have the same index when C is immersed.
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The following proposition summarizes the results of the preceding discussion:

Proposition 3.6 Let C � Me;� and de�ne the operator D either by (3.5)
when C is immersed, or as in Lemma 3.4. Let L0 and L1 be as de�ned in
either Lemma 3.3 or Lemma 3.4 as the case may be and view D as a Fredholm
operator from L0 to L1 . Then, the following formulae hold:

� index(D) = he; [C]i − hc1; [C]i − 2mC + @0 + @1 + @.

� index(D) = −�(C0)− 2hc1; [C]i+ @0 + @1 + @.

Here, the integers mC , @0 , @1 and @ are de�ned as follows:

� mC denotes the number of double points of any perturbation of the de�n-
ing map from C0 onto C which is symplectic, an immersion with only
transversal double-point singularities with locally positive self-intersec-
tion number, and which agrees with the original on the complement of
some compact set.

� @0 is the sum of the contributions of the form �(1 − 2m0(E)) from each
end E of C0 for which the corresponding limiting Reeb orbit has �0 2
f0; �g. In this regard, � = +1 when E lies in a concave end of X and
� = −1 otherwise. Meanwhile, m0(E) is a positive integer, and here is
its de�nition when the corresponding end of X has orientable z{axis line
bundle: Let m(E) denote the absolute value of the pairing between a
generator of H1(S1 � S2;Z) and any constant, s > s0 circle in E . Then,
m0(E) is the least integer which is greater than m(E)

p
3=
p

2. In the case
when the corresponding component of X has non-orientable z{axis line
bundle, use this last formula but with E replaced by either component of
its inverse image under the map in (3.3).

� @1 is the sum of the contributions of the form �m(E) from each end E of
C0 that satis�es the following criteria:

(a) The end E lies in an end of X with non-orientable z{axis line bundle.

(b) The absolute value of the pairing between a generator of the �rst coho-
mology of the corresponding end of X and any constant, s > s0 circle
in E is odd. The preceding understood, take � = −1 when E lies in a
concave end of X and take � = ++1 otherwise. Meanwhile, take m(E)
to be the absolute value of the cohomology pairing just described.

� @ is the number of ends of C0 that satisfy one of the following two criteria:

(a) The end E � C0 lies in a convex end of X with orientable z{axis
line bundle. In addition, E ’s corresponding limit Reeb orbit has �0 =2
f0; �g.
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(b) The end E � C0 lies in a convex end of X that has non-orientable
z{axis line bundle. In addition, the inverse image via (3.3) of E has 2{
components and neither de�nes a limiting Reeb orbit with �0 2 f0; �g.

Finally, when C is immersed, the index formula can also be written as

index(D) = degree(N)− hc1; [C]i+ @0 + @1 + @;

where N denotes the normal bundle of C , and where its degree is de�ned using
a section that is non-vanishing on the ends of C and there homotopic through
non-vanishing sections to the sections described in Part 2 of Section 3a.

4 Subvarieties in R� (S1 � S2)

This section turns away from the general discussion of the previous two sections
to concentrate on the special case where X = R�(S1�S2) with the symplectic
structure and associated almost complex structure as described in (1.1){(1.4).
In particular, the discussion here highlights general features of the moduli space
of HWZ subvarieties in R � (S1 � S2) and results in a proof of Theorem A.1.
In fact, given Proposition 3.2, the latter follows directly from Proposition 4.2,
below. Other features deemed of particular interest are summarized in Propo-
sitions 4.3 and 4.8.

(a) Examples

Before diving into generalities, it proves useful to introduce various explicit ex-
amples of HWZ pseudoholomorphic subvarieties as these cases will be referred
to in the later subsections. The examples below exhaust the set of HWZ sub-
varieties that are invariant under some 1{parameter subgroup of the subgroup
T = S1 � S1 . In this regard, remember that T is generated by the vector
�elds @t and @’ and it is the component of the identity of the subgroup of the
isometry group of S1 � S2 that preserves the contact form �.

Example 1 The simplest examples are the cylinders C = R � γ , where γ �
S1 � S2 is a closed Reeb orbit. Remember that these closed Reeb orbits are
described in (1.8). In particular, each such γ is characterized, in part, by some
constant value, �0 , for the polar angle � on S2 . For example, if �0 =2 f0; �g,
then the closed Reeb orbit determines a pair of relatively prime integers (p; p0)
and if p 6= 0, then the corresponding cylinder is parameterized by a periodic
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coordinate � 2 R=(2�jpjZ) and u with juj 2 (0;1) and sign(u) = sign(p) by
the rule

(t = �; f = u; ’ = ’0 + p0=p�; h = p0=p sin2(�0)u) : (4.1)

Note that the condition p 6= 0 is equivalent to the assertion that cos2 �0 6= 1=3.

Meanwhile, if p = 0, then p0 = �1 and cos �0 = p0=
p

3. In this case, the
parameterization of the corresponding cylinder is by � 2 R=(2�Z) and u with
juj 2 (0;1) and sign(u) = p0 according to the formula

(t = t0; f = 0; ’ = �; h = u); (4.2)

where t0 is a constant.

Finally, in the case where �0 is 0 or � , the parameterization of the corresponding
cylinder is by � 2 R=(2�Z) and u 2 (0;1) according to the formula

(t = −�; f = −u) : (4.3)

Note that in this case, the function s along C is given by s = −6−1=2 ln(u=2).

Example 2 This example has t = constant and f = −� < 0 with � being
constant. Each such example is a once punctured sphere|a plane|whose limit
set lies in the (s! −1) and thus convex end of R� (S1�S2). Here, the limit
set is a (p = 0, p0 = �1) and so cos2 �0 = 1=3 closed Reeb orbit. Given that
the limit closed Reeb orbit in question has cos �0 = p0=

p
3, such a subvariety

can parameterized by polar coordinates on the plane, (�; u) 2 R=(2�Z)� [0;1)
according to the rule

(t = t0; f = −�; ’ = sign(p0)�; h = sign(p0)u): (4.4)

The maximum value of s achieved by this plane occurs at the plane’s origin,
where u = 0. At this point, smax = −6−1=2 ln(�=2) and � is either 0 or �
depending on whether p0 = +1 or 1, respectively.

Example 3 In this case, t = constant and f = � > 0 with � again being
constant. Each such variety is an embedded cylinder whose limit set lies in
the convex end of R � (S1 � S2). In this regard, the limit set consists of both
cos2 �0 = 1=3 closed Reeb orbits. Such a subvariety can be parameterized by
� 2 R=(2�Z) and u 2 R according to the formula

(t = t0; f = �; ’ = �; h = u) : (4.5)

In this case, the maximum value of s is achieved when u = 0 with value
smax = −6−1=2 ln(�=2). This maximum value occurs where � = �=2.
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Example 4 These next examples are all cylinders where ’ and h are both
constant, but with h 6= 0. Consider �rst the case where ’ = ’0 and h = � 6= 0.
The limit set for such a cylinder consists of one (p = 1; p0 = 0) closed Reeb
orbit (so �0 = �=2, ’ = ’0 ) and either the closed Reeb orbit with � = 0 or
that with � = � . The � = 0 closed Reeb orbit appears when � > 0 and the
� = � closed Reeb orbit appears when � < 0. In any case, both of ends of the
cylinder lie in the convex end of R� (S1 � S2). The cylinder is parameterized
by coordinates � � R=(2�Z) and u � R by the rule

(t = �; f = u; ’ = ’0; h = �) : (4.6)

The maximum value of s on this orbit is smax = −6−1=2 ln(3�=(2
p

2)); it occurs
where u = 0 and so cos2 � = 1=3.

The next three examples describe 1{parameter families of embedded, pseudo-
holomorphic cylinders. However, the subsequent discussion requires the prelim-
inary digression that follows.

To start the digression, remark that the families considered below are labeled
in part by a pair (p; p0) of relatively prime integers with p > 0 and an angle
’0 � R=(2�Z). In this regard, the combination p’ − p0t is constant on a
cylinder with label ((p; p0), ’0) and so such a cylinder is invariant under the
subgroup of T generated by the vector �eld p@t + p0@’ .

A cylinder labeled by ((p; p0); ’0) can be parameterized by �
R
R=(2�jpjZ) and

u 2 R. The parameterization is given as

(t = �; f = u; ’ = ’0 + (p0=p)�; h = h(u)) (4.7)

where the function h(�) is constrained to obey the di�erential equation

hu = (p0=p) sin2 � : (4.8)

Here, the subscript u signi�es di�erentiation with respect to u. Note that
sin2 � in (4.8) should be viewed as an implicit function of u and h through its
dependence on f and h. Indeed, the identity

h=f =
p

6 cos � sin2 �=(1− 3 cos2 �) (4.9)

can be inverted locally to write � = �(h=f).

Note that (4.8), being a �rst-order, ordinary di�erential equation for one un-
known function, has a single constant of integration which parameterizes its
solution set. This constant of integration determines, and is completely deter-
mined by �xing the value of the coordinate s in some �ducial manner.
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It is illuminating to use (4.8) and the condition f = u to derive equivalent
di�erential equations for both � and s. In particular, the latter read:

� �u = 6−1=2e
p

6s(1 + 3 cos4 �)−1f
p

6 cos � − p0=p(1− 3 cos2 �)g sin � .

� su = −6−1=2e
p

6s(1 + 3 cos4 �)−1f1− 3 cos2 � +
p

6p0=p cos � sin2 �g. (4.10)

For any given functional dependence of s on u, the top equation in (4.10) has
constant � solutions only for � = 0, � , �0 and, in the case when jp0j=p >p

3=
p

2, also at a fourth angle, �0 . Here, �0 and �0 are determined as follows:
In the case where p0 = 0, set �0 = �=2. For the other cases, digress momentarily
to note that

(
p

6�)−1f−1 + (1 + 2�2)1=2g (4.11)

has absolute value less than 1/3 for any choice of �0. In particular, for any such
�, the expression in (4.11) can be written as cos �0 for precisely one �0 2 (0; �).
Meanwhile, if � is such that j�j >

p
3=
p

2, then

(
p

6�) − 1f−1 − (1 + 2�2)1=2g (4.12)

has absolute value less than 1. Thus, this last expression equals cos �0 for
precisely one angle �0 2 (0; �). Note that the expressions in (4.11) and (4.12)
have opposite signs, and thus cos �0 and cos �0 , have opposite signs.

With the preceding understood, end the digression and de�ne �0 and �0 for
(p; p0) when p0 is non-zero by replacing � in the preceding digression by p0=p.
As remarked, the angles �0 , �0 (when jp0j=p >

p
3=
p

2) and the angles � = 0
and � = � provide the only h = constant solutions to (4.9). In this regard, the
constant � solutions to (4.9) provide the pseudoholomorphic cylinders that are
already described in Example 1 above.

With the constant solutions to the top equation in (4.10) understood, consider
next the non-constant solutions. These solutions have the property that �u is
either always positive or always negative. Thus, in the case where jp0j=p <p

3=
p

2, either � ranges without critical points between 0 and �0 or between
�0 and � , with these particular values giving the inf and sup of � as the case
may be. On the other hand, when p0=p >

p
3=
p

2, then there are three possible
ranges for � . The �rst has � ranging without critical values between 0 and �0 ,
the second between �0 and �0 and the third between �0 and � . The analgous
situation exists when p0=p < −

p
3=
p

2, for here � ranges without critical points
either between 0 and �0 , or between �0 and �0 , or between �0 and � .
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What ever the range of � , as long as the latter is not constant, then it is a
simple matter to change variables from u to � in the second line of (4.10) and
thus see s = s(�) as an anti-derivative of the function

−f1− 3 cos2 � +
p

6� cos � sin2 �g=f(
p

6 cos � − �(1 − 3 cos2 �)) sin �g. (4.13)

Note that any pair of anti-derivatives for (4.13) di�er by an additive constant,
and the latter can be taken as another parameter which distinguishes the cylin-
ders in any the families that are considered below.

With s = s(�) now viewed as an anti-derivative of (4.13), the � dependence of u
can be obtained by either solving the algebraic equation u = e−

p
6s(1− cos2 �),

or by using s(�) in the top line of (4.10) to view the latter autonomous equation
for � as a function of u. In any event, the second approach does freely identify
the sign of �u along the cylinder.

With the digression now over, consider the examples.

Example 5 In this example, all of the cylinders have both components of the
limit set in the convex end of R� (S1 � S2). To describe these cylinders, �rst
choose (p; p0) and ’0 as constrained in the preceding digression. Then, each of
the cylinders under consideration is parameterized by (4.7) as described in this
same digression.

If jp0j=p >
p

3=
p

2, then p0=p and ’0 determines a 1{parameter family of
examples where the parameter can be taken to be the maximum value that
the function s achieves on the given example. If p0=p >

p
3=
p

2, then the
limit set consists of the � = 0 closed Reeb orbit and the closed Reeb orbit
with (� = �0; ’ = ’0 + p0=pt). Meanwhile, the coordinate � varies along
the pseudoholomorphic cylinder without critical points between 0 and �0 . If
p0=p < −

p
3=
p

2, then the limit set consists of the � = � closed Reeb orbit and
the (� = �0; ’ = ’0 + p0=pt) closed Reeb orbit while � varies on the cylinder
without critical points between these two extremes.

In the case where jp0j=p <
p

3=
p

2, then each such pair ((p; p0); ’0) determines
two single parameter families of pseudoholomorphic cylinders. On each such
family, the parameter can still be taken to be the maximum value achieved by
the function s. For both of these families, the closed Reeb orbit with (� =
�0; ’ = ’0 + p0=pt) comprises one of the components of the limit set. But,
the families are distinguished by the other component of the limit set, which
is either the closed Reeb orbit where � = 0 or � = � . As before, the function
� varies without critical points with its supremum and in�mum given by the
limit set values.
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Example 6 These examples consider the cases of (4.7) where jp0j0=p >
p

3=
p

2
and where � ranges between the extreme values �0 and �0 . In this regard, note
that cos �0 has the same sign as p0 while cos �0 has the opposite sign. For
these cylinders, both components of the limit set again lie in the convex end
of R � (S1 � S2). Here, the limit set consists of the two closed Reeb orbits
where (� = �0; ’ = ’0 + p0=pt) and (� = �0; ’ = ’0 + p0=pt). Note that
in this example, �u is negative when p0=p >

p
3=
p

2 and �u is positive when
p0=p < −jsqrt3=

p
2. The parameter which distinguishes the elements in any

one family can again be taken to be the value of s at its maximum.

Example 7 These examples also consider the cases of (4.7) where jp0j=p >p
3=
p

2, but here � ranges between �0 and � in the positive p0 case, and be-
tween 0 and �0 in the negative p0 case. These examples are embedded cylinders
with one component of the limit set in the convex end of R � (S1 � S2) and
the other in the concave end. In this regard, the orbit in the convex end is the
closed Reeb orbit with (� = �0; ’ = ’ + p0=pt). Meanwhile, the component
of the limit set in the concave end is, depending on the sign of p0 , either the
� = � or � = 0 closed Reeb orbit.

In any event, for �xed (p; p0) and ’0 , there is, once again, a 1{parameter family
of such examples. However, in this case, the function s restricts to the cylinder
with neither maxima nor minima, and so the value of s at some speci�ed �
value can be taken as the parameter.

(b) The Index of the Operator D

The purpose of this subsection is to describe certain aspects of the kernel,
cokernel and index for the operator D of Propositions 3.2 and 3.6 for an HWZ
subvariety in X = R� (S1 � S2).

The next proposition summarizes the index story by restating Proposition 3.6 in
this special case. With regard to the statement of the subsequent proposition,
remember that �(C0) denotes the Euler characteristic of the smooth model
curve, C0 , for a given pseudoholomorphic subvariety C . Also, note that the
integer hc1; [C]i is to be de�ned as described in Section 3a.

Proposition 4.1 Let C � X be an irreducible, HWZ pseudoholomorphic
subvariety, and use C to de�ne the operator D as described in Section 3b.
Then,

Index(D) = −�(C0)− 2hc1; [C]i+ @+ @+ + @− ; (4.14)

where @, @+ and @− are de�ned as follows:
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� @ denotes the number of ends of C which lie in the convex end of X and
which approach an element of C s limit set with �0 6= f0; �g.

� @+ is the sum of contributions of the form (1−2m0(E)) from each end of
C0 which lies in the concave end of X and for which the corresponding
element in C s limit set has �0 2 f0; �g. Here, m0(E) is the positive
integer which is de�ned as follows: Let m(E) denote the absolute value
of the pairing between a generator of H1(S1�S2;Z) and any su�ciently
large, but constant s circle in E . Then, m0(E) is the least integer which
is greater than m(E)

p
3=
p

2.

� @− is the sum of contributions of the form 2m0(E)− 1 from each end of
C0 for which the corresponding element in C s limit set has �0 2 f0; �g
and lies in the convex end of X . Here, m0(e) is de�ned as above.

It is important to note that (4.14) places serious constraints on the subvarieties
with a given index for the operator D . The following proposition lists the
constraints on the subvarieties with index(D) � @+ 1.

Proposition 4.2 Let C � X be an irreducible, HWZ subvariety. Then the
following is true:

� Index(D) � @.

� If index(D) = @, then @ = 0, 1, or 2.

(a) If @ = 0, then C is a �0 2 f0; �g case from Example 1.

(b) If @ = 1, then C is a �0 =2 f0; �g case from Example 1.

(c) If @ = 2, then C comes either from Example 3 or 6.

� If index(D) = @+ 1, then @ = 1, 2 or 3.

(a) C is the plane from Example 2, so @ = 1.

(b) C is a cylinder from Example 5 where one closed Reeb orbit in the
limit set is characterized by a pair (p; p0) where jp0j is the greatest
integer that is less than (

p
3=
p

2)jpj. The other closed Reeb orbit has
�0 = 0 if p0 < 0 and �0 = � if p0 > 0. Here, @ = 1.

(c) C is a cylinder from Example 7 where one closed Reeb orbit in the
limit set is characterized by a pair (p; p0) where jp0j is the least integer
that is greater than (

p
3=
p

2)jpj. Here also, @ = 1.

(d) C is an immersed, thrice punctured sphere with @ = 2, or 3. Moreover,
C has no intersections with the � 2 f0; �g locus and none of its limit
set closed Reeb orbits have �0 2 f0; �g.

� All other cases have index(D) � @+ 2.
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The question of existence and the classi�cation of the thrice punctured spheres
from Part d of the propositions third point is deferred to Sections 5 and 6.
Sections 5 and 6 also provide a formula for the number of double points for
these immersed spheres. Note that Theorem A.1 in the Introduction follows
from Propositions 3.2 and 4.2.

The following proposition elaborates on the inequality in the �nal point of
Proposition 4.2.

Proposition 4.3 Let C � X be an irreducible, HWZ subvariety. Then

Index(D) � 2(−1 + g +Q+ @+ @cc0 + @cv0 ) + @c

where

� g is the genus of C0 .

� Q is the number, counted with multiplicity, of intersections of C with
the � 2 f0; �g locus.

� @cc0 is the number of concave side ends of C where the s!1 limit of �
is either 0 or � .

� @cv0 is the number of convex side ends of C where the s!1 limit of A�
is either 0 or � .

� @c is the number of concave side ends of C where the s!1 limit of �
is not 0 nor � .

With regard to the organization of the remainder of this section, the next
subsection, 4c, contains the �rst of three parts to the proof of Proposition
4.2. Subsection 4d constitutes a digression that proves Proposition 4.3. With
aspects of the latter proof then available, Subsection 4e resumes the proof of
Proposition 4.2 and contains the latters second part. The �nal part of the
proof of Proposition 4.2 is in Subsection 4f. There is an extra subsection that
considers the cokernel dimension of the operator D when the relevant subvariety
is any from an example in Section 4a or any thrice punctured sphere from Part
d of the third point of Proposition 4.2. In particular, Proposition 4.8 in this
subsection asserts that this cokernel is trivial in all these cases.

(c) Proof of Proposition 4.2, Part 1

Consider in this part of the proof solely the case where no closed Reeb orbit
in C s limit has �0 =2 f0; �g. The �rst point to make is that the preceding
assumption implies that

hc1; [C]i � 0 : (4.15)
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Indeed, hc1; [C]i computes a sum of non-zero integer terms, where each corre-
sponds to a zero along C of the section over X of the line bundle K given by
(dt+ ig−1df) ^ (sin2 �d’+ ig−1dh). Since neither dt nor df vanish on X , this
section vanishes only where sin2 �d’ and dh vanish, which is along the pair of
cylinders where � 2 f0; �g. Thus, hc1; [C]i counts, with the appropriate integer
weight, the intersections of C with these half cylinders. It is left to the reader
to verify that the integer weight here is negative in all cases.

Now, under the given assumptions,@+ = 0, @− = 0 and @ � 1. Moreover,
as C0 is connected, �(C0) � 1 so (4.15) implies that Index(D) � @ − 1 with
equality if and only if C0 is a plane, (and thus @ = 1) and hc1; [C]i = 0. To rule
out this possibility, remember that a plane has one end, and so there is just one
closed Reeb orbit in the limit set. The latter either has cos2�0 = 1=3 or not.
If not, then, as will be argued momentarily, the zeros of the 1{form dt count
with appropriate weights to give �(C0), and all of these weights are negative.
In particular, this means that �(C0) � 0 which rules out the cos2 �0 6= 1=3
possibility.

The claim that the zeros of dt count with negative weights to compute �(C0)
is valid for any model curve C0 for an irreducible, HWZ subvariety with no
cos2 �0 = 1=3 closed Reeb orbits in its limit set. Here is a digression to explain
why: First, because no limit set closed Reeb orbit has cos2 �0 = 1=3, the
gradient on C0 of the pull-back of the function f is not tangent to any constant,
but su�ciently large jsj circle in C0 . This implies that the zeros of df count,
with the usual weights, �(C0). Here, one should be careful to count degenerate
zeros appropriately. However, the zeros of df are the same as those of dt and
all are isolated and all count with negative weight. To see that such is the case,
introduce the real and imaginary parts, (x1; x2), of a complex parameter on a
plane in C0 . Then, by virtue of (1.5), the functions (t; f) obey a version of the
Cauchy-Riemann equations,

� gt1 = f2 ,

� gt2 = −f1 . (4.16)

This last equation implies via fairly standard elliptic equation techniques that
dt and df have the same zeros, that t and f are real analytic functions on C0 ,
that their zeros are isolated and that all count with negative weights to give
�(C0).

By the way, note that the pair (’; h) obey an analogous equation:

� g sin2 �’1 = h2 ,
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� g sin2 �’2 = −h1 . (4.17)

In particular, (4.17) implies that the zeros of d’ or dh count with negative
weights to give �(C0) when C0 is the model curve for an irreducible, HWZ
subvariety which lacks both intersections with the �0 2 f0; �g cylinders and
�0 2 f0; �=2; �g closed Reeb orbits in its limit set.

With the digression complete, consider now the only remaining possibility in
the case under consideration, which is for the closed Reeb orbit in C ’s limit
set to have cos2 �0 = 1=3. In this case, the 1{form dj pulls back without zeros
on the constant but large jsj circles in C0 . Moreover, as C does not intersect
either the � = 0 or � = � locus, this 1{form pulls back as a smooth 1{form on
C0 . As remarked above, this pull-back also count with negative weights to give
�(C0). Thus, �(C0) � 0 and in no case can C0 be a plane.

Now consider the possibilities when Index(D) = @. Since @� = 0, this can
happen only if �(C0) = 0 and hc1; [C]i = 0. As �(C0) = 0, the surface C0 is a
cylinder and so has two ends. Thus, either @ = 1 or @ = 2.

Meanwhile, C has no intersections with the � = 0 and � = � loci because
hc1; [C]i = 0. As before, this implies that the 1{form dj pulls back to C0 as
a smooth 1{form. Of course, dt always pulls back to C0 as a smooth 1{form.
Since each is closed, the integral of each along the constant s circles in C0

must be independent of s. The latter assertion demands that the closed Reeb
orbits at the ends of C have the same value for the integers p and p0 in (1.8).
In particular, p0t + p’ pulls back to C0 as a bona�de function, moreover, one
which approaches a constant value asymptotically on the ends of C0 .

Now, dt and also d’ are either identically zero on C0 or nowhere zero as �(C0)
would be negative otherwise. The argument is the same as given previously.
Moreover, both cannot vanish identically, so at least one is nowhere zero. Either
being nowhere zero implies that C is immersed.

If dt � 0, then C0 is a cos2�0 = 1=3 case from Example 1 and index(D) =
@ = 1, or elseC is described in Example 3 and index(D) = @ = 2. If dt 6= 0,
then C can be parametrized by a periodic coordinate � 2 R=(2�jpjZ) and a
linear coordinate u as in (2.19). Here, the pair of functions (x; y) obey (2.20).
Note also that x is just the restriction of p0t + p’ to C . In any event, as
argued subsquently to (2.20), the function x in (2.23) must be constant, and
this implies that the asymptotic values of p0t+p’ on the ends of C are identical.
Meanwhile, as is demonstrated momentarily, (2.20) can be employed with the
maximum principle to prove that the function x has neither local maxima nor
local minima on C . Thus, p0t + p’ is constant on C . This implies that C is
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either a case from Example 1 with �0 =2 f0; �g, or else a case from Example 6.
The former has index(D) = @ = 1 and the latter has index(D) = @ = 2.

To complete the index(D) = @ story, return now to the postponed part of
discussion of local maxima and minima for the function x in (2.19). For this
purpose, note that (2.20) implies that x obeys the second-order di�erential
equation

(g2 sin2 �xu)u + (sin2 �x� )� + 2
p0

p
(sin � cos �)�� = 0: (4.18)

Meanwhile, the identity h=f =
p

6 cos � sin2 �=(1 − 3 cos2 �) can be inverted
where � 6= f0; �g to write q as a function of h=f , and thus the restriction of
� to C can be viewed as a function of h=u. Hence, the � dependence of this
function comes via the dependence of � on h. In particular, one can write
�� = �hh� and then employ the top line in (2.20) to rewrite (4.18) as

(g2 sin2 �xu)u + (sin2 �x� )� − 2
p0

p
(g2 sin3 � cos �)�hxu = 0: (4.19)

The strong form of the maximum principle applies directly to the latter equation
and precludes x from having local maxima and minima.

Finally, this part of Proposition 4.2’s proof ends by considering the possibilities
when index(D) = @+1. Here, (4.14) allows only two possibilities for the pair �
and hc1; [C]i; the �rst has �(C0) = 1 and hc1; [C]i = −1, while the second has
�(C0) = −1 and hc1; [C]i = 0. In the �rst case, C0 is a plane which intersects
the union of the � = 0 and � = � loci exactly once. Moreover, the fact that
C0 is a plane implies that the coordinate t must restrict to C0 as an R{valued
function, and thus t must restrict as an R{valued function to the closed Reeb
orbit which comprises C ’s limit set. The only closed Reeb orbits with this
property have cos2 �0 = 1=3, and thus t is constant. Therefore, t approaches
a constant value on the end of C0 which implies, via the maximum principle,
that t is constant on the whole of C0 . Hence, C is described by Example 2 in
Section 4a.

The other possibility has hc1; [C]i = 0 and �(C0) = −1. Now, by virtue of
the de�nition of the pairing hc1; �i in Section 3a, this �rst condition makes C
disjoint from the � 2 f0; �g locus. Meanwhile, with Euler characteristic 1, C0

is either a once punctured torus with @ = 1 or else a thrice punctured sphere
in which case the possibilities for @ are 1, 2 or 3. The torus case is ruled out by
the following argument: If the one end has p 6= 0, then jf j increases uniformly
with increasing jsj when the latter is su�ciently large. Thus, if p > 0, the
function f would have a global minimum on C and if p < 0, then f would
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have a global maximum. As neither can happen, no such torus exists. In the
case p = 0, then p0 6= 0 and the same argument applies with h substituted for
f .

Consider now the case for punctured spheres. As Proposition 4.7, below, asserts
that the cases that arise in Proposition 4.2 are immersed, all that is left to say
about these �(C0) = −1 and hc1; [C]i = 0 cases is summarized by the following
assertion:

There are no cases with @ = 1: (4.20)

The argument for this claim is a somewhat more sophisticated version of the
preceding argument that ruled out punctured tori. In fact, the argument that
follows proves (4.20) with no preconditions on the number of concave side ends
or the genus. The only precondition is that C has no intersections with the
� = 0 and � = � loci. The claim in (4.20) is an immediate corollary to the
following assertion:

� If C has no intersections with the � = 0 and � = � loci, and C is not
an R{invariant cylinder then the pullback of the function � to C0 has
neither local maxima nor local minima.

� In addition, � ’s restriction to any concave side end takes values at arbi-
trarily large s that are both larger and smaller than its s!1 limit on
the end. (4.21)

To prove the �rst point, use (4.16) and (4.17) to derive a second-order di�er-
ential equation for � to which the maximum principle can be applied. In this
regard, it is important to note that the latter equation has the form

�1�� + �2 � d� = 0; (4.22)

where � is the Laplacian on C0 , and where �1 and �2 are well de�ned provided
that � =2 f0; �g.

To argue for the second point, it proves useful to introduce the function � � h=f
which is de�ned where cos2 � 6= 1=3. In particular, the latter is a monotonic
function of � on each of the three cos2 � 6= 1=3 components of (0; �) and it
obeys a version of (4.22). To discuss ends where the s!1 limit of � satis�es
cos2 � = 1=3, the function �−1 = f=h will be used instead. The latter is a
monotonic function of � on each � 6= �=2 component of (0; �) and also obeys
a version of (4.22).

To proceed, suppose that E is a concave side end of C0 whose corresponding
closed Reeb orbit has angle � = �0 with cos2 �0 6= 1=3. The argument for the
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case where cos2 �0 = 1=3 is left to the reader in as much as it is essentially iden-
tical to the one given below after changing the roles of the pair (f; t) and (h;’).
With the cos2 �0 6= 1=3 assumption understood, note that the second point in
(4.21) follows if the assertion in question holds for the function � instead of � . In
this regard, note that the s!1 limit of � is

p
6 cos �0 sin2 �0(1−3 cos2 �0)−1 .

Use �0 to denote the latter. To continue, remark that it is enough to prove
the following: Given s0 > 0, then �0 is neither the in�num nor supremum of
the values of � on the s � s0 portion of the end E . Since the arguments in
either case are essentially the same, only the argument .for the in�mum will be
given. To start the latter, suppose that �0 were �’s in�mum. The argument
that follows derives a contradiction from this assumption.

To obtain the contradiction, note �rst that for large values of the coordinate s,
the end of C in question can be parameterized as in (2.13) where the functions
(x;w) obey (2.15). Furthermore, jxj and jwj tend to zero as �!1. Also, as
asserted in Lemma 2.5, the derivatives of x and w tend to zero as �!1. Keep
all of this in mind. The focus here is on the function w since up to a positive
multiple, w is �− �0 . Thus, under the given assumption, w � 0 for large s on
E and thus w > 0 at large s as � cannot have a local minimum. However, this
possibility is precluded by (1.23). Indeed, were w positive everywhere, then at
all large values of the prameter � in (2.13), the bottom component of (2.15)
would force the di�erential inequality

w� + x� − 2−1�w � 0 : (4.23)

Here, � > 0 is the constant that appears in (2.16). To see why (4.23) holds,
�rst note that the term R(a; b) as it appears in (2.17) depends on its �rst entry,
a, only through a’s bottom component. Indeed, this follows from the lack of
’ dependence in the complex structure in (1.5). This point understood, then
the R term in (2.15) is bounded by a constant multiple of jwj(jwj+ jw� j+ jx� j)
and then (4.23) follows from Lemma 2.5’s guarantee that the derivatives of x
and w vanish in the limit as �!1.

Now, (4.23) implies that the function, w(�), of � which is obtained by averaging
w over the � =constant circles would, per force, be greater than zero and obey

w� − 2−1�w � 0 (4.24)

at large values of �. Of course, the latter inequality forces the growth of w as
� gets large; and this last conclusion provides the promised contradiction.
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(d) Proof of Proposition 4.3

Given that the Euler characteristic �(C0) is equal to 2 − 2g− (the number of
ends), the asserted inequality follows from the inequality for −2hc1; [C]i+@+ +
@− asserted by the following result.

Lemma 4.4 Let C be an irreducible, HWZ-subvariety. Then

−2hc1; [C]i+ @+ + @− � 2Q+ @cc0 + @cv0 : (4.25)

The remainder of this subsection contains the following proof.

Proof of Lemma 4.4 As the proof of this lemma is long, it is broken into
seven steps.

Step 1 It is the computation of hc1; [C]i that complicates the proof; the com-
plexity of this computation stems from the fact that the de�ning section of the
canonical bundle K near the �0 = f0; �g ends is di�erent from that used near
the other ends. This complication is addressed via a decomposition of hc1; [C]i
as a sum of terms, one of which algebraically counts the zeros on C of the
section (dt+ ig−1df)^ (sin2 �d’+ ig−1dh) of K , while the others, one for each
�0 2 f0; �g end of C , are ‘correction factors’. This decomposition of hc1; [C]i
is provided momentarily. Coming �rst is a lemma with proof which simpli�es
the de�nition of this decomposition.

Lemma 4.5 An irreducible, HWZ-pseudoholomorphic subvariety in R�(S1�
S2 ) that is not a � 2 f0; �g cylinder from Example 1 intersects such a cylinder
a �nite number of times.

Proof of Lemma 4.5 Since the � = 0 and � = � loci are pseudoholomorphic
cylinders, and isolated in the sense of [12], this lemma is a version of Proposition
4.1 in [12]. Even so, a proof is given below since various portions of it are used
subsequently. In any event, the proof that follows is di�erent from that o�ered
in [12]. The proof of this lemma constitues Steps 2 and 3 of the proof of
Lemma 4.4. In this regard, Step 2 establishes that there are at most �nitely
many intersections on the concave side of R� (S1 �S2), while Step 3 does the
same for the convex side.

Step 2 This step rules out the possibility of in�nitely many intersections
between C and the � 2 f0; �g subvarieties where s > 0. To be more precise,
only intersections with the � � 0 cylinder will be discussed here since the
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analogous discussion for the intersections with the � � � cylinder are identical
but for insigni�cant notational changes.

To start the story, pick some large and positive value, s0 , for s with the property
that C is disjoint from both the � � 0 cylinder and the � = �=2 and ’ = 0
cylinder on the slice s = s0 . In this regard, note that either C coincides with one
of these subvarieties or else the intersections with either have no accumulation
points. By assumption, C does not coincide with the former, and if C coincides
with the latter, then there is nothing further to discuss. Thus, it is safe to
assume that such an s0 exists. With s0 chosen, let � denote the minimum
distance between C ’s intersection with the s = s0 slice and the intersection
with this slice of the � � 0 and (� � �=2; ’(’ = 0) cylinders.

The discussion proceeds from here by assuming that C does, in fact, have an
in�nite number of intersections with the � � 0 cylinder where s > s0 ; some
unacceptable foolishness is then derived from this assumption. In particular, a
contradiction arises by considering C ’s s > s0 intersection number with certain
pseudoholomorphic cylinders from Example 4 with h � � > 0 and ’ � 0.

In this regard, there are some preliminary facts to recall about intersection num-
bers. First, the local intersection numbers between pairs of pseudoholomorphic
subvarieties are strictly positive. Second, the local intersection numbers be-
tween such subvarieties are invariant under su�ciently small perturbations of
the maps of the model, smooth curves. Third, if a subvariety has compact
intersection with the s > s0 portion of R� (S1�S2) and no intersections with
C in the s = s0 slice, then it has a well de�ned s > s0 intersection number
with C , and this intersection number is invariant under compact deformations
of the subvariety which avoid C on the s = s0 slice.

Next, some comments are in order concerning the (h � �;’ � 0) cylinders.
First, each such cylinder intersects the s > s0 portion of R � (S1 � S2) in
a compact set. Second, there exists �0 such that if 0 < � < �0 , then the
intersection of the (h � �;’ � 0) cylinder and the s = s0 slice occurs in a
radius �=10 tubular neighborhood of the union of the cylinders where � � 0
and where (� � �=2; ’ � 0). Thus, as long as 0 < � < �0 , no (h � �;’ � 0
cylinder intersects C where s = s0 . Note that these last two facts imply that
each such (h � �;’ � 0) cylinder has a �nite number of intersections with C
where s > s0 , and thus �nite s > s0 intersection number with C . Moreover,
this intersection number is independent of � as long as � 2 (0; �0). Third,
�x s1 > s0 and a tubular neighborhood of the s0 � s � s1 portion of the
� � 0 cylinder. Then, there exists some �1 such that for 0 < � < �1 , each
(h � �;’ � 0) cylinder intersects this tubular neighborhood as a graph over
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the s0 � s � s1 portion of the � � 0 cylinder, and as � ! 0, these graphs
converge in a smooth manner to the trivial graph, the � � 0 cylinder itself.

Note that this third comment, plus the remarks about positivity of local in-
tersection numbers and their invariance under small perturbations implies the
following: Fix n > 0 and there exists �[n] > 0 such that when � � (0; �[n]),
then the (h � �;’ � 0) cylinder has s > s0 intersection number at least n
with C . Of course, this conclusion is ridiculus, because the �{invariance of
this intersection number (for 0 < � < �0) implies that the (h = �0=2; ’ � 0)
cylinder has in�nite intersection number with C .

Step 3 This step rules out the possibility of C intersecting the � � 0 and � � �
cylinders in�nitely many times where s < 0. Here again, only intersections
with the � � 0 cylinder will be discussed. The strategy here is similar to that
used in Step 2: Assume that C has in�nitely many negative s intersections
with the � � 0 cylinder and �nd a ridiculous conclusion. In this case, the
untenable conclusion is that C has in�nitely many s < 0 intersections with
certain cylinders from Example 7.

To start the story, choose s0 so that C is disjoint from the � � 0 cylinder where
s = s0 . Now, let � denote the minimum distance between C ’s intersection with
the s = s0 copy of S1 � S2 and that of the � � 0 cylinder. Next, choose p0 to
be an integer more negative than −1 and such that with �0 determined by p0

as in Example 7, no � � �0 closed Reeb orbits lie C ’s limit set.

Example 7 describes a 1{parameter family of pseudoholomorphic cylinders all
labeled by �0 and some �xed choice for an angle ’0 2 [0; 2�]. In this regard, �x
’0 = 0 and then the resulting 1{parameter family of cylinders can be labeled
as f�rgr2Z where the distinguishing feature of �r is that its s = r slice has
distance �=2 from the s = r slice of the � � 0 cylinder. What follows are some
relevant facts to note about �r . First, if r < s0 , then there are no s = s0

intersections between �r and C , and there are at most a �nite number of such
intersections where s < s0 . Thus, there is a well de�ned s < s0 intersection
number between each r � s0 version of �r and C . Moreover, this intersection
number is independent of r � s0 . In this regard, note that there are no very
negative s intersections between any �r and C since the limit sets for C and
�r are disjoint.

Here is a second crucial fact: Fix s1 < s0 and a tubular neighborhood of the
portion of the � � 0 cylinder where s 2 [s1; s0]. Then, there exists r1 such
that for r < r1 , each �r intersects this tubular neighborhood as a graph over
the s1 � s � s0 portion of the � � 0 cylinder, and as r ! −1, these graphs
converge in a smooth manner to the trivial graph, the � � 0 cylinder itself.
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Now, as before, this last observation implies that given any positive n, the
s < s0 intersection number between �r and C is at least n if r is su�ciently
small. However, the invariance of this intersection number with variations of r
in (−1; s0] implies the silly conclusion that C has in�nite s < s0 intersection
number with any �r .

Step 4 With the proof of Lemma 4.5 complete, here is the advertised decom-
position of hc1; [C]i:

hc1; [C]i = −�0 + �E2V �(E) (4.26)

where �0 and the sum are de�ned as follows: First, �0 is the intersection number
between C and the � � 0 and � � � cases from Example 1. This is to say that
−�0 counts the zeros of the section (dt + ig−1df) ^ (sin2 �d’ + ig−1dh) of K
with each zero contributing the usual weight to the count. As explained above,
these weights are all negative. By the way, Lemma 4.5 insures that there are at
most a �nite number of terms which enter into the de�nition of �0 . Meanwhile,
the sum in (4.26) is indexed by the elements of the collection, V , of ends of
C which correspond to the �0 2 f0; �g closed Reeb orbits in C ’s limit set.
The weight �(E) of an end E 2 V accounts for the fact that the section in
(dt+ ig−1df)^ (sin2 �d’+ ig−1dh) of K is not the correct section to use on E .
The preferred section over E has the form

(dt+ ids) ^ (dx1 − idx2) +O(j sin �j); (4.27)

where x1 = sin � cos’ and x2 = sin � sin’. Actually, any section of KjE can
be used as long as it is homotopic to that in (4.27) through sections which do
not vanish at large values of jsj on E . This freedom to use homotopic sections
simpli�es the computation for �(E).

Given (4.26) and with �0 understood to be non-positive and zero if and only if
C avoids the � 2 f0; �g loci, then Lemma 4.4 becomes an immediate corollary
to the following lemma.

Lemma 4.6 The number �(E) in (4.26) is constrained to obey

� v(E) � −m0(E) when E is in the concave side of R� (S1 � S2).

� v(E) � m0(e) − 1 when E is in the convex side of R� (S1 � S2).

Here, m0(E) is de�ned as in Proposition 4.1.

The remaining Steps 5{7 of the proof of Lemma 4.4 are devoted to the following
proof.
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Proof of Lemma 4.6 Note that the discussions below consider only the case
where �0 = 0, for the case �0 = � is identical save for some notation and sign
changes.

Step 5 The end E can be parameterized by coordinates (�; �) as in (2.14).
Remember that this parametrization has � 2 R=(2�mZ) and r is either in
(−1; 1] or [−1;1) depending on whether E sits in the convex or concave side
of R� (S1 � S2). Here, m is the same as the number m(E) that is de�ned in
Proposition 4.1. The parametrization then writes

(t = �; f = −e−−
p

6�; a1 = a1(�; �); a2 = a2(�; �)) (4.28)

where (a1; a2) = 6−1=4e−
p

6�=2h1=2(cos’; sin’). In this regard, note that the
pair of functions (x1; x2) which appear in (4.27) is related to (a1; a2) via

(a1; a2) = (x1; x2) +O(x2
1 + x2

2): (4.29)

Step 6 To continue with the de�nition of �(E), it proves useful to select a
function � on R with the following properties:

� �(�) = 1 for � � 1

� �(�) = 0 for � � −1

� �0 � 0. (4.30)

Then, for R 2 R, set �R(�) � �(�−R).

A section of K on E can be written using � which interpolates between the
‘wrong’ section, (dt+ig−1df)^(sin2 �d’+ig−1dh), near � = 0 and the preferred
section in (4.27) where j�j � 1. Doing so �nds that the number �(E) in (4.26)
is equal to the usual algebraic count of the number of the zeros of a certain
complex valued function. In particular, by virtue of (4.29) and the previously
mentioned homotopy flexibility, the following functions su�ce:

� �R(a1 − ia2)− (1− �R), with any R� 1 when E is in the concave side
of R� (S1 � S2).

� (1 − �R)(a1 − ia2)− �R , with any R �� −1 when E is in the convex
side of R� (S1 � S2). (4.31)

A straightforward homotopy argument will verify that the algebraic counting
of the zeros of the functions in (4.31) depends only on the winding number of
the large j�j version of the map from the circle R=(2�mZ) to C − f0g which
sends � to (a1 − ia2)j(�;�) . In particular, if this function winds like e−ik�=m ,
with k 2 Z, then
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� v(E) = −k when E is in the concave side of R� (S1 � S2).

� v(E) = k when E is in the convex side of R� (S1 � S2). (4.32)

The veri�cation of (4.32) is left as an exercise save for the warning to remember
that the orientation of E is de�ned by the restriction of −d�^d�. Note also that
(4.32) constitutes a special case of some more general conclusions in Section 4
of [12].

Step 7 This step reports on the possibilities for the winding numbers of a1−ia2

on the large, constant j�j circles in E . In particular, the possibilities for the
winding number of a1 − ia2 are constrained by the fact that (a1; a2) satisfy
(2.15) and in addition

lim
j�j!1

(a2
1 + a2

2) = 0: (4.33)

Note also that Lemma 4.5 and equation (4.29) insure that (a2
1 + a2

2) is never
zero when j�j is su�ciently large.

To see how these constraints arise, use the positivity at large j�j of a2
1 + a2

2 to
write the complex number a1− ia2 as a1 − ia2 = e−v−i(w+k�=m) ; here v and w
are smooth, real valued functions of (�; �) where j�j is large; while k 2 Z is the
winding number in question. Note that v has no limit as j�j tends to in�nity
as (4.33) implies that

lim
j�j!1

inf
�
v(�; �) =1: (4.34)

In addition, the top component of (2.15) implies that

v� = w� + k=m−
p

3=
p

2 + c; (4.35)

where jcj � e−v at large values of j�j by virtue of (4.33) and Lemma 2.5.

To apply (4.35), �rst introduce v(�) to denote the average of v over a large,
but constant � circle. Likewise, introduce c. Both are smooth function of �
where j�jR is large, and (4.35) asserts that

v� = k=m−
p

3=2 + c: (4.36)

In order to use (4.36) to obtain the concave side constraints in Lemma 4.6, �rst
pick � > 0 and then some large �0 so that both v and c are de�ned where
� � �0 and so that jcj � � for such �. Then, take R � 1 and integrate both
sides of (4.36) from �0 to �0 +R. The result provides the inequality

v(�0 +R)− v(�0) � (k=m−
p

3=
p

2 + �)R: (4.37)

Now, as k/m is rational,
p

3=
p

2 is irrational, m is �xed by the end E and �
can be made as small as desired by taking �0 large, the inequality in (4.37)
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is compatible with condition in (4.34) only when k >
p

3m=
p

2. As m0(E)
is de�ned to be the smallest integer that obeys this inequality, it follows that
k > m0(E) which, together with the �rst line in (4.32), gives the �rst assertion
of Lemma 4.6.

To consider the convex side constraints in Lemma 4.6, pick � > 0 but small as
before, and then some very negative �0 so that now both v and c are de�ned
where � � �0 and so that jcj � � for such �. Then, take R � 1 and integrate
both sides of (4.36) from �0 −R to �0 . The result provides the inequality

v(�0)− v(�0 −R) � (k=m−
p

3=
p

2− �)R: (4.38)

Arguing as before �nds (4.38) compatible with (4.34) only when k <
p

3m=
p

2.
Thus, k is at most one less than m0(E) which, together with the second line in
(4.32), implies the second assertion of Lemma 4.6.

(e) Proof of Proposition 4.2, Part 2

This part of the proof of Proposition 4.2 considers the cases where there is
a closed Reeb orbit in C ’s limit set which has �0 2 f0; �g. In this regard,
note �rst that such a subvariety has �(C0) � 0 since the pullback of dt to
C0 is not exact on an end which approaches a �0 2 f0; �g orbit. The same
argument implies that C must have one or more limit set closed Reeb orbits
with cos2 �0 6= 1=3.

The next restriction is simply that if @ in (4.14) is zero, then C is a cylinder
which is described by (4.2). To show that such is the case, note �rst that if
all elements of C ’s limit set have �0 2 f0; �g, then f < 0 on the ends of C
and the maximum principle requires the f < 0 condition to hold on the whole
of C . In particular, f is not zero on C , and so � � h=f is well de�ned on
C . Moreover, h=f � −

p
3=sqrt2 sin2 � as � nears either 0 or � , so � tends to

zero on all ends of C . Meanwhile, the maximum principle applies to (4.21) and
forbids non-zero local maxima or minima. Thus � � 0 and so h � 0 and C
is described by (4.2). Now consider that Lemma 4.4 and the observation that
�(C0) � 0 imply the following:

An irreducible, HWZ subvariety with a �0 � f0; �g closed Reeb
orbit in its limit set has index (D) > @+1 unless it is an immersed
cylinder which avoids both the �0 2 f0; �g loci. (4.39)

With regard to (4.39), here is the explanation for the assertion that C is im-
mersed: In the case at hand, �(C0) must be zero for index(D) to equal @+ 1.
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Thus, C0 is a cylinder and so C has exactly two ends. Moreover, as dt is
homologically nontrivial on the end where � tends to either 0 or � , it must be
so on the other. Therefore, the other end can not have cos2�0 = 1=3, and so dt
pulls back to su�ciently large, but constant jsj circles without zeros. It then
follows from (4.16) that the number of zeros of dt’s pullback to C0 is equal to
−�(C0), and is thus zero. This last point implies that C is immersed.

To summarize the preceding, the cylinder C must have one of its limiting closed
Reeb orbit with �0 =2 f0; �g and cos2�0 6= 1=3. This ‘other’ closed Reeb orbit is
therefore characterized in part by the condition that ’− p0

p t is constant, where
p’ and p are relatively prime integers and p 6= 0. This last point is important
because if ’− p0

p t is constant on C itself, then C comes from Example 7 when
the �0 2 f0; �g closed Reeb orbit corresponds to end of C from the concave
side of R� (S1�S2); otherwise C comes from Example 5. In this regard, only
the cases which are described in Proposition 4.2 have index(D) = @+1 = 2; all
of the others have index(D) > 2. This last assertion follows from Propositions
4.1 and (4.32).

Thus, a demonstration that ’ − p0

p t is constant on C completes the proof of
Proposition 4.2 but for the immersion remark in Part d of the third point. The
proof of the latter is deferred to the next subsection while the remainder of this
subsection demonstrates that ’− p0

p t is indeed constant on C .

The constancy of ’− p0

p t is considered below only for the case where C has a
�0 = 0 closed Reeb orbit. As before, the considerations for the �0 = � case are
identical in all essential aspects.

The demonstration starts with the annunciation of a maximum principle:

The restriction to C of the multivalued function ’− p0

p t has neither
local maxima nor minima. (4.40)

To prove this claim, note �rst that dt pulls back to C without zeros. Indeed,
this follows from a combination of three facts: First, C is a cylinder so has
zero Euler characteristic. Second, dt pulls back without zeros to all su�ciently
large and constant j�j circles so its zeros with the appropriate integer weight
count �(C). Finally, all such weights are negative by virtue of (4.16). To
complete the proof of (4.40), note that as dt pulls back without zeros to C ,
so df does too and this allows C to be parameterized as in (2.19) in terms
of functions (x; y). In this regard, the constant ’0 together with p0 and p
label the �0 =2 f0; �g closed Reeb orbit in C ’s limit set. In particular, up to
a constant, ’ − p0

p t is the function x. The latter, with y , satis�es (2.20) and
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(2.20) implies the second-order di�erential equation for x in (4.18) to which the
maximum principle applies.

Now, the function x tends to zero on the end of C that corresponds to the
�0 =2 f0; �g closed Reeb orbit, so if x tends to zero on the other end of C
as well, then (4.40) establishes that the combination ’ − p0

p t is constant on
C . Thus, the demonstration now focuses on the behavior of x on the end of
C which is near the � = 0 cylinder. In this regard, remember that this end
of C is characterized in part by the pair of integers (k;m), where m is the
absolute value of the degree of the fundamental class of a su�ciently large,
but constant j�j circle in H1(S1 � S2;Z) and k is the winding number de�ned
so at all su�ciently large and constant j�|, the C{valued function a1 − ia2

is homotopic to e−ik�=m as a map from R=(2�mR) to C − f0g. Here, C is
parametrized as in (4.28).

The integers (k;m) can be identi�ed as follow: The fact that C is a cylinder
and dt is closed implies that m = jpj; and the fact that C has no intersections
with the � 2 f0; �g cylinders and d’ is closed implies that k = sign(p)p0 .

Next, write a1 − ia2 = e−v−i(w+k�=m) so that v and w are smooth, real val-
ued functions of (�; �) where j�j is large. Note that w = x + ’0 . Also,
v satis�es (4.34). Now introduce a new function, z(�; �), by writing v =
(k=m −

p
3=
p

2)� + z(�; �) and note that (2.15) implies the Cauchy-Riemann
like equations

� z� = w� + c,

� w� = −z� + c0 . (4.41)

Here, c appears already in (4.35) while c0 is a smooth function which satis�es
similar bounds as c. In particular, by virtue of (2.17), Lemma 2.5 and Propo-
sition 2.3’s insurance for the exponential decay at large j�j of (a2

1 + a2
2), these

functions at su�ciently large j�j obey

jcj+ jc0j � e−�j�j; (4.42)

with � > 0 some � independent constant.

As is demonstrated below, it is a moment’s investment to establish from (4.34),
(4.41) and (4.42) that w (and also v) have constant limits as j�j goes to in-
�nity. Given that such is the case, it follows from the fact that x in (2.23) is
constant that the limit of w is ’0 . As w = x+’0 , this means that x vanishes
asymptotically on the end of C near the � = 0 cylinder, as required.

The argument that (z;w) has a constant limit as j�j goes to in�nity is given
here for the concave side case only, as the other case is settled with the identical
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argument up to a sign change or two. To proceed in this case, �rst note that
the average values on the constant r circles of z and w have limits as � ! 1
as can be seen by integrating both sides of (4.41) over the constant � circles.
Thus, the case is settled with a proof that the remaining parts of x and w
decay to zero at large �. For this purpose, introduce the � 0 = � = 0 version of
the operator L0 in (2.16) and let f+ and f− denote the functions of � (for �
large) whose values are the respective L2 norm of the L2 orthogonal projection
of the column vector with top component z and bottow component w onto the
span of the eigenvectors of L0 with positive (+) and negative (−) eigenvalues.
Then (4.41) and (4.42) imply that

f−� � f−=N − e−�� and f+
� � −f+=N + e−��: (4.43)

Integration of the left most equation in (4.43) �nds the dichotomy: Either
f−(�) � �−e�=N with �− > 0 or else f−(�) � �−e−�� . Meanwhile, integration
of the right most equation in (4.43) �nds that f+ has no choice but to decay
exponentially fast as � tends to in�nity. However, exponential growth of f−

is forbidden by (4.34) as the part of (v;w) that contributes to f− integrates
to zero around any constant � circle and thus exponential growth of f− forces
exponentially large values on −v at places on each large r circle.

(f) Proof of Proposition 4.2, Part 3

The proof of Proposition 4.2 is completed here with a proof of the following
formal restatement of a portion of Part d of Proposition 4.2’s third point:

Proposition 4.7 An HWZ pseudoholomorphic subvariety C whose model
curve, C0 is a thrice-punctured sphere with index(D) = @ + 1 is the image of
C0 via an immersion.

Proof of Proposition 4.7 To begin, consider the zeros of the pullback to
C0 of �tdt− �’d’ in the case where �t and �’ are constant real numbers. Of
course, this pullback has a zero at any local singular point of the tautological
map to X since all pullbacks vanish at such points. In any event, each zero
of the pullback of �tdt− �’d’ counts with a negative weight when used in an
‘Euler class’ count. A proof of this last assertion uses (4.16) and (4.17) to derive
a second order di�erential equation for the pullback to C0 of �tt−�’’ to which
the maximum principle applies and rules out local extrema. By the way, an
argument near points where dt 6= 0 can also be made directly from (4.18) since
the corresponding x in the case of (4.18) where p0=p = �t=�’ di�ers locally by
an additive constant from a non-zero multiple of �tt− �’’.
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Not all values of �t and �’ provide a form whose zero count produces �(C0),
hence the quotes in the preceding paragraph around the words ‘Euler class.’
Indeed, the equality with �(C0) of the algebraic counting of the zeros of the
pullback of �tdt−�’d’ can be guaranteed only when �t=�’ 6= p0=p for all pairs
(p; p0) which come via (1.8) from the closed Reeb orbits in C ’s limit set. To
explain, this constraint on �t=�’ arises precisely because the form p0=pdt− d’
pulls back as zero on the closed Reeb orbit which supplied the pair (p; p0). In
particular, the condition �t=�’ 6= p0=p for all such pairs guarantees that the
pullback of �tdt−�’d’ to all su�ciently large, constant jsj circles in C0 has no
zeros. When such is the case, a standard argument proves that a multiplicity
weighted count of the zeros of �tdt− �’d’ yields �(C0).

Having digested the preceding, �x � 6= 0 but small and take (p0=p + �)dt − d’
where the pair (p; p0) comes from one of the closed Reeb orbits in C ’s limit
set where cos2�0 6= 1=3. The pullback of this form has norm O(�) on an end
of C which approaches a closed Reeb orbit that supplies the pair (p; p0), and
it is relatively large, O(1), on other ends of C . In any event, the argument
from the preceding paragraph applies here and explains why the pullback of
(p0=p+�)dt−d’ to C0 has exactly one zero provided that � is small in absolute
value but not zero. Thus, if the tautological map from C0 to X has a singular
point, then the pullback of (p0=p + �)dt − d’ vanishes only at this point. In
particular, this pullback cannot have a zero on any end of C . However, just
such a zero is exhibited below, and so the tautological map from C0 to X lacks
local singular points.

To exhibit the asserted zero, focus on an end E � C which approaches a
closed Reeb orbit that supplies (p; p0), and parameterize said end by coordinates
(�; u) as in (2.19) and (2.20). Thus, � 2 R=(2�mjpj) and either juj 2 [u0;1)
or juj 2 (0; u0] depending on whether E is on the convex or concave side of
R� (S1 � S2). In terms of this parameterization, (p0=p+ �)dt− d’ pulls back
as

(�− x� )d� − xudu; (4.44)

and thus it vanishes on E only at points where xu = 0 and where x� = �.

The constraint xu = 0 is satis�ed at two or more points on every constant u
circle since the �rst line in (2.20) identi�es these points with the critical points
of y ’s pullback to such a circle. Meanwhile, jx� j limits to zero as jsj ! 1 on E .
Therefore, as � can be as small as desired and chosen either positive or negative
as desired, the vanishing of � + x� occurs on the xu = 0 locus for arbitrarily
small but non-zero choices of �. (Keep in mind here that the simultaneous
zeros of x� and xu are isolated, otherwise x would be constant and C0 would
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be a cylinder from one of the examples in Section 4a.) The preceding argument
proves that there is exactly one solution to (4.44).

(g) The cokernel of D

Future constructions with Proposition 4.2’s subvarieties may simplify with the
knowledge that the corresponding operator D has, in all cases, trivial cokernel.
A formal statement of this assertion appears below, and its proof occupies the
remainder of this subsection.

Proposition 4.8 The cokernel of D is trivial if C is an irreducible, pseudo-
holomorphic HWZ subvariety with index(D) � @+ 1.

The remainder of this subsection is occupied with the following proof.

Proof of Proposition 4.8 All cases save the thrice-punctured spheres men-
tioned in Part d of the third point follow directly from

Lemma 4.9 Let C be an irreducible, HWZ subvariety that is invariant under
some 1{parameter subgroup of the group T . Then, the corresponding operator
D has trivial cokernel.

Proof of Lemma 4.9 If C is �xed by a circle subgroup in T , then the
corresponding operator D is equivariant and its analysis can be simpli�ed with
the help of a separation of variables strategy. This is to say that D preserves the
character eigenspaces of the circle’s action on the domain and range, and the
restriction of D to such an eigenspace reduces the partial di�erential equation
D�� = 0 to a �rst-order ODE. This last reduction, plus some timely applications
of the maximum principle prove the asserted triviality of D ’s cokernel in each
of the cases in Section 4a. The details here are straightforward and left to the
reader.

With this last lemma in hand, the only remaining cases for Proposition 4.8 are
the thrice-punctured spheres from Part d of the third point in Proposition 4.2.
In this regard, remember that these spheres are immersed; and remember that
an immersed HWZ subvariety has a well-de�ned normal bundle and that the
operator D is a di�erential operator, as in (3.5), on the space of sections of said
normal bundle.

The preceding understood, the argument for a thrice-punctured sphere case
given below is a generalization of the argument introduced by Gromov [6] when
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considering pseudoholomorphic planes and spheres, and it also has antecedents
in some of HWZ’s work. The argument begins with the observation that for such
C , there exist vectors � 2 ker(D) whose restriction to each end of C0 does not
have limit zero as jsj ! 1. Indeed, to �nd such an element, note that C is not
preserved by any 1{parameter subgroup of T , and thus the in�nitesimal version
of the T action through its generators produces a two-dimensional subspace,
V , in the kernel of D . Moreover, as only the closed Reeb orbits with �0 2 f0; �g
are completely T invariant, and as no such orbit appear in C ’s limit set, so the
generic element in V has the desired property.

In fact, V has the following ‘universal limit’ property: Given � 2 kernel(D)
and an end E � C0 , there exists a unique element v 2 V such that � − v has
limit zero as jsj ! 1 on E . Indeed, this follows because each closed Reeb orbit
with �0 =2 f0; �g has precisely a one-dimensional family of deformations and
the latter is the orbit of a 1{parameter subgroup of T .

The next observation is that a vector � 2 kernel(D) with non-zero limit on
all three ends of C0 as jsj ! 1 must have exactly one zero on C0 , and a
non-degenerate one at that. Indeed, such a vector � is, a priori, a section of
the normal bundle, N , of C . Moreover, as � can be approximated at large
jsj on each end of C by a vector from V , so at large jsj, � is both non-zero
and homotopic through non-zero vectors to the section from Part 2 of Section
3a which is used to de�ne the expression he; [C]i in Proposition 3.1. Thus,
a count of the zero’s of � with the appropriate multiplicities computes the
expression he; [C]i − 2mC which appears in Proposition 3.1. Moreover, each
such zero counts with positive weight, its order of vanishing, as a consequence
of its annihilation by D in (3.5). Given all of the above and the fact that
�(C0) = −1, the formula in Proposition 3.1 can hold if and only if � has
precisely one zero, and this zero has multiplicity one.

With the preceding understood, suppose now that the dimension of the cokernel
of D is positive. This implies that the dimension of the kernel of D is at least
@ + 2, and, as is shown next, such a condition leads to the absurd conclusion
that this kernel has a vector � with non-zero jsj ! 1 limit on each end of C0

and with at least two zeros. To view this vector in the @ = 3 case, start with the
observation that D ’s kernel has at least �ve linearly independent vectors when
its cokernel is nontrivial. Choose any � as in the preceding paragraph and let
z 2 C0 denote its one zero. As dim(kernel(D)) � 5, there is a two-dimensional
subspace in kernel(D)=(R�) of vectors which vanish at z . Let W � kernel(D)
project isomorphically onto such a subspace. As W is two-dimensional, there
is, given any z0 6= z , a vector �z0 2 W such that � + �z0 vanishes at both z
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and z0 . So, to avoid the desired contradiction, each such �+�z0 must have zero
jsj ! 1 limit on some end of C0 .

To see that such behavior is absurd, note that a non-vanishing limit is an open
condition on the kernel of D and so there must be an end of C0 with the
property that each such � + �z0 has zero jsj ! 1 limit on this end. This last
conclusion cannot occur unless W has a basis, f�1; �2g, such that � can be
written as �1 + ��2 where �1 − � and �2 have zero jsj ! 1 limit on this end.
Here, � is a smooth, real-valued function on C0 . Moreover, as the operator D
annihilates � , �1 and �2 , the function � must obey the equation � = 0 on C0 .
However, the only real valued functions with this property are the constants,
and these are ruled out since � =2W .

Consider next the case where @ = 2. In this case, the non-triviality of the
cokernel of D implies that the kernel of D has dimension 4 and so now the
analogous vector space W may only be one-dimensional. In any event, choose
� as before, to have non-vanishing jsj ! 1 limit on each end of C0 , and let
�0 be a non-trivial section of W . Let E � C0 denote the concave side end and
the following is true:

There exists a set where all points are accumulation points, s is
unbounded, and � is proportional to �0 . (4.45)

Accept (4.45) and the @ = 2 case follows unless �0 is a constant multiple of �
along this set. Of course the latter would imply that � 2W since a non-trivial
element in the kernel of D has isolated zeros. (In fact, the set in question can
be shown to be a piecewise smooth curve.)

The proof of (4.45) begins with the observation that the operator D at large
s on C0 can be viewed as an operator on C{valued functions of coordinates �
and s with � periodic which has the form in (3.9) with � = s and with A0 the
identity matrix. By viewing D in this way, both � and �0 become C{valued
functions. In this regard, � at large s has the form

� = r0e0 + �; (4.46)

where r0 is a constant, non-zero real number and j�j � e−�s at large s with �
a positive constant.

Meanwhile, �0 can be written as

�0 = r00� + �; (4.47)

where r00 is a constant real number and where j�j � e−�
0s at large values

of s with d0 > 0 being constant. By assumption, � is not identically zero.
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Now, � can vanish only on a �nite or countable set where s � 0 since it can
have only a �nite number of zeros on any compact set. Thus, there is some
s0 > 0 and a countable or �nite set U � [s0;1) such that � maps the constant
s 2 [s0;1)−U circles in the (�; s) cylinder to C−f0g. As such, � has a winding
number, the latter de�nes a locally constant function on [s0;1) − U and the
only way (4.45) can fail is if this winding number is zero on all components
of [s0;1) − U where s is su�ciently large. Indeed, if � has non-zero winding
number on a su�ciently large, but constant s circle, then it follows from (4.46)
that � and � must be colinear at no fewer than two points on such a circle.
This last fact implies (4.45).

Thus, to prove (4.45), it is enough to prove that � has non-zero winding number
on all su�ciently large and constant s 2 [s0;1) − U circles. In this regard, it
can be proved that U is infact �nite since � cannot have an in�nite number of
zeros without vanishing all together. However, as the proof of this last assertion
is much longer than the proof that an in�nite number of positive s zeros of �
implies (4.45), the proof of the latter claim follows. For this purpose, assume for
the moment that � actually has an in�nite number of s � 0 vanishing points.

To see how this last assumption leads to (4.45), note �rst that there is in this
case at most one connected component of [s0;1)−U where the winding number
is zero. This is because the zeros of � all occur with positive multiplicity and
thus the winding number changes in a monotonic fashion between consecutive
components of [s0;1)− U .

In particular, there exists some s1 � s0 such that the winding number on every
constant s 2 [s1;1)− U circle is non-zero.

Now assume that � has only a �nite set of positive s zeros. In this case, the
winding number of � is de�ned on all su�ciently large and constant s circles.
Then, for the sake of argument, suppose that this winding number is zero.
Under this assumption, view � as a C − f0g{valued function and introduce
real-valued functions v and w , de�ned at large s on the (�; s) cylinder by
writing � = e−v−iw . These functions then obey (4.41) where � � s and where
c and c0 obey (4.42). In addition, the condition that j�j � e−�s at large s forces
the condition

lim
�!1

inf�v(�; �) =1: (4.48)

However, as demonstrated using (4.43), this last condition is incompatible with
(4.41) and (4.42). Thus, � cannot have zero winding number on all su�ciently
large and constant s circles.
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5 The structure of the @ = 2, thrice-punctured
sphere moduli space

The purpose of this section is to give a complete description of the moduli
space of thrice-punctured spheres with two convex side ends that arise in Part
d of the third point in Proposition 4.2. In particular, the arguments given here
establish Theorem A.2. The following proposition provides a restatement of
Theorem A.2:

Proposition 5.1 The components of the moduli space of thrice-punctured,
@ = 2 spheres which arise in Part d of the third point in Proposition 4.2 can
be put in 1−−1 correspondence with the sets of two ordered pairs of integers,
f(p; p0); (q; q0)g, which obey

� � � pq0 − qp0 > 0.

� q0 − p0 > 0 unless both are non-zero and have the same sign.

� If (m;m0) 2 f(p; p0); (q; q0)g and if jm0=mj <
p

3=
p

2, then m > 0. On
the other hand, if m < 0, then jm0=mj >

p
3=
p

2.

Moreover, the component that corresponds to a given set I � f(p; p0); (q; q0)g
is a smooth manifold which is R� T equivariantly di�eomorphic to R� T .

Subsection 5a, below, explains how such sets I of integers are associated to the
moduli space components and derives the constraints on those sets which arise.
The second subsection proves that each set I of four integers can be associated
to at most one moduli space component. A proof is also given for the assertion
that the associated moduli space, for a given I is either empty or di�eomorphic
to R � T . Subsections 5c-g are occupied with the proof of the assertion that
every set of I = f(p; p0); (q; q0)g that satis�es the constraints has an associated
moduli space component.

With the proof of Proposition 5.1 complete, the �nal subsection provides a
formula for the number of double points of Proposition 5.1’s subvarieties in
terms of the corresponding set I . Proposition 5.9 summarizes the latter and its
assertions directly imply the part Theorem A.4 that concerns Theorem A.2’s
subvarieties.
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(a) Constraints on thrice-punctured spheres with one concave side
end

A pseudoholomorphic, thrice-punctured sphere C � R � (S1 � S2) with one
concave side end and no intersections with the � 2 f0; �g locus determines a
set of three pair of integers, f(p; p0); (q; q0); (k; k0)g, in a manner that will now
be described.

To start, remember that the large and constant jsj slices of C consist of a
disjoint union of three embedded circles, with one on the concave side of R �
(S1 � S2) (where s is positive) and two on the convex side. And, as jsj tends
to in�nity, these constant jsj circles converge pointwise as multiple covers of
the closed Reeb orbits which comprise C ’s limit set. In particular,

m’−m0t = constant +O(e−jsj=�) mod (2�) (5.1)

on each such circle; here � > 0 is constant while m and m0 are integers that
are associated to the given end of C . In fact, the limiting closed Reeb orbit
in question is determined in part using the pair of integers in (1.8) provided
by the quotient of (m;m0) by their greatest common divisor. The multiplicity
of covering over the closed Reeb orbit is then equal to this greatest common
divisor of m and m0 . Finally, the signs of m and m0 are �xed by the following
convention: Take the signs of m and m0 (when non-zero) to equal the signs
of the respective restrictions of f and h to the closed Reeb orbit in question.
In this regard, note that m = 0 if and only if f restricts as zero to the closed
Reeb orbit, and likewise m0 = 0 if and only if h restricts as zero to the closed
Reeb orbit. Also, note that (2.7) guarantees the compatibility of this sign
determination with (5.1). The constraint for the third point in Proposition 5.1
arises from this use of integer pairs (m;m0) to parameterize the closed Reeb
orbits in S1 � S2 .

In this way, C determines the set f(p; p0); (q; q0); (k; k0)g of three pair of integers.
The convention here is that the third pair listed, (k; k0), comes from the concave
side end of C . Meanwhile, the order of appearance of the �rst two pair has, as
yet, no intrinsic signi�cance since this order corresponds to an arbitrary labeling
of the convex side ends of C . However, the �rst two pair will be ordered shortly.

With the preceding understood, this subsection �nds necessary conditions for a
set f(p; p0); (q; q0); (k; k0)g to arise from a pseudoholomorphic, thrice-punctured
sphere with one concave side end and no intersections with the � 2 f0; �g locus.

To begin, note that there is an evident �rst constraint:

Constraint 1 No pair in f(p; p0); (q; q0); (k; k0)g can vanish identically.
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There is also a second constraint which comes from (5.1) and the fact that d’
and dt both restrict to C as smooth, closed forms:

Constraint 2 k = p+ q and k0 = p0 + q0 .

(The reader is left with the task of verifying that this constraint is consistent
with the given sign conventions.) Note that the constraints listed in Proposition
5.1 for f(p; p0); (q; q0)g imply the third constraint for (m;m0) = (k; k0). Thus,
no new constraints appear with the association of (k; k0) to an end of an @ = 2,
thrice-punctured sphere.

There are additional constraints. The next one involves the integer

� � pq0 − qp0: (5.2)

and asserts:

Constraint 3 � 6= 0.

Indeed, suppose, to the contrary, that � = 0. Now, both p and q can’t vanish
as then all ends of C would have cos2 �0 = 1=3 closed Reeb orbit limits and
an argument from Section 4 proved this impossible. In addition, the vanishing
of � implies that p0=p = q0=q = (p0 + q0)=(p + q) so none of p, q or p + q can
vanish. Moreover, the equality of these ratios implies that there are at most
two values for the jsj ! 1 limits of � on C . However, as seen in Section 4,
this cannot happen unless C is a cylinder.

By the way, given that � 6= 0 and that � changes sign upon interchanging
(p; p0) with (q; q0), an ordering of these pairs is unambiguously de�ned by re-
quiring � to be positive. This last convention is implicit in all that follows.

Of course, with � > 0 there are obvious constraints on the relative signs
between the four integers p, p0 , q and q0 that arise just from the de�nition of
�. However, a less obvious constraint is:

Constraint 4 q0 − p0 > 0 unless both are non-zero and have the same sign.

The proof of this constraint is quite lengthy, so is broken into nine steps.

Step 1 This �rst step proves the following assertions:

� If p0 + q0 = 0, then p0 < 0.

� If p0 = 0, then q0 > 0.
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� If q0 = 0, then p0 < 0.

To see why the �rst point holds, suppose, to the contrary that p0 > 0. Then, as
� in this case is −p0(p+ q) and is positive, so k = p+ q < 0. This implies that
f < 0 on the concave end of C0 . However, if this is the case, then h cannot
vanish on the concave end of C0 because h is zero and f is negative if and only
if � 2 f0; �g. Thus, because h tends to zero as s ! 1 but is nowhere zero
at large s, there are, given R > 0, compact components of constant h level
sets that lie where s > R. However, this is absurd since (4.17) guarantees that
d’ has non-zero integral over such a level set while the p0 + q0 = 0 condition
guarantees that d’ is exact where s is large on C .

To see why the second point above holds, note that � = pq0 in this case. Thus,
positivity of � requires positivity of q0 or else p would be negative. If p were
negative, then f would be negative on the (p; p0) end of C and as p0 = 0, this
end of C would be asymptotic as jsj ! 1 to a component of the � = f0; �g
locus.

A similar argument establishes that p0 is negative when q0 2 0.

Step 2 This step proves Constraint 4 with the extra assumption that p and q
cannot both be either strictly positive or strictly negative. Indeed, if both are
strictly positive, p0 > 0 and q0 < 0, then � < 0. On the other hand, if both
are strictly negative, then f < 0 on C0 while h changes sign. Thus, the h = 0
locus is non-empty and occurs where f is negative, which is precluded since C
does not intersect the � 2 f0; �g locus.

Step 3 This step proves Constraint 4 with the added assumption that one of
p, q or p+ q is zero. To start, assume that p = 0, p0 > 0 and q0 < 0. Positivity
of � then requires that q < 0 and so f is negative at large s on the (q; q0) end
of C and also at large jsj on the concave (that is, (k; k0)) end of C . In fact,
as is argued momentarily, f is strictly negative on C . Granted this claim, the
assumed violation of Constraint 4 results in the following absurdity: As h is
positive on the (p; p0) end of C0 and negative on the (q; q0) end, so the h = 0
locus is non-empty. But, as f < 0, this means that C intersects the � 2 f0; �g
locus.

To see that f < 0 on C , suppose not. Then f has non-trivial, positive regular
values (by the maximum principle). Moreover, as f is negative on the (q; q0)
and concave ends of C , there exists, given R � 1, such a regular value whose
level set sits entirely where jsj � R in the (p; p0) end of C . Because dt restricts
as a non-zero form on such a level set, by virtue of (4.16), and because dt is
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exact at large s on the (p; p0) end of C when p = 0, so this level set cannot
be compact. In fact, it must be a properly embedded copy of R with each end
leaving via the (p; p0) end of C . But this last conclusion is absurd as dt is
nowhere zero on such a level set yet (5.1) asserts that t tends to a constant as
jsj tends to in�nity on the (p; p0) end of C .

Now assume that Constraint 4 is violated when q = 0. As q0 < 0 and � >
0, this requires p < 0 and the preceding argument applies with insigni�cant
changes to �nd f < 0 on C . Again, as h must change sign on C , such a
conclusion is absurd.

Finally, assume that Constraint 4 is violated when p+ q = 0. Now, the � > 0
condition requires that p and p0 + q0 have the same sign. The argument given
below takes this sign to be positive. But for some straightforward sign changes,
the same argument also handles the case where this sign is negative.

To start, note that when p > 0, then f is positive on the (p; p0) end of C and
negative on the (q; q0) end. Moreover, f has no �nite limits on either end, as it
tends uniformly to 1 because jsj ! 1 on the (p; p0) end and to −1 on the
(q; q0) end. Meanwhile, even as f limits to 0 as s!1 on the concave side end
of C , this function must take negative and positive values at arbitrarily large
values of s. Indeed, were it strictly negative at very large s, then a component
of the level set of some very small, negative regular value of f would be compact
and lie entirely where s is very large. And, as the integral of dt over such a
level set could not be zero (due to (4.16)), the existence of such a level set would
run afoul of (5.1). An analogous argument explains why f cannot be strictly
positive at large s.

With the preceding understood, suppose that −� is a regular value of f with
� positive and very small. For tiny �, a component of this level set will extend
far down the concave side end of C . In particular, as p0 + q0 > 0, when �
is small, the function h will be positive on some of this component. Then,
this component sits entirely where h > 0 in C because � =2 f0; �g on C .
Now, consider increasing � and viewing the behavior of the f = −� level set.
In particular, when � � 1, then this level set necessarily sits entirely in the
(q; q0) end of C where h < 0. Thus, as no component of this level set is null-
homologous, there is some intermediate values of � where a component of the
f = −� level set intersects both the h > 0 region and the h < 0 region. Of
course, such an event is absurd for � would take value 0 or � on C .

Step 4 The subsequent steps prove the remaining cases of Constraint 4 by
establishing the following:
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If none of p; p0; q; q0; p+ q; and p0 + q0 are zero and if the signs of
p0 and q0 are opposite, then p0 < 0: (5.3)

To begin the justi�cation for (5.3), use Step 2 to conclude that if both p and
q are non-zero, then one is positive and the other negative. Thus, f changes
sign on C . Moreover, where s is very negative (thus, on the convex side of
R � (S1 � S2)), the function f tends to in�nity on one end of C and minus
in�nity on the other. In particular, when R � 1, then the f = R locus is an
embedded circle in the convex side end of C that corresponds to the positive
member of the pair (p; q). Meanwhile, the f = −R locus is likewise a circle on
the convex side end of C that corresponds to the negative member of the pair
(p; q). Now, (4.16) implies that f and t have the same critical points, and so
Section 4f proves that there is only one critical point of f on C , and thus only
one critical value. The sign of this critical value depends on the sign of p+ q .
In particular, if p+ q > 0, then this critical value is positive, and if p+ q < 0,
then this critical value must be negative. The maximum principle is involved
here, since each non-critical level set of f is either a single embedded circle
or a pair of embedded circles. Indeed, when p + q > 0, then the f = 0 and
the very negative and constant f loci must be isotopic in C to accommodate
the maximum principle. In this case, the f � 0 portion of C is an in�nite
half cylinder. On the other hand, if p + q < 0, then the f = 0 locus and the
very positive and constant f loci in C must be isotopic and so now the f � 0
portion of C is a half in�nite cylinder. The analogous conclusions hold for the
h = 0 locus with p and q replace by p0 and q0 .

Step 5 With the preceding understood, consider the possible location of the
h = 0 locus in a hypothetical case where (5.3) is violated. When p + q < 0
this locus lies in the half cylinder where f � 0, and this implies that either the
h � 0 locus or the h � 0 locus is a subcylinder of the f � 0 locus. The former
can happen only if p0 + q0 < 0 and p > 0 and the latter only if p0 + q0 > 0 and
p < 0.

If p0 > 0; q0 < 0 and p0 + q < 0; while p0 + q0; p and q are each
non-zero then p0 + q0 and p have opposite signs. (5.4)

Now suppose that p+ q > 0 with p0 still positive and q0 negative. Assume that
neither p nor q is zero so that one is positive and the other negative. If p > 0,
then positivity of � requires that p0 + q0 > 0. On the other hand, if p < 0,
then the positivity of � requires that p0 + q0 < 0. To summarize:
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If p0 > 0; q0 < 0 and p0 + q > 0; while p0 + q0; p and q are each
non-zero then p0 + q0 and p have the same signs. (5.5)

Step 6 Steps 6 and 7 argue that there are no cases of (5.4) with p+ q < 0. To
see why, remark that in this case, both f and h are negative on the concave side
end of C0 . With this understood, let C+ � C0 denote the connected component
of the h=f > 0 locus which contains this concave side end. Moreover, since h=f
has neither local maxima nor minima, C+ must also contain the (q; q0) end of
C0 . On the other hand, as h−1(0) must lie where f > 0, C+ does not intersect
the su�ciently large jsj portion of the (p; p0) side end of C0 . (The boundary
of the closure of C+ is the f = 0 locus.) They are also both negative on the
convex side end corresponding to (q; q0) and both are positive on the (p; p0)
convex side end. However, as h−1(0) occurs where f > 0, it follows that C+

contains both the concave side (q; q0) end and the concave side end of C0 .

Given the preceding, remark that h=f tends to (k0=k) sin2 �0K as s ! 1 on
the concave side end of C0 , while it approaches (q0=q) sin2 �0Q on the (q; q0) side
end. Here, �0K is the value of �0 on the closed Reeb orbit that is determined
by the concave side end and �0Q is the value of �0 that is determined by
the corresponding closed Reeb orbit for the (q; q0) end. With this last point
understood, the next claim is that

(k0=k) sin2 �0K < (q0=q) sin2 �0Q: (5.6)

By way of justi�cation, note �rst that k0=k < q0=q because � = kq0 − k0q and
� > 0. Meanwhile, the assignment of �0 !

p
6 cos(�0)=(1− 3 cos2 �0) de�nes a

smooth function on the (connected) subset of �0 2 (0; �) where cos �0 < −1=
p

3.
As the derivative of this function is negative on this interval, the fact that
k0=k < q0=q implies that �0K > �0Q . Therefore, sin2 �0K < sin2 �0Q and (5.6)
follows.

Step 7 As remarked in the previous section, the restriction to C+ of h=f has
neither local maxima nor minima. It thus follows from (5.6) that the in�mum
of h=f is the limiting value, (k0=k) sin2 �0K , on the concave side end of C0 . To
see that such an event is absurd, introduce coordinates (�; u) on this end as
in (2.19) where � is periodic and u is identi�ed with the pullback of f and so
ranges through (−�; 0) for some � > 0. Then, parameterize this end of C0 as
in (2.19) in terms of functions (x; y) of the variables (�; u). In particular, the
function y must be non-positive if h=f has in�mum (k0=k) sin2 �0K . The latter
constraint is inconsistent with (2.20) for the following reasons: First, it follows
from Proposition 2.3 that jxj, juj−1jyj and jyuj all tend to zero as juj tends to
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zero. This last fact implies that x and w � sin−2 �y obey an equation which
has the schematic form

x� = wu + (�0 + r)u−1w ; (5.7)

where �0 = (2=3)1=2(k0=k) cos �0(1 + (k0=k)2 sin2 �0)−1 and r = r(u;w) is a
smooth function with limu!0 r = 0. (In fact, jrj = O(juj−1jwj).) With regard
to �0 , note that �0 < 0 since its sign is that of k . However, it is crucial to note
that �0 > −1.

With (5.7) in hand, suppose now that w � 0 for all su�ciently small values of
juj. It then follows that from (5.7) that there exists a positive constant �1 < 1
such that for all su�ciently small juj,

x� � wu − �1u
−1w : (5.8)

And, with this last point understood, let !(u) denote the average of w over
the constant u circles. The latter function is negative on circles where w is
not identically zero. Moreover, by virtue of (5.8), this function obeys 0 �
!u − �1u

−1! from which it follows that ! � −cjuj�1 where c > 0. (Since
C0 is not a cylinder, w cannot vanish identically on any open set; thus under
the assumption that w � 0, the function ! cannot vanish identically.) Thus,
as �1 < 1, so j!jjuj−1 � cjuj�1−1 ; and so j!jjuj−1 diverges as juj ! 0. This
last conclusion is absurd because the divergence of this ratio is precluded by
Proposition 2.3.

Step 8 This step eliminates the case of (5.4) where p0 + q0 > 0. To start
the argument, note that in this case, f is negative on the concave side end
of C0 and also negative on the end that corresponds to (p; p0). On the other
hand, f is positive on the end that corresponds to (q; q0). This is the end
where h is negative, but h is positive on the concave side end and the end
that corresponds to (p; p0). As h−1(0) lies where f > 0, there is a component,
C− � C0 , of the locus where h=f < 0 which contains both the concave side
end and the (p; p0) end of C0 . Furthermore, the closure of C− has the f = 0
locus as its boundary, and h=f ! −1 as this locus is approached from C− .
Meanwhile, h=f converges to p0=p sin2 �0P as jsj ! 1 on the (p; p0) end of C0 ,
and it converges to k0=k sin2 �0K as s!1 on the concave side end of C0 .

With the preceding understood, then the argument just completed in Step 6
adapts to this case with essentially no modi�cations given that

k0=k sin2 �0K > p0=p sin2 �0P : (5.9)

To justify this last claim, note �rst that k0=k is less negative than p0=p since
� > 0. Thus, (5.9) follows directly if sin2 �0K < sin2 �0P . To see the latter
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inequality, note �rst that both �0K and �0P lie in the subinterval of (0; �) where
1 > cos � > 1=

p
3. In this interval, the assignment to �0 of

p
6 cos(�0)=(1 −

3 cos2 �0) de�nes a monotonically decreasing function. As the assignment to
such �0 of sin2 �0 de�nes an increasing function of �0 on this same interval, the
desired conclusion follows.

Step 9 This step rules out any examples of (5.5). The �rst case to consider
here has p0+q0 < 0. In this case, p < 0 but both p+q and q are positive. Thus,
f > 0 on both the concave side end and the (q; q0) side end of C0 , but f < 0
on the (p; p0) end. Meanwhile, h > 0 on the (p; p0) end of C0 and h < 0 on the
other two ends. In this case, there is a connected component, C− � C0 of the
h=f < 0 locus which contains both the concave side end and the (q; q0) end of
C0 . The boundary of the closure of C− is the h = 0 locus again, and h=f ! 0
as this locus is approached from the C− side. Then, with little change, the
previous arguments apply to rule this case out given that (5.6) holds.

To see (5.6) in this case, note �rst that k0=k < q0=q since � > 0. In addition,
note that both �0K and �0Q lie in the subinterval of (0; �) where −1=

p
3 <

cos � < 0. On this interval, the expression
p

6 cos(�0)=(1 − 3 cos2 �0) de�nes
a decreasing function of �0 and so �0K > �0Q . Now, k0=k and q0=q are both
negative, so the inequality sin2 �0K < sin2 �0Q does not imply (5.5). However,
as (k0=k) sin2 �0K and (q0=q) sin2 �0Q are the values of

p
6 cos � sin2 �(1− 3 cos2 �)−1 (5.10)

at � = �0K and �0Q , the inequality in (5.6) does follow from the fact that
(5.10) is a decreasing function of � on the interval in question. Indeed, the
�{derivative of (5.10) is

−
p

6 sin �(1 + 3 cos4 �)(1− 3 cos2 �)−2 : (5.11)

Finally, consider the possibility that (5.5) holds with p0 + q0 > 0. Now p > 0
so if q < 0, then f > 0 on the concave side end of C0 and also on the (p; p0)
side end. However, as q < 0, so f < 0 on the (q; q0) side end. Thus, there is
a component, C+ � C0 of the locus where h=f > 0 which contains both the
concave side end and the (p; p0) end of C0 . The closure of C+ has the h = 0
locus for its boundary and h=f tends to zero as this boundary is approached
in C+ . With this point understood, then the previously used argument applies
given that (5.9) holds.

To see (5.9) in this case, �rst note that k0=k > p0=p since � > 0. Now,
as both �0K and �0P lie where 0 < cos � < 1=

p
3, and as the function

�0 !
p

6 cos(�0)=(1 − 3 cos2 �0) is decreasing on this subinterval, it follows
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that �0K < �0P . With this understood, (5.9) follows from the fact that (5.10)
is also decreasing, by virtue of (5.11), on this same interval.

(b) Moduli space components

Fix an ordered set I = f(p; p0); (q; q0)g of integers subject to the constraints
listed in the statement of Proposition 5.1. As noted at the outset of the pre-
ceding subsection, this set labels those components of the moduli space of
pseudoholomorphic, @ = 2, thrice-punctured spheres in R � (S1 � S2) with
ends that are characterized by the set of three integer pairs f(p; p0), (q; q0),
(k = p+ q; k0 = p0 + q0)g. Use HI to denote this subspace of M. The question
arises as to the number of components HI . Here is the answer:

Proposition 5.2 Let I = f(p; p0); (q; q0)g denote a set of pairs of integers that
obeys the constraints listed in the statement of Proposition 5.1. Then, the space
MI of pseudoholomorphic, @ = 2, thrice-punctured spheres from Proposition
4.2 with ends characterized by the set f(p; p0), (q; q0), (p + q; p0 + q0)g has at
most one connected component. Moreover, if non-empty, the latter is a smooth
manifold that is R� T equivariantly di�eomorphic to R� T .

The remainder of this subsection is occupied with the following proof.

Proof of Proposition 5.2 The subsequent discussion for the proof of Propo-
sition 5.2 treats the case where the integer k = p + q is non-zero and positive.
The proof when k < 0 is identical to that for k > 0 except for some judicious
sign changes. Meanwhile, if k = 0, then k0 6= 0 and the discussion below applies
after the roles of the pair (t; f) are interchanged with those of (’; h). Thus,
assume throughout that k > 0. Also, assume until further notice that neither
p nor q is zero.

Each component of MI is a smooth manifold by virtue of Propositions 3.2 and
4.8. Moreover, as dim(M1) = 3, the subgroup R � T of Isom(R � (S1 � S2)
acts transitively on each component of M1 , and so each is R� T equivariantly
di�eomorphic to R�T . In this regard, remember that the T action on S1�S2 is
generated by the vector �elds @t and @’ , while the action of R on R�(S1�S2)
is generated by @s . By the way, the T action on MI must be a free action
since the Riemann sphere has no complex automorphisms that �x three given
points.

In any event, if C 2MI and a component H0 �MI have been speci�ed, there
exists C 0 2 H0 with two special properties:
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� The (t; f) coordinates of the critical point of f ’s restriction to C are the
same as those of the analogous critical point on C 0 .

� The constant term on the right-hand side of the concave side end version
of (5.1) for C is the same as that for C 0 .

With regard to the �rst point here, remember that the restriction of f to any
thrice-punctured sphere from Proposition 4.2 with each of p, q and k non-zero
has precisely one critical point so precisely one critical value. Moreover, this
critical value is non-zero with sign that of k . Indeed, the latter conclusions
follow from the maximum principle since f ’s pullback to C0 obeys (4.16) and
(4.16) implies a second-order equation for f with the schematic form d�df +
v � df = 0. Finally, given that the critical values of f on C and C 0 have the
same sign, then a suitable translation of C 0 along the R factor of R� (S1�S2)
makes them equal. Meanwhile, a suitable rotation of the S1 factor moves C 0

so that f ’s critical point on the resulting subvariety has the same t coordinate
as that of f ’s critical point on C . Such a rotation does not change the value
of f at its critical point.

With regard to the second point above, by virtue of the fact that k 6= 0, there
is an equatorial rotation of the S2 factor moves any C 0 so that the resulting
subvariety obeys the desired condition. Note that such a rotation will not
change the (t; f) coordinates of f ’s critical point.

Now let C0 denote the model thrice-punctured sphere. As noted in the pre-
ceding sections, C0 comes with a pseudoholomorphic immersion, �, into R �
(S1�S2) whose image is C . There is a similar immersion with image C 0 . The
latter is denoted by �00 since a subsequent modi�cation, �0 , is needed for later
arguments. The following lemma describes the salient features of �0 :

Lemma 5.3 There exists an immersion �0 : C0 ! R � (S1 � S2) with image
C 0 such that �

0�(t; f) = ��(t; f).

What follows is a digression for the proof of this lemma.

Proof of Lemma 5.3 Let f0 denote the critical value of f ’s restrictions to
C and to C 0 . Now, let Cf � C 00 denote the portion where ��f 6= f0 . Likewise,
de�ne C 0f � C 00 as the portion where �

0�
0 f 6= f0 . There are three components

of Cf , each is a cylinder and each corresponds to an end of C0 and hence a
pair from f(p; p0); (q; q0); (p + q; p0 + q0)g. As the same assertions hold for C 0f ,
there is a canonical 1{1 correspondence between the components of Cf and
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those of C 0f : Components correspond if they correspond to the same pair from
f(p; p0); (q; q0); (p + q; p0 + q0)g.
Meanwhile, the assignment of ��(t; f) to each component of Cf de�nes a proper
covering map to some subcylinder of the (t; f) coordinate cylinder. The same
is true for the components of C 0f , and corresponding components have the
same image. With a component of C� � Cf �xed, the covering map to the
appropriate (t; f) cylinder is a cyclic covering which is determined by the pair
from f(p; p0); (q; q0); (p + q; p0 + q0)g. Thus, the analogous covering map from
its partner component, C 0� � C 0f , is isomorphic. As a consequence, there exists
a di�eomorphism  0� : C� � C 0� which intertwines the projection maps to the
relevant (t; f) sub-cylinder. Note that this di�eomorphism is determined up to
composition with the group of deck transformations.

This freedom with the group of deck transformations can be used to insure
that the three versions of  � from the components of Cf patch together along
(��f)−1(f0) to de�ne a di�eormorphism,  , from C0 to C0 . To explain, let t0
now denote the value of the t{coordinate of f ’s critical points on C and C 0 .
Consider some (t1; f0) in the (t; f) cylinder that with t1 6= t0 . Take a small
disk about this point that is disjoint from the images of the critical point of ��f
and of �

0�
0 f . This done, then each component of C� can be extended by adding

the �{inverse image disks. Meanwhile, each component of C 0� can similarly be
extended with the addition of the �00{inverse image disks. As these extensions
remain proper covering maps over their images in the (t; f) cylinder, so the
corresponding maps  can be extended as well. This understood, consider a
point z 2 C0 that lies in a component, say C1 , of C� and also in the extension
of another component, C2 . Then  �1 is de�ned near z and so is the extended
 2 . As both compose with �0 to give the same (t; f) values, so  2 di�ers from
 1 on a neighborhood of z by at most a deck transformation of C1 .

Now, local agreement of one  � with the extended version of another implies
global agreement for the three. Indeed, this all follows from the geometry of the
critical locus. In particular, because the critical point of ��f is non-degenerate,
the closures of two components of C� have piece-wise smooth circle boundary,
and that of one component has a �gure eight boundary. Here, the bad point
in the �gure eight is the critical point of ��f . Moreover, the critical point is
the only point where the two circle boundary components intersect. These last
points understood, the deck transformations of the two components of Cf with
circle boundary can be used independently to create a smooth map  that is
de�ned on the whole complement in C0 of the  �f critical point.

Now, some further checking should be done to insure that all is well with this
map  near the critical point of f . The latter task is left to the reader save for
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the following remark: Let g0 denote the value of the function g at the critical
point of f . Then, the behavior of the complex function � � ��(g−1

0 f − it)
near the critical point of f can be analyzed using (4.16). In particular, � =
�0 + az2 +O(jzj3) with respect to a holomorphic coordinate z centered at the
critical point of f . Here, �0 is a constant and a is a non-zero constant. This
local form for � follows from (4.16). See, Appendix A in [22] where a completely
analogous assertion is proved. Also, note that the �rst-order vanishing of d�
follows from the observations in Section 4f that the standard algebraic count of
dt’s zeros is −1, and that all zero’s of dt count with negative weight.

In any event, with  in hand, the lemma’s map  0 is the composition of �0

with  .

With Lemma 5.3 proved, the digression is over. To continue the proof of Propo-
sition 5.2, introduce the 1{form d’ � ��d’ − �0�d’. This is a smooth, closed
1{form on C0 . It is also exact since C 0 and C determine the same set I . Thus,
the di�erence ’ = ��’ − �0�’ can be viewed as a bona�de function on C0 .
Note that in principle, there is a choice involved in so viewing ’, but any two
choices di�er by an integer multiple of 2� . In any event, by virtue of the fact
that C and C 0 have the same constant term on the concave end version of
(5.1), there is a unique choice for, ’ that limits to zero on the concave end of
C0 . This said, then ’ has �nite limits on the two convex ends of C0 by virtue
of (5.1). Thus, ’ is a bounded function on C0 .

Now let h � ��h − �
0�h, which is automatically a smooth function on C0 .

It then follows from (4.16) and (4.17) that the pair (’; h) obeys an elliptic,
�rst-order di�erential equation which has the schematic form:

� g sin2 �’
1

= h2 + �h ,

� g sin2 �’
2

= −h1 + �0h. (5.12)

Here, g and � are identi�ed with their �{pullbacks, while � and �0 are smooth
functions.

Equation (5.12) is employed to justify certain remarks that follow about the
locus, G � C0 , where h = 0. In particular, either h is identically zero, in
which case so is ’ and C 0 = C , or else G has the structure of an ’embedded
graph’ as de�ned in Step 7 of the proof in Section 2 of Proposition 2.2. In
this regard, the vertices of G are the h = 0 critical points of h. As with the
directed graph which appears in Proposition 2.2’s proof, this graph is naturally
oriented. Its orientation is de�ned by the pullback of d’ to each edge; the latter
is non-zero by virtue of (5.12). It is also a fact that G, as with its Section 2
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counterpart, has a non-zero, even number of incident edges impinging on each
vertex; and of these, half are point towards the vertex and half point away. (All
of these last remarks are proved by copying the arguments in Steps 3{5 of Part
b of the Appendix to [22].)

Now, an argument along the lines of that used in Step 8 of Proposition 2.2’s
proof establishes the following: If C 0 6= C and G 6= ;, and if the extreme values
of ’’s restriction to G are not its limiting values on the ends of G then the
aforementioned properties of G cannot hold. Thus, Proposition 5.2 follows via
reductio ad absurdem with an argument that proves when C 0 6= C , then G is
non-empty and neither of ’’s extreme values on G are its limiting values on
the ends of G.

For the purposes of establishing that G 6= ;, consider (5.12) where s � 1,
thus, far down the concave side end of C0 . Now parameterize this portion of
C0 by coordinates (�; u) where � 2 R=(2�jkjZ) and u 2 (0; �) or u 2 (−�; 0)
depending on whether k > 0 or k < 0. Here, � > 0 is very small. The argument
that follows considers �rst the case where k > 0. Thus, with u > 0 understood,
the relevant portion of C is parameterized as in (2.19) in terms of functions
x and y . In particular, the pair (x; y) obey (2.20) and of particular interest
here is the second equation in (2.20). In this regard, view h as a function of
u and y and thus view � as function of u and y . Now, introduce the function
w � y sin−2 � and then the second equation in (2.20) implies an equation for
x and w that has the schematic form as in (5.7). Note that in this version of
(5.7), the constant �0 > 0 since k > 0 and �0 has the same sign as k .

Meanwhile, the analogous part of C 0 also has a parameterization as in (2.19) in
terms of functions (x0; y0). Then, x0 and the primed analog, w0 , of w obey the
analog of (5.7). With this understood, subtract the primed version of (5.7) from
the original to obtain the following equation for ’ = x− x0 and w = w − w0 :

’
�

= wu + (�0 + r)u−1w ; (5.13)

where r is a smooth function with limu!0 jrj = 0

An equation such as (5.13) for w is useful for two reasons. First, when u > 0 but
very small, then, as is demonstrated below, w = 0 if and only if h = 0. Given
that such is the case, it is su�cient for the purposes of proving Proposition 5.1
to establish the existence of a zero of w along each su�ciently constant but
small u circle. In this regard, remember that limu!0 ’ = 0 on the concave side
end of C0 . Second, (5.13) does indeed imply the existence of zeros of w . To
see (5.13) lead to this last conclusion, suppose to the contrary that w > 0 for
all su�ciently small u. It then follows from (5.13) that the average, w � w(u)

Geometry & Topology, Volume 6 (2002)



758 Cli�ord Henry Taubes

of w around all constant but small and positive u circles obeys the di�erential
inequality

wu + 2−1�0u
−1w < 0 : (5.14)

The latter implies that w > cu−�0=2 as u ! 0 with c a positive constant.
This conclusion is ludicrous as both y and y0 tend to zero as u tends to zero.
Likewise, if w < 0 for all su�ciently small u, then (5.14) implies that w <
−cu−�0=2 as u ! 0 with c a positive constant, which is an equally ludicrous
conclusion. Thus, (5.14) is consistent only with the conclusion that w = 0 at
some point on each constant, but small u circle.

With the preceding understood, return to the claim that w = 0 if and only if
h = 0 when u is very small. In this regard, note �rst that h = 0 requires y = y0

and � = �0 , and so w = 0. To prove the converse, note that the dependence
on the coordinates f and h of � is such that �(f; h = k0=k sin2 �0f + �) =
�0 + γ(�=f) when j�j=f is small. Moreover, γ is O(�=f). Thus, as both y=u
and y0=u tend to zero as u ! 0 (as attested by Proposition 2.3), so both
w = y sin−2 �0(1 +O(y=u)) and w0 = y0 sin−2 �0(1 +O(y0=u)) when u is small.
Therefore, when u is small, w = w0 forces y = y0 and so h = h0 .

With the k > 0 argument understood, it can be said that the argument for the
k < 0 case is similar although not identical. In particular, the only substantive
di�erence arises in the argument for the vanishing of w because the constant
�0 which appears in (5.7) is negative when k < 0. To argue that w = 0 when
k < 0, remark �rst that though negative, �0 > −1. Thus, if w > 0 where
juj > 0 is su�ciently small, then w obeys the following analog of (5.14):

wv − �1v
−1w < 0 ; (5.15)

where v � −u > 0 is small. Here, �1 is positive, but �1 < 1. This last equation
implies that w � cjuj�1 where c is a positive constant. In particular, juj−1w is
unbounded as juj ! 0 which is impossible since, as previouly noted, both y=juj
and y0=juj tend to zero as juj tends to zero. With some judicial sign changes,
the preceding argument also rules out the possibility that w is strictly negative
where juj is su�ciently small.

With it now established that G 6= ;, turn now to the question of whether ’’s
extreme values on G are its limiting values on G’s ends. For this purpose,
suppose that G has non-compact intersection with the closure, C1 � C0 , of
one of the three components of the complement of the f = f0 locus. Now, �x
some s0 � 1, a regular value of jsj on C1 and such that the jsj = s1 locus
in C1 is a circle having transversal intersection with G. As G divides the
C1 into the portion where h > 0 and where h < 0, so G must have an even
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number of intersections with the jsj = s0 circle in C1 and these points alternate
upon a circumnavigation of this circle between points where ’ is increasing and
decreasing in the direction of increasing jsj.

Remark now that a compact, oriented path in the jsj � s0 part of G with both
boundary points on the jsj = s0 circle pairs up two jsj = s0 boundary points.
This understood, remove from G a maximal set of such paths, no two sharing
edges, to obtain a new embedded and directed graph, G1 , in the jsj � s0

portion of C1 . Note that G1 cannot be empty (by assumption). In addition,
each jsj > s0 vertex has an even number of impinging edges, half oriented by
d’ to point outward and half to point inward. Moreover, G1 must intersect
the jsj = s0 locus. Indeed, otherwise there would be a properly embedded
path in G1 with jsj unbounded at both ends and this is ruled out by the fact
that ’ has a unique, jsj ! 1 limit on C1 . Now, given that G1 interstects
the s = s0 locus, it does so in an even number of points, and again, these
alternate between those where ’ is increasing with jsj and those where ’ is
decreasing. Now, by assumption, no pair of these points comprise the boundary
of a compact, oriented path in G1 , and so each is the sole boundary point of
a path in G1 on which jsj is unbounded. This the case, then ’ is increasing
on half of these paths in the unbounded direction and decreasing on the other
half. In particular, ’’s limit as jsj ! 1 on G \ C1 is not an extreme value of
’ on G.

Now consider the case where one of p, q vanishes. In this regard, the argument
below considers the case where q = 0, p > 0. The argument for the p = 0,
q < 0 is virtually identical and is left to the reader. The following lemma is
needed:

Lemma 5.4 Let r be a smooth function of the angle � , de�ned on some open
interval Z � [0; �] where it is everywhere distinct from −f=h. Then there
exists a function � on Z and a function u of the variables (f; h), de�ned where
� 2 Z , with du = e�(df + rdh).

Proof of Lemma 5.4 First, the f and h derivatives of � are related via
�f = −h=f�h . With this understood, then � is determined up to an additive
constant by the requirement that

��(1 + rh=f) + r�h=f = 0 : (5.16)

As h=f =
p

6 cos � sin2 �(1− 3 cos2 �)−1 , this last equation reads

�� = −r�
p

6 cos � sin2 �[(1− 3 cos2 �) + r
p

6 cos � sin2 �]−1 : (5.17)
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As r 6= −f=h on its domain of de�nition, the latter equation can be integrated
to obtain � .

To employ this lemma, remark that if C 2MI , then q0 > 0 as both p and �
are positive and q = 0. Thus, one of the convex side ends of C corresponds to
a closed Reeb orbit with cos �0 = 1=

p
3. Meanwhile, f > 0 on the other two

ends of C . As argued in the previous subsection, this implies that f > 0 on
the whole of C .

With f everywhere positive on C , it follows that the range in R of the restric-
tion to C of the function − sin2 �f=h is disjoint from an interval of the form
[0; �). Given such � that is less than the minimum of p=jp0j and p=jp0 + q0j, let
� 2 (0; �=2) be a rational number. Now employ Lemma 5.4 using r = � sin−2 � .
It then follows that any choice for the resulting function u is de�ned on a neigh-
borhood of every C 2 MI . By the way, as any two choices for u di�er by an
additive constant, so it follows from (1.3) that there is a unique choice which
limits to zero as s ! 1 along every C 2 MI . This particular choice for u
should be taken in what follows.

Concerning this function u, note �rst that juj tends uniformly to in�nity as
s ! −1 along each of the convex side ends of any C � MI . Moreover, with
C 2 MI speci�ed, the function u pulls back via the de�ning pseudoholomor-
phic immersion from C0 as a function with only one critical point, the latter
being non-degenerate and hyperbolic. Indeed, this follows from the following
two observations: First, J maps du to a nowhere zero multiple of dt + �d’.
Meanwhile, as � is neither 0, p=p0 nor p=(p0+q0), the arguments from the proof
of Proposition 4.7 apply to prove that dt+ �d’ pulls back to C0 with but one
zero, which is hyperbolic.

With the preceding as background, suppose that C 2 MI has been speci�ed
as well as a component H0 � MI . Once again, H0 is a smooth manifold and
equivariantly di�eomorphic to R � T � Isom(R � (S1 � S2)). In particular,
this implies that there exists C 0 2 H0 with the following properties: First, the
pair (t + �’; u) at the critical point of u’s restriction to C is identical to that
at the critical point of u’s restriction to C 0 . Second, the constant term on the
right-hand side of the concave version of (5.1) for C is the same as that for C 0 .

To proceed, let �: C0 ! R� (S1�S2) denote the de�ning pseudoholomorphic
immersion with image C , and let �00 denote the corresponding immersion with
image C 0 . The arguments given above for the proof of Lemma 5.2 can be
modi�ed in a minor way to �nd a di�eomorphism  : C0 ! C0 for which the
pullbacks of (t + �’; u) by �0 � �00 �  and � are identical. This understood,
introduce ’ � ��’ − �0�’ and h = ��h − �0�h as functions on C0 . In this
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regard, note that ’ can be viewed as a bona�de R valued function on C0 that
is bounded, limits to zero as s ! 1 on C0 and has �nite limits on the other
ends of C0 . Moreover, as demonstrated momentarily, the functions ’ and h
enjoy the following properties:

If C 6= C 0 , then the h = 0 level set is an embedded graph, G � C0;
whose vertices are the h = 0 critical points of h. Moreover, d’
pulls back without zeros to the edges of G and, provided � > 0 is
su�ciently small, G has a non-empty set of edges. (5.18)

As before, these properties are inconsistent and so h = 0, ’ = 0 and C = C 0 .

The validity of (5.18) is easiest seen (perhaps) by using the � pullbacks of the
pair (� � t + �’; u) as local coordinates away from the critical point of u.
In terms of these coordinates, the � pull back of (’; h) obeys, by virtue of C
being pseudoholomorphic, an equation with the schematic form

’� = sin−2 � e�hu and ’u = − sin−2 � g−2e−�h� : (5.19)

Here, � and � are the pullbacks via � of their namesakes on R � (S1 � S2).
Meanwhile, ’0 � �0�’ and h0 � �0�h obey (5.19) but with � and � replaced by
�
0�� and �

0�� , respectively. As ’ and � are implicit functions of f and h, it
follows from (5.19) and its primed analog that the pair (’; h) obey an equation
with the schematic form of (5.12). And, with this last point understood, the
arguments given about G in the case where none of p, q , and p+ q vanish can
be used with only minor modi�cations to prove (5.18). As these modi�cations
are slight, their details are left to the reader.

(c) Thrice-punctured spheres in C� � C�

The argument for the existence of Proposition 5.1’s thrice-punctured spheres
starts here and runs through Subsection 5g. By way of a beginning, this sub-
section �rst considers holomorphic, triply-punctured spheres in the complex
manifold C� � C� where C� = C − f0g. The punctured spheres are then used
to construct symplectic, thrice-punctured spheres in R � (S1 � S2) with pre-
scribed asymptotics. The subsequent subsections explain how to deform the
latter to obtain those predicted by Proposition 5.1.

To start the C��C� discussion, identify the thrice-punctured sphere, C0 , as a
complex manifold with the complement of the points 0, 1 and 1 in the Riemann
sphere, P1 = C[1. Alternately, C0 = C−f0; 1g. Note that C0 comes with the
order six subgroup G of the complex automorphism group PSL(2;C) which
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permutes the points f0; 1;1g. This group is generated by the automorphisms
that send z to 1− z and z to 1=z .

Now, consider a holomorphic map �: C0 ! C� �C� which has the form

� = (arp+qz−p(1− z)−q; a0rp0+q0z−p0(1− z)−q0) ; (5.20)

where p0 , q , and q0 are integers, a and a0 are unit length, complex numbers,
and r � 1 is a constant whose lower bound will be speci�ed shortly. Here,
I � f(p; p0); (q; q0)g is constrained so that � � pq0 − qp0 is non-zero. In this
regard, note that � factors through a map to C� if and only if � = 0, so this
is a reasonable constraint on I .

It is important to point out that with r �xed, each � in (5.20) has �ve com-
panions with the same image in C� � C� . These companions are obtained by
composing � with the non-trivial elements of G. However, in the subsequent
constructions, the puncture at 1 plays a special role and only the involution
z ! (1− z) in G preserves this puncture. As this involution preserves the set
of maps having the form in (5.20), it sends the four integers f(p; p0); (q; q0)g to
another such set, namely f(q; q0); (p; p0)g and thus changes the sign of �. In
particular, no generality is lost in the subsequent discussions by restricting to
the � > 0 case.

For future reference, make a note that the map � is an immersion. Indeed, a
singular point of � can occur only where both (p=z − q=(1− z)) and (p0=z −
q0=(1− z)) vanish. Since � 6= 0, this happens nowhere on the thrice-punctured
disk. It is also important to note that � has only a �nite number of double
points and thus embeds neighborhoods in C0 of the punctures.

(d) The map �

Fix a set I = f(p; p0); (q; q0)g of integers which obey the constraints in the three
points of Proposition 5.1. An embedding in R � (S1 � S2) of a neighborhood
of the image in C� � C�(5.20) that is proper on this image de�nes a properly
immersed, triply-punctured sphere in R�(S1�S2). This subsection describes a
map that provides an embedding of this sort and that sends C0 to a subvariety,
C 0 , with certain favorable properties. In particular, C 0 is pseudoholomorphic
for a T {invariant almost complex structure, J 0 , that tames ! and is asymptotic
to (1.5)’s �ducial almost complex structure J as jsj ! 1 on R � (S1 � S2).
Also, C 0 is constructed with prescribed asymptotics. This is to say that the
components of the large and constant jsj slices of C 0 converge to multiple covers
of closed Reeb orbits where the multiplicities and the closed Reeb orbits are
suitably determined by the set I . Finally, C 0 avoids the � 2 f0; �g locus
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precisely when the set I obeys Proposition 5.1’s constraints. The preceding
properties play key roles in subsequent arguments.

The desired embedding, �, is described in this subsection simply as a map
from a neighborhood of �(C0) into (S1 � R) � (S1 � R). Subsequently � is
interpreted as a map into R� (S1 � S2) by the identi�cation the former space
with the complement of the � 2 f0; �g locus in the latter via the coordinates
(t; f; ’; h). Of course, such an interpretation is possible only when the initial
map into (S1 �R)� (S1 �R) avoids (S1 � 0)� (S1 � 0). The next subsection
provides the veri�cation that such is the case.

To begin the discussion, take (t; f; ’; h) as coordinates on (S1�R)� (S1�R).
Here, t and ’ are R=(2�Z) valued while f and h are R valued. Meanwhile,
introduce R=(2�Z) valued functions (t; ’) and R{valued functions (u; v) for
C� � C� by writing the complex coordinates � and �0 as � = eu−it and �0 =
ev−i’ . The map �, sends a neighborhood of �’s image into (S1�R)�(S1�R),
so that both the coordinates t and ’ on (S1 � R)� (S1 � R) are respectfully
identi�ed via �’s pullback with their namesake functions on C� � C� . Mean-
while, � respectively identi�es f and h with u and v except near the � image
of neighborhoods of 0, 1 and 1. Near the � image of neighborhoods of the
punctures, the de�nition of the map � is completed below by writing f and h
as suitable functions of u and v .

To see what is involved here, observe that � near z = 0 has the form

�(z) = (arp+qz−p(1 +O(jzj)); a0rp0+q0z−p0(1 +O(jzj))) : (5.21)

Thus, the � image of a neighborhood of z = 0 has

� p’− p0t = p0 arg(a)− p arg(a0) +O(jzj) mod (2�),

� pv − p0u = � ln r +O(jzj). (5.22)

Even with the O(z) and ln r terms absent, the identi�cation (f = u; h = v)
does not make the locus in (5.22) close to a J {pseudoholomorphic subvariety
when both p and p0 are non-zero. In any event, the plan is to de�ne � near
the �{image of a neighborhood of 0 so that the composition � � � sends a
neighborhood of z = 0 close to the J {pseudoholomorphic locus that is de�ned
by

� p’− p0t = p0 arg(a)− p arg(a0) mod (2�),

� ph− p0 sin2 �0f = 0. (5.23)

Here, �0 is determined as follows: First, �0 obeys p0(1−3 cos2 �0) = p
p

6 cos �0 .
In this regard, remember that there is one solution when jp0=pj < (3=2)1=2 and

Geometry & Topology, Volume 6 (2002)



764 Cli�ord Henry Taubes

two otherwise. In the former case, the condition p0(1 − 3 cos2 �0) = p
p

6 cos �0

completely determines �0 . Meanwhile, when jp0=pj > (3=2)1=2 , the sign of cos �0

di�ers for the two solutions; and with this understood, the angle �0 is chosen
so that the signs of p0 and cos �0 agree. The third constraint in Proposition 5.1
guarantees the existence of such a �0 .

The subsequent de�nition of u and v in terms of f and h depends on whether
or not one of p and p0 is zero, and when both are non-zero, it depends on their
signs. The case where both are non-zero and positive is presented immediately
below; the other cases where both are non-zero can be obtained from this one by
suitable notational changes. The case where one of p or p0 is zero is presented
afterwards.

In the case where both p and p0 are positive, u is chosen to be an increasing
function of f and v an increasing function of h. In this regard, keep in mind
that with p positive, small jzj means large u and thus large f ; and with p0

positive, the same conclusion holds for the pair v and h. In particular, the small
jzj region of D is to be mapped by � � � to the convex end of R� (S1 � S2),
that where s! −1.

To de�ne � near the � image of a neighborhood of z = 0, �rst introduce

�0 �
p

6(p2 + p
02 sin2 �0)1=2: (5.24)

Next, select a function �: R ! [0; 1] that equals 1 on (−1; 1] and 0 on
[2;1). With � chosen and for each R > 1, introduce �R(�) � �((�)=(4R)) and
�R(�) � 1− �((�)=2R).

Now, take R0 � 1 + r , set R � R0 to de�ne �R and �R , and declare the �
pullback of the function f to be

f(u) = �R(p−1u)u+ �R(p−1u)(p0 sin2 �0)−1e�0(u−q ln(r))=p: (5.25)

Meanwhile, declare the � pullback of the h to be

h(v) = �R(p
0−1v)v + �R(p

0−1v)p−1e�0(v−q0 ln(r))=p0 : (5.26)

Concerning this de�nition of these � pullbacks, note in particular that both
fu > 0 and hv > 0 when R0 is su�ciently large as �R + �R � 1 everywhere,
jd�R and jd�Rj are O(1=R), and �R = 1 where d�R 6= 0.

Also, as f(u) = u when u < 2pR0 and f(v) = v when v < 2p0R0 , the de�nition
of � via (5.25){(5.26) is consistent (when R0 is large) with the previous de�ni-
tion for �’s restriction to a neighborhood of a particular compact subset of C0 .
Moreover, by virtue of (5.22), the fact that f(u) = (p0 sin2 �0)−1e�0(u−q ln(r))=p

Geometry & Topology, Volume 6 (2002)



A compendium of pseudoholomorphic beasts in R� (S1 � S2) 765

when u > 8pR0 and the fact that h(v) = p−1e�0(v−q0 ln(r))=p0 when v > 8p0R0 ,
the composition � � � embeds a neighborhood in C0 of the puncture 0 as a
locus in R� (S1 � S2) which is de�ned by equations of the following sort:

� p’− p0t = p0 arg(a)− p arg(a0) + r1 mod (2�) .

� ph− p0 sin2 �0f = r2 . (5.27)

Here, the terms r1 and r2 come from the O(z) terms in (5.22). In particular,
they can be viewed as functions which are de�ned on an open set which contains
the ��� image of a neighborhood of z = 0 in D . In this regard, such an open set
can be chosen so that each of r1 , f−1r2 and their derivatives are O(e−

p
6jsj=�0).

By the way, as the image of � in C� � C� is holomorphic, it is pseudoholo-
morphic with respect to the integrable almost complex structure which sends
@t to @u and @’ to @h . As a consequence, the image of C0 in R � (S1 � S2)
by ’’s composition with �, as de�ned above by t, ’ and (5.25{26), is pseudo-
holomorphic for the almost complex structure J 0 that is de�ned near the � � �
image of a neighborhood of z = 0 by

J 0@t = fu@f and J 0@’ = hv@h: (5.28)

Here, fu is evaluated at u(f) and likewise, hv at v(h). Note speci�cally that
(5.25), (5.26) and (5.27) imply that

� fu = p−1�0f = g(1 +O(e−
p

6jsj=�0)) ,

� hv = p
0−1�0h = g sin2(1 +O(e−

p
6jsj=�0)) (5.29)

near the � � � image of a neighborhood of z = 0. Here, g =
p

6(f2 +
h2 sin−2 �)1=2 . Thus, the almost complex structure J 0 and the �ducial almost
complex structure J in (1.5) are exponentially close,

jJ 0 − J j = O(e−
p

6jsj=�0); (5.30)

on an open set which contains the � � � image of a neighborhood of z = 0 in
D .

Now consider � when p = 0 and p0 < 0. The p0 > 0 case is obtained from this
one by switching various signs and is left to the reader. In the p = 0 and p0 < 0
case, v tends to −1 as jzj tends to zero. With this understood, again take
R � R0 very large and choose h = h(v) to be a favorite function of v with the
following properties:

� hv > 0 .

� h = v where v � −R .
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� h = −e−
p

6v where v < −R2 . (5.31)

With h now chosen, take f to be a favorite function of both u and v that
satis�es

� fu > 0 .

� f = u where v � −R .

� f = −61=2h(v)(u − q ln r) where v � −R2 . (5.32)

Given the preceding, it follows that a neighborhood in C0 of z = 0 is mapped
by � � � as the large −s portion of a locus that is de�ned by equations of the
form

� ’ = − arg(a0) + r1 mod (2�) ,

� f = r2 , (5.33)

where r1 and r2 are functions on a neighborhood of this portion of the image
of � ��. Here, as with their namesakes in (5.27), each of r1 , jhj−1r2 , and their
derivatives are O(e−jsj=�) where � � 1 is a constant.

In this case, the locus image of � � � is pseudoholomorphic for the almost
complex structure J 0 which is de�ned so that

J 0@t = fu@f and J 0@’ = fv@f + hv@h: (5.34)

In particular, this last equation implies that J 0 and J again obey (5.12) on an
open set which contains the � � � image of a neighborhood of z = 0 in C0 .

As remarked, there is an analogous description of � in the p = 0, p0 > 0 case,
and also in the cases where p0 = 0. The details here di�er from those just given
only in the notation so they won’t be given.

Of course, a corresponding description of � can be simultaneously made near
the � image of a neighborhood of z = 1 as well. The discussion is identical
to that just ended save for some signs and the interchange of p with q and p0

with q0 . By the way, as the de�nition of � near the � image of a neighborhood
in C0 of 0 required the choice of the constant R0 , so the de�nition near the �
image of a neighborhood in C0 of 1 requires the choice of a constant, R1 . The
freedom to make these choices is exploited in a subsequent argument.

The �nal order of business in this subsection completes �’s de�nition by de-
scribing this map near the � image of a neighborhood in C0 of z = 1. Here,
� is de�ned so that the composition � � � properly embeds the complement
of a large radius disk in C in the concave end of R � (S1 � S2). In partic-
ular, with � as speci�ed below, the constant s slices of the (� � �)-image
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converge as s ! −1 to the closed Reeb orbit whose �0 parameter obeys
(p0+q0)(1−3 cos2 �0) = (p+q)

p
6 cos �0 and is such that cos �0 and p0+q0 have

the same sign when the latter are non-zero.

The details of the de�nition of � near the � image of a neighborhood of 1
depends here on whether k � p+ q or k0 � p0 + q0 are zero and on their signs
when they are non-zero. The discussion that immediately follows assumes that
both are positive. This discussion also covers the other possibilities after some
straightforward sign changes. The cases where one of k or k0 is zero is discussed
subsequently. In what follows, �0 denotes

p
6(k2 + k0 2 sin2 �0)1=2 .

To see what is involved in the k and k0 both positive case, note that when k > 0,
then the function u = ln j�j on C� �C� tends to −1 as jzj ! 0. Likewise, so
does v = ln j�0j when k0 > 0. Moreover, the � image of a neighborhood of 1
has the form

� k’− k0t = k0 arg(a)− k arg(a0) + �� + r1 mod (2�),
� kv − k0u = r2 . (5.35)

Here, r1 , r2 and their derivatives are O(jzj−1). Of course, this is by virtue of
the fact that where jzj > 2,

� = (arkz−k(1 +O(z−1)); a0rk
0
z−k

0
(1 +O(z−1)) : (5.36)

To proceed, assume that r � e40�4
0 , take R � R1 � 1, and then take f to be

a favorite function of the variable u which has the following properties: First,
f(u) is as previously de�ned near the � image of the jzj < 10 portion of C0 .
On the remaining portion of C0 , require that

� fu > 0.
� f = u where u > 2 sin−2 �0R

−1 .
� f = (k0 sin2 �0)−1R−1e�0u=k where u � 0. (5.37)

Meanwhile, take h to be a favorite function of the variable v which is as previ-
ously de�ned near the � image of the jzj < 10 portion of C0 and is contrained
near the remainder of �(C0) to obey

� hv > 0.
� h = v where v > 2R−1 .
� h = k−1R−1 where v < 0. (5.38)

Note that the constraints in (5.37{38) are consistent with the previously speci-
�ed constraints on u and v because juj and jvj are o(ln r) where 10 < jzj < pr .

By virtue of (5.35), these de�nitions of f and h imply that the � � �{image of
the jzj > 10 portion of C0 has the form
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� k’− k0t = k0 arg(a)− k arg(a0) + �� + r1 mod (2�),

� k sin−2 �0h− k0 sin2 �0f = r2 . (5.39)

Here, r1 and r2 can be viewed as functions where are de�ned in a neighborhood
of the � � �{image of the jzj > 10 portion of C0 . In this regard, such a neigh-
borhood can be de�ned so that r1 , f−1r2 and their derivatives are o(e−jsj=�)
for some positive constant � . (Note that r2 is not the same function as that
which appears in (5.35).)

As before, since the � image of C0 in C� � C� is holomorphic for the almost
complex structure which maps @t to @u and @’ to @v , so the ��� image of the
jzj > 10 portion of C0 is pseudoholomorphic for an almost complex structure
which has the same form as that depicted in (5.28). Moreover, as (5.29) holds
for this almost complex structure, so does (5.30).

Now consider the de�nition of � near the � image of a neighborhood of z =1
in the case where k > 0 and k0 = 0. The de�nition of � when k < 0 and
k0 = 0, or when k = 0 and k0 6= 0 is omitted since the de�nition in these cases
is obtained from the k > 0, k0 = 0 de�nition by changing notation.

To begin, remember that sin2 �0 = 1 and �0 =
p

6k because k0 = 0. Also, note
that the function u tends to −1 as jzj tends to 1 on C0 because k > 0.
However, when r is very large, then u is on the order of 2−1k ln r on the circle
where jzj =

p
r . With the preceding understood, de�ne the embedding � near

the � image of the jzj > 10 portion of C0 by taking f to be any function of
the coordinate u with the following properties:

� fu > 0.

� f = u where u > 2R−1 .

� f = R−1e
p

6u where u < 0. (5.40)

Here, R � R1 � 1. Then, with f(u) chosen, take h to be any function of
both u and v which obeys

� hv > 0.

� h = v where u > 2R−1 .

� h = 61=2f(u)v where u < 0. (5.41)

These de�nitions of f and h complete the de�nition of � near the �{image of
a neighborhood of z =1 in C0 . Note that the � � � image of a neighborhood
in C0 of 1 obeys the k0 = 0 version of (5.39). Moreover, the image of such a
neighborhood is pseudoholomorphic as de�ned by an almost complex structure
J 0 that sends @t to the vector �eld fu@f +hu@h and @’ to hv@h . In this regard,
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note that (5.35), (5.40) and (5.41) insure that J and J 0 are nearly identical
where s is large near C0 . Indeed, the just referenced equations imply that
jJ 0 − J j � e−ss=� at large s where � � 1 is a constant.

(e) � as a map into R� (S1 � S2)

The �rst task for this subsection is to verify that � can be constructed so that
its image avoids the locus where both f and h vanish. Having veri�ed that such
is the case, � is then interpreted as a map into R� (S1 � S2). The subsection
next summarizes the salient features of � as a map into the latter space. In
particular, as � > 0 and q0−p0 > 0 unless both p0 and q0 are non-zero and have
the same sign, the map � can be de�ned as above so that it and the resulting
C 0 � (� � �)(C0) � R� (S1 � S2) have the properties listed below:

� � is an embedding on a neighborhood of �(C0).

� There exists � > 0 such that sin � > � on C 0 .

� C 0 has two ends on the convex side of R � (S1 � S2) and one on the
concave side. Moreover, one of the convex side ends is described by (5.27)
where jsj is large, and the other by (5.27) with (q; q0) replacing (p; p0).
Meanwhile, the concave side end of C 0 is described by (5.39) where s is
large.

� C 0 is symplectic and it is pseudoholomorphic for an almost complex struc-
ture, J 0 , on R� (S1 � S2) with the following list of features:

(a) J 0 tames ! .

(b) J 0 = J where sin � < �=10.
(c) J 0@t = at@f+bt@h and J 0@’ = a’@f+b’@h ; moreover, J 0 is T {invariant

so the coe�cients (ar; bt; a’; b’) depend only on the coordinates f and
h.

(d) There exists � � 1 such that jJ 0 − J j � �e−jsj=� on R � (S1 � S2).
(5.42)

By the way, to say that J 0 tames ! is to assert that !(�; J 0(�)) is a positive
de�nite, bilinear form on T (R� (S1 � S2)).

The proof of the assertions of (5.42) rounds out the discussion in this subsection.
In this regard, the arguments for (5.42) and also the argument that justi�es �’s
interpretation as a map into R � (S1 � S2) make certain requirements on the
parameters r , R0 , R1 and R1 , the �rst being that they should all be large.
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The �rst task is to prove that the image in (S1 � R) � (S1 � R) via � of a
neighborhood of �(C0) in avoids the f = h = 0 locus. For this purpose, and for
use in the discussion on (5.42), it proves useful to describe C0 as the union of
four open sets, U , U0 , U1 and U1 . Here, U = fz 2 C0 : jzj > r−1=2; jz − 1j >
r−1=2 and jzj < r1=2g. Meanwhile, U0 is the subset of C0 on which jzj < 2r−1=2 ,
U1 is where jz − 1j < 2r−1=2 and U1 is where jzj > 2−1r1=2 .

To continue, note that one or both of the �{pullbacks h and f have large
absolute value in �(U0) and in �(U1) so the � � � image of both of these
sets avoids the h = f = 0 locus. Meanwhile, on �(U), the �{pullbacks of f
and h are identi�ed with u and v . Since � 6= 0, these are both zero only
when jzj = j1 − zj = r . In particular, when r > 100, the pullbacks of f
and h by � are not simultaneously zero on �(U). Finally, the de�nition of
� near �(U1) insures that the � pullbacks of f and h are non-zero. For
example, with the case where both k and k0 are positive, f is de�ned by
(5.37) to be positive as long as u � 2 sin−2 �0R

−1
1 and f is de�ned to equal

u when u > 2 sin−2 �0R
−1 . In this regard, note that the u = 2 sin−2 �0R

−1
1

locus is an embedded circle where jzj = r exp(−2(k sin−2 �0R1)−1)(1+O(1=r)).
Moreover, as the derivative of u with respect to jzj on this circle is equal to
−k=jzj + O(1=jzj2), the function u and thus f only increase on the inside of
this circle.

With the preceding understood, � should henceforth be viewed as a map from
a neighborhood of �(C0) into R�(S1�S2) and then the next order of business
is to verify that the assertions in (5.42) are correct. For this purpose, note that
the third point of (5.42) follows directly from the de�nition of �. Likewise,
Parts a) and d) of the fourth point follow directly from the de�nition as does
Part c) if the asserted T {invariance of J 0 is disregarded. Meanwhile, Part b) of
the fourth point follows by standard arguments from the second point of (5.42).
Thus, the subsequent discussion concerns only the �rst and second points of
(5.42) and the assertion of T {invariance in part c) of the fourth point. In this
regard, note that the �rst point in (5.42) and the T {invariance assertion are
both consequences of the following lemma:

Lemma 5.5 When r is large, the parameters R0 , R1 and R1 can be chosen
for the de�nition of � with arbitrarily large minimum and so that the set U
contains all distinct pairs z , z0 2 C0 that are mapped to the same point in R2

by the � � � pullback of (f; h).

Note that the ability to make the minimum of R0 , R1 and R1 large ensures
that � de�nes a map into R� (S1 � S2).
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The proof of Lemma 5.5 is supplied momentarily. Granted this lemma, the �rst
point in (5.42) can be argued as follows: First, as the map � is both proper
on C0 and a local di�eomorphism, it is enough to demonstrate that all distinct
pairs fz; z0g 2 C0 which are sent to the same point by � � � lie in U and are
thus already identi�ed by �. This last property is, of course, guaranteed by
Lemma 5.5.

To argue for the T {invariance assertion in part c) of the fourth point of (5.42),
note �rst that one strategy for the construction of the required J 0 would take
J 0 as given near C 0 by (5.28) or (5.34) and rotate the latter via the T {action
on R� (S1�S2). In particular, this strategy would exploit the explicit lack of
(t; ’) dependence of the functions which multiply the vector �elds on the right-
hand side of (5.28) or (5.34). However, as the functions in (5.28) and (5.34)
are de�ned a priori only near C 0 , such a strategy has the following prerequisite
for success: When a T orbit intersects C 0 more than once, then the versions
of J 0 given by (5.28) or (5.34) at the various intersection points must all agree.
Lemma 5.5 provides just this prerequisite.

Proof of Lemma 5.5 Let P � ��(f; h) : �(C0)! R�R. By virtue of its very
de�nition, this map P embeds the subset of of �(C0) where ��(f; h) = (u; v).
This means, in particular, that P embeds �(U). Also, P separately embeds
the � images of U0 , U1 and U1 since the pullbacks via � of the functions f
and h have been constructed to change monotonically with u and v , near these
images. Thus, after the introduction of V0;1;1 � U0;1;1 to denote the subset
where (� � �)�(f; h) di�ers from (u; v), the question at issue here is whether
any of P � �(V0;1;1) intersect P � �(U), whether P � �(V1) intersects any of
P � �(U0;1) and whether P � �(V0) intersects P � �(U1) or P � �(V1) intersects
P � �(U0).

To address this question, note �rst that with R1 very large, both f and h will
be nearly zero on �(V1). Meanwhile, as ��(f2 + h2) is bounded away from
zero on �(U), �(U0) and �(U1) by an r{dependent, but R1{independent
constant. Thus, when r is large and then R1 is very large, the P images of
�(V1) and each of �(U), �(U0) or �(U1) are necessarily disjoint. Likewise,
when R0 and R1 are very large, then at least one of the � pullbacks of f
or h has large absolute value on �(V0) and �(V1) where these pullbacks di�er
from (u; v). Meanwhile, both f and h are uniformly bounded on �(U) once r
has been speci�ed. Thus, when R0 and R1 are su�ciently large, there are no
intersections between the P images of �(U) and those of �(V0) and �(V1).

The �nal possibility for trouble lies with the P images of �(V0) and �(V1).
However, this issue is nontrivial only when p and q are both non-zero and have
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the same sign while p0 and q0 are also both non-zero and have the same sign.
With these sign equalities now understood, the � > 0 condition implies that
q0=q > p0=p. The argument when q0=q < 0 is the same but for cosmetic changes
as that for the case when q0=q > 0, so only the q0=q > 0 case is discussed below.
In any event, given that q0=q > 0, (5.22), (5.25) and (5.26) imply that the �
pullback of the ratio h=f obeys

� ��(h=f) = p0=p +O(r1=2) on �(U0 − V0).

� p0=p +O(R−�0 ) � ��(h=f) � p0=p sin2 �0P −O(R−�0 ) on �(V0). (5.43)

Here, �0P is the value of � on the closed Reeb orbit that is associated to the
end � ��(V0) of C 0 . Also, � > 0 is determined by the integers f(p; p0); (q; q0)g.
Meanwhile, change p to q , p0 to q0 and P to Q in (5.43) and the resulting
inequalities then describes the � pullback of h=f to �(U1).

Now, as argued in Step 9 of the proof of Constraint 4 in Subsection 5b, when q0=q
and p0=p are both positive and q0=q is greater than p0=p, then q0=q sin2 �0Q >
p0=p sin2 �0P . With this point understood, and given both (5.43) and its (q; q0)
analog, the P images of both the pairs f�(V0); �(U1)g and f�(V1); �(U0)g are
necessarily disjoint when r is �rst chosen to be very large, then R0 is chosen
to be much larger than r and �nally, R1 is chosen to obey R1 � 256(p=q)R0 .
Indeed, such a choice insures that the ratios of ��(h=f) di�er on �(V0) and
�(U1), as do the analogous ratios on �(V1) and �(U0).

With the proof of Lemma 5.5 complete, only the second point of (5.42) is
unspoken for. Here is the strategy for proving that such � exists: The �rst step
proves that � > 0 exists so that sin � > � on the � � � images of U0 , U1 and
U1 . Having done so, the remaining step considers whether sin � is ever zero
on the � � � image of U . As U has compact closure, these two steps su�ce to
establish the second point of (5.42). By the way, in order to prove that sin � 6= 0
on a given set, it is enough to prove that f is positive where h vanishes on the
set in question.

To begin, consider the case with U1 . Here, it follows from (5.35) and (5.39)
that when both k and k0 are non-zero and both r and R1 are large, then
the required � exists. Thus, the only troublesome case has p0 + q0 = 0 and
p + q < 0. However, as � > 0, this case requires q0 < 0 and p0 > 0 and so is
excluded from consideration.

Now consider whether the required � exists for U0 when R0 is large. For this
purpose, note that the case where p0 = 0 and p < 0 can be ignored as the
conditions � > 0 and q0 − p0 > 0 would otherwise be violated. Thus, one can
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assume that p0 6= 0 or else p0 = 0 and p > 0. As explained momentarily, the
existence of the required � then follows from (5.22), (5.25) and (5.26). Indeed,
to obtain � , note �rst that when R0 is large, (5.26) provides a non-zero lower
bound for sin � on the � � � image of V0 � U0 when p0 > 0. Meanwhile, if
p0 = 0, then p > 0 and so (5.25) insures that ��f > 0 on �(V0). Thus, it
remains only to verify that sin � > 0 on the closure in C0 of the subset of U0

where ��f = u and ��h = v . For this purpose, note that v = 0 on �(C0) only
on the image of points z where

rp
0+q0 = jzjp0 j1− zjq (5.44)

and so such a zero occurs with jzj � 1 if and only if p0 and p0+q0 have opposite
signs. This requires q0 and p0 to have opposite signs and thus p0 is negative
since q0−p0 must be positive. But, if r is large and p0 < 0, then (5.22) requires
that u > 0 where v = 0.

An analogous argument �nds a non-zero lower bound for sin � on the � � �
image of U1 .

With the preceding understood, it remains only to verify that the zeros of the
� pullback of h on �(U) occur where the � pullback of f is positive. In this
regard, the straightforward case to verify occurs when either one of p0 or q0 is
zero, or when both p0 and q0 are non-zero and they have the same sign; for in
this case, ��h has no zeros at all on �(U). Indeed, as ��h = v on �(U) so at
issue are the zeros of v . As p0 and q0 have the same sign if one is not zero, the
latter locus is placed by (5.44) where jzj = r +O(1) which is not in U .

The next case to verify has p0 + q0 = 0. In this case, ��h = v is zero on �(U)
only on the � image of the line where jzj = jz − 1j. On this line, ��f = u =
(p+ q) ln(r=jzj). Now, the positivity of � and the vanishing of p0+ q0 = 0 and
the positivity of q0 requires the positivity of p + q . Thus, as jzj � r1=2 on U ,
so ��f > 0 on the zero locus in �(U ) of ��h.

Next, assume that neither p0 , q0 or p0+q0 are zero but p0 and q0 have oppositive
signs. Thus, p0 < 0 and q0 > 0. In this case, the locus in (5.44) has two
components. One component has jzj = r+O(1) so doesn’t sit in U . The other
component has jzj or j1−zj small and can lie in U . In particular, if p0+q0 > 0,
this second component occurs where jzj = r(p0+q0)=p0 ; and if p0 + q0 < 0, this
second component occurs where j1 − zj = r(p0+q0)=q0 . In any event, the sign of
u = ��f on the �{image of this other component can be determined with the
help of one or the other of two identities that follow from (5.20):

qv − q0u = −� ln(r=jzj) and pv − p0u = � ln(r=j1 − zj): (5.45)

In particular, as � > 0, it follows from (5.45) that u > 0 on these small jzj or
j1− zj components of the v = 0 locus.
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(f) Deformations

Suppose that I � f(p; p); (q; q0)g are integers such that � > 0 and q0 − p0 > 0
unless both p0 and q0 are non-zero and have the same sign. Take r � 1 to be
large, and choose large R0 , R1 and R1 so that the map � is de�ned as in
the preceding two subsections near �(C0) as an embedding into R� (S1 � S2)
as described in (5.42). As in (5.42), use C 0 to denote �(C0). This C 0 is the
starting member of a set of symplectic subvarieties which is parameterized by a
non-trivial subinterval [0; T1] � [0; 1] whose end member, C is in the space MI

of Proposition 5.2. Thus, C is a J {pseudoholomorphic, thrice-punctured sphere
that is parameterized by the same set I as is C 0 , and whose existence is asserted
in Proposition 5.1. This subsection describes the relevant parameterized set of
symplectic subvarieties and it provides a proof that the end member of the set
is a thrice-punctured sphere whose existence is predicted by Proposition 5.1.

The promised parameterized set of symplectic subvarieties is constructed with
the help of a set of almost complex structures on R � (S1 � S2). If Ĵ is an
almost complex structure in this set, then Ĵ is constrained to obey the following
four conditions:

(a) Ĵ tames ! .

(b) Ĵ = J where sin � < �.

(c) jĴ − J j � �−1e−�jsj on X .

(d) Ĵ@t = �t@f + �t@h and Ĵ@’ = �’@f + �’@h where the coe�cients
(�r; �t; �’; �’) depend only on the coordinates f and h; thus Ĵ is T {
invariant. (5.46)

Here, � > 0 is determined by I . The particular set of almost complex structures
under consideration is a certain, continuous, 1{parameter family fJrgr2[0;1]

with J1 = J . Note that each Ĵ 2 fJrgr2[0;1] obeys

Ĵ = J where jsj > 1=�; (5.47)

which is a stronger condition than (5.46c). (The condition in (5.47) is not
imposed by necessity but to simplify subsequent arguments.)

The complex structure Jr is de�ned by the requirement that

Jrv = (1− r)(��J 0v + (1− ��)Jv) + rJv (5.48)

when v = @t or @’ . Here, �� is a smooth function of jsj that equals 1 where
jsj < 1=(2�), vanishes where jsj > 1=� and has derivative bounded by 4�. The
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equality in (5.47) follows from the presence of �� in (5.48). In any event, Jr
satis�es (5.46) because both J 0 and J do.

As stated above, the parameter, r , for the parameterized set, f�rg, of subvari-
eties takes values in [0; 1] where T 2 (0; 1]. For each such r , the corresponding
�r is a Jr{pseudoholomorphic, immersed, thrice-punctured sphere that avoids
the � 2 f0; �g locus and whose ends are constrained by the set I exactly as
those of C 0 are via the third point in (5.42). The construction of �r is facilitated
by the following:

Lemma 5.6 Let Ĵ denote an almost complex structure on R�(S1�S2) which
obeys (5.46). Suppose that I = f((p; p0)(q; q0)g is a set of pairs of integers with
pq0 − qp0 > 0 and such that q0 − p0 > 0 when both p0 and q0 are non-zero and
do not have the same sign. Given I , let � � R� (S1�S2) denote a subvariety
that is the image via a Ĵ {pseudoholomorphic map of a thrice-punctured sphere
whose ends are constrained by I as those of C 0 are by the third point of (5.42).
In addition, require that � is disjoint from the f0; �g locus. Then � has the
following properties:

� � is immersed and so the deformation operator D as described by (2.6)
is well de�ned.

� This operator D has three-dimensional kernel and trivial cokernel.

This lemma is proved below, so accept its validity for now. In particular, given
the �rst two points of the lemma, a straightforward extension of the arguments
in Section 3c for Proposition 3.2 establish the following two key facts:

� There exists �0 > 0 such that J 0 and J obey (5.46) with � � �0 ; and
for each such �, the almost complex structure J0 from (5.48) admits a
J0 {pseudoholomorphic map from C0 into R� (S1�S2) whose image, �0

is disjoint from the � 2 f0; �g locus and has its ends constrained by I as
those of C 0 are by the third point of (5.42).

� Fix � < �0 so that each Jr in (5.48) obeys the constraints in (5.46) and
(5.47). Let � � [0; 1] denote the set of points r such that there exists a
Jr{pseudoholomorphic map C0 into R � (S1 � S2) whose image, �r is
disjoint from the � 2 f0; �g locus and has its ends constrained by I as
those of C 0 are by the third point of (5.42). This set is non-empty and
open. (5.49)

Indeed, the assertions in (5.49) are simply perturbation theoretic consequences
of the vanishing of the cokernel of D for the subvariety C 0 . The arguments are
essentially identical to those for Proposition 3.2 that appear in Section 3c.
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By the way, note that J 0 in (5.42) obeys (5.46) but not (5.47). However, a
small perturbation at very large values of jsj on R� (S1� S2) gives an almost
complex structure J0 that obeys both (5.46) and (5.47) with � as small as
desired. This understood, perturbation theory using the invertibility of the C 0

version of D produces the required �0 as a small deformation of C 0 .

Now, let T 2 [0; 1] denote the least upper bound of those r 2 �. Of prime
importance is the limiting behavior as r ! T of the set f�r : r 2 �g. The
nature of this limit, as given in the next lemma, explains how this parameterized
set determines a subvariety C in Proposition 5.2’s moduli space MI .

Lemma 5.7 Let � be as just described and let T denote the least upper
bound of �. Then there exists a J {pseudoholomorphic, triply punctured
sphere C in the moduli space MI of Proposition 5.2, a countable, increas-
ing set fr(i)gi=1;2;::: � � and a corresponding set fw(i)gi=1;2;::: � R with the
following properties:

� limi!1 r(i) = T ,

� Let �i denote the push-forward of �r(i) via the di�eomorphism of R �
(S1 � S2) de�ned as translation by w(i) on the R factor. Then

lim
i!1

(supx2(C\K)dist(x;�i) + supx2(�i\k)dist(C; x)) = 0

for all compact sets K � R� (S1 � S2).

By the way, the arguments below imply that the sequence fw(i)g has no con-
vergent subsequences when T < 1.

Note that the assertion in Proposition 5.1 that MI is non-trivial follows directly
from this last lemma.

The remainder of this subsection is occupied with the proof of Lemma 5.6, while
the next subsection gives that of Lemma 5.7.

Proof of Lemma 5.6 Modulo two observations, the argument for the asser-
tion that � is immersed is identical to the argument in Section 4f for the proof
of Proposition 4.7. The �rst observation asserts that the form �tdt−�’d’ pulls
back to � with at most a single non-degenerate, hyperbolic zero when (�t; �’),
are constants that de�ne a vector which is not a multiple of either (p0; p), (q0; q)
or (k0; k). Indeed, to see why this must be the case, note �rst that the form of
Ĵ in (5.46) implies that the Ĵ {pseudoholomorphic map sending C0 to � pulls
back �tt− �’’ as a multivalued function, � , that obeys an equation with the
schematic form �� + r � d� = 0. Here, � is a Laplacian on C0 and r is an
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appropriate vector �eld. The maximum principle applies to this last equation
and rules out local maxima and minima for � . Thus, non-degenerate zeros of
d� are hyperbolic. Moreover, this same equation for � implies that degenerate
zeros of d� provide a count of −2 or more to the Euler characteristic of C0 .
Thus, d� has exactly one zero, which is non-degenerate and hyperbolic.

The second observation needed concerns the part of the proof of Proposition
4.7 that follows (4.44). In particular, it follows from (5.47) that this portion
of the argument applies here with no changes provided that it is applied to an
end of � where the corresponding closed Reeb orbit has cos2 �0 di�erent from
both 1/3 and 1. Since � > 0, such an end is always present.

With the �rst point of Lemma 5.6 understood, the argument for the second
point is identical in all essential aspects to that used in Section 4g to prove the
@ = 2 case of Proposition 4.8.

(g) The limits of the deformations

The purpose of this subsection is to provide the proof of Lemma 5.7. Being
lengthy, the proof is divided into eleven steps. The �rst nine steps comprise
what might be termed Part 1 of the proof. These steps give the proof when
none of p, q and p + q is zero. The last three steps provide the proof in the
remaining cases. In any event, keep in mind that Steps 1{9 implicitly assume
that each of p, q and p+ q is non-zero.

Step 1 Choose an increasing sequence fr(i)gi=1;2;::: � � with limit T . This
step de�nes a corresponding sequence fw(i)gi=1;2;::: 2 R. To start, remember
that the proof of Lemma 5.6 established that dt’s pull back to C0 via the
�r{de�ning, Jr pseudoholomorphic immersion has a single zero, one that is
non-degenerate and hyperbolic. As neither p, q nor p + q is zero, the almost
complex structure J 0 from Section 5f that is described in (5.42) has J 0 dt
proportional to df . Therefore, this is also the case for Jr as de�ned in (5.48)
and so df also pulls back to C0 by the �i{de�ning map as a 1{form with but
one zero, also non-degenerate and hyperbolic. Let xr denote the image of this
zero on �r . With xr understood, take w(i) to equal minus the value of the
coordinate s at xri . Thus, the action of w(i) on R� (S1 � S2) by translation
of the R factor sends xr(i) to a point, x(i), which lies on the zero locus of the
function s. (Although certain arguments in this Part 1 of Lemma 5.7’s proof
rely on this critical point structure of df , there are alternative arguments that
do not. In fact, some of the latter are used for Part 2 of Lemma 5.7’s proof.)
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If the sequence fr(i)g has a subsequence for which the corresponding sequence
fw(i)g is unbounded, then replace fr(i)g by a subsequence for which the corre-
sponding fw(i)g sequence is unbounded and either strictly increasing or strictly
decreasing. Agree to relable this new fr(i)g sequence and its corresponding
fw(i)g sequence by consecutive integers starting at 1.

Let �i denote the image of �r(i) under the translation isometry de�ned by this
same number w(i). Likewise, let J i denote the push-forward by this isometry
of the almost complex structure Jr(i) . Thus, �i is J i{pseudoholomorphic.
Also, J i obeys the conditions in (5.46), albeit with the functions (�t; �r; �’; �’)
replaced by their translated versions.

Step 2 This step and Step 3 argue that the integral of ! over the intersection
of �i with a given compact set enjoys an upper bound which is independent
of the index i. In particular, this step considers the case when neither p0 nor
q0 are zero. In this regard, remember that p and q are already assumed to
be non-zero. The subsequent argument makes no use of the assumption that
p+ q 6= 0.

In any event, when p0 and q0 are non-zero, then a compact set K intersects �i

where −f 0 � f � f 0 for suitable f 0 > 0. Likewise, a compact set K intersects
�i where −h0 � h � h0 for suitable h0 . Having said this, consider �rst the
subcase where the sequence fw(i)g is bounded. Under this extra assumption,
the constants f 0 and h0 can be large to guarantee that J i = J where jf j � f 0

and where jhj � h0 . On this same portion of C , dt ^ df and d’ ^ dh are
non-negative and soZ

K\�i

! �
Z
f−f 0�f�f 0g\�i

dt ^ df +
Z
f−h0�h�h0g\�i

d’ ^ dh : (5.50)

With this last inequality in hand, apply Stokes’ theorem to �ndZ
K\�i

! � f 0
 Z
ff=−f 0g\�i

dt−
Z
ff=f 0g\�i

dt

!

+ h0
 Z
fh=−h0g\�i

d’−
Z
fh=−h0g\�i

d’

!
: (5.51)

With regard to the derivation of (5.51), note that the concave side end of �i

makes no contribution to the boundary terms in Stokes’ theorem since both
f and h limit to zero on this end as s limits to in�nity. In any event, the
inequality in (5.51) provides the promised upper bound for the integral of !
since the four path integrals which appear above are determined a priori by the
set I.
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In the case where fw(i)g has no upper bound, the preceding argument still
applies with no extra comments required. With one small revision, this same
argument also applies to in the case where fw(i)g has no lower bound. As
before, there exists such f 0 and h0 so that the set where jf j < f 0 as well as that
where jhj < h0 contain K . Moreover, given that fw(i)g has no lower bound,
the part of �i where either jf j < f 0 or where jhj < h0 has J i = J when i is
su�ciently large. Thus, the inequalities in (5.50) and (5.51) still hold provided
that i is su�ciently large. In particular, (5.51) again provides an i{independent
bound for ! ’s integral over K \ �i .

Step 3 Now consider the �niteness of the integral of ! in the case where either
p0 or q0 is zero. Here, the argument is very similar to the one just given in Step
2. Indeed, the argument in this case requires but one substantial novelty. The
novel part of the argument exploits the fact that the function h has precisely
one non-compact level set when either p0 or q0 is zero. Only the p0 = 0 case
is considered below as the considerations for the q0 = 0 case are essentially the
same.

As the existence of a single non-compact h{level set is proved momentarily,
accept it for now and let h0 denote the value of h on this set. Then, there
exists h0 > 0 which depends only on K , and given i, there exists � > 0 such
that the integral of ! over K \ �i is no more that twice that of ! over the
subset of points in �i where either −h0 < h � h0 − � or h0 + � � h < h0 .
This last conclusion constitutes the novel input. (Even with p0 or q0 zero, there
exists f 0 > 0 such that K is contained in the subset where jf j � f 0 .)
With the preceding understood, turn to the promised justi�cation of the asser-
tion that h has but one non-compact level set. For this purpose, it is necessary
to return to �r(i) . Having done so, the �rst point is that h is bounded on the
(p; p0 = 0) end of �r(i) because ’ could not have an jsj ! 1 limit otherwise.
Indeed, as h has no limits as jsj ! 1 on (q; q0) end of �r(i) and limits to
zero on the concave side end, were h unbounded on the end where (p; p0 = 0),
this end would contain whole components of regular value level sets of h where
Jr = J and where jsj is everywhere large. But, d’ pulls back without zeros
to such a level set, so these properties preclude the existence of ’’s jsj ! 1
limit.

Note that the preceding argument also shows that h must have at least one
non-compact level set, for otherwise there would be a component of a compact
level set which sat entirely at large jsj in the (p; p0 = 0) end of �r(i) .

Now, as h tends to zero on the concave side of �r(i) , tends uniformly to in�nity
on the (q; q0) end of �r(i) and is bounded on the (p; p0 = 0) end of �r(i) ,
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it follows that the non-compact level set of h must have their ends in the
(p; p0 = 0) end of �r(i) . Thus, to prove that there is at most one non-compact
level set of h, it is su�cient to establish the following lemma:

Lemma 5.8 The function h has a unique jsj ! 1 limit on the (p; p0 = 0)
end of �r(i) . In fact the restrictions of h to the large but constant jsj circles in
this end converge as jsj ! 1 in the C1 topology to the constant function.

Proof of Lemma 5.8 Where jsj is large on the (p; p0 = 0) end of �r(i) ,
Jr = J . Thus, by virtue of the asymptotics asserted in Proposition 2.3, this
part of �r(i) can be parameterized as in (2.13) so that the column vector �
with top component x and bottom component w obeys the analog,

@��+ L0� = w�; (5.52)

of (2.15). Here, L0 �
�

0 @�
−@�

p
6

�
and � is a vector with j�je�=� bounded as

�!1 for some positive constant � . (The entries of � are functions of w , w�
and w� with a�ne dependence on the latter two.) Note that it is permissable
to assume that x limits to zero here as �!1.

Now, the point of writing (5.52) is to employ a simpli�ed version of the anal-
ysis that was used in Steps 2{5 of the proof of Proposition 2.3 as given in
Section 2. For this purpose, note that the operator L0 has a zero eigenvalue
with multiplicity 1, the eigenvector has constant top component x and bottom
component w = 0. Meanwhile, L0 ’s smallest positive eigenvalue is

p
6 and the

eigenvector has x = 0 and constant w . Let E+ >
p

6 denote the next smallest
positive eigenvalue of L0 and let −E− denote the largest negative eigenvalue
of L0 . Next, let f+(r) denote the L2 norm, de�ned by integration over the
circle parameterized by � , of the L2 orthogonal projection of �(�; r) onto the
span of the eigenvectors of L0 with eigenvalue greater than

p
6. De�ne f−(r)

in an analogous fashion using the span of the eigenvectors of L0 with negative
eigenvalue. Likewise, de�ne f

p
6(r) to denote the L2 norm of the L2 orthog-

onal projection of � onto the span of the eigenvector of L0 with eigenvaluep
6. According to Lemma 2.5, � has zero component along the zero eigenvalue

eigenvector of L0 .

Here is a key point with regard to the functions f�;
p

6 : As y is bounded, so
each of f�;

p
6 is bounded by �e−

p
6� .

With the de�nitions of f�;
p

6 in hand, then (5.52) implies that for all su�ciently
large �,

� @�f
+ + E+f

+ � �(f− + f
p

6) ,
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� @�f
− − E−f− � −�(f+ + f

p
6) ,

� j@�f
p

6 +
p

6f
p

6j � �(f+ + f− + f
p

6) , (5.53)

where � � �(�) is a positive, integrable function of � on a domain of the form
[�0;1 ). Now, given the bounds f�;

p
6 < �e−

p
6� and the integrability of �(�),

the inequalities in (5.53) can be integrated to yield

f+ + f− � �1(�)e−
p

6� and je
p

6�f
p

6 − cj � �1(�) (5.54)

where c is a constant and �1(�) is a positive function of � on a domain of the
form [�1;1) which limits to zero as �!1 .

These last bounds imply that the restrictions, fh(�; �)g��1 , of h to the large
but constant � circles in the (p; p0 = 0) end of �r limit in the L2 sense to a
constant as �!1. This L2 statement can be readily bootstrapped as in Steps
4 and 5 of Section 2’s proof of Proposition 2.3 to establish that the restrictions,
h(�; �) of h to the large and constant � circles limit pointwise and uniformly
to a constant when � ! 1. Moreover, these same arguments prove that the
derivatives of h(�; �) to all orders converge to zero as �!1.

Step 4 With the results of the previous steps in hand, Proposition 3.3 in [22]
can be invoked to conclude the following: First, there is a �nite, non-empty set
f(Sk;mk)g where fSkg is a set of distinct, irreducible, JT {pseudoholomorphic
subvarieties and each mk is a positive integer. Second, after passing to a sub-
sequence of f�ig (and renumbering consecutively from 1), this set converges
pointwise to CT � [Sk in that

lim
i!1

(supx2(CT\K)dist(x;�i) + supx2(�i\K)dist(CT ; x)) = 0: (5.55)

for all compact sets K � R� (S1 � S2). Third, and here is where the integers
fmkg enter, the sequence of currents de�ned by f�ig converges to the currentP

kmkSk in the sense that if � is any smooth, compactly supported 2{form on
R� (S1 � S2), then

lim
i!1

Z
�i

� =
X
k

mk

Z
Sk

�: (5.56)

By the way, with regard to the conclusion that CT 6= ;, this follows from (5.55)
since �i contains a point on the �xed, compact submanifold in R� (S1 � S2)
where s = 0.

Step 5 Steps 5{9 establish that CT is the image of the thrice-punctured
sphere C0 by a JT {pseudoholomorphic map, is disjoint from the � 2 f0; �g
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locus, and has its ends constrained by I as those of C 0 are by the third point
of (5.42). Given the above, then Lemma 5.7 follows immediately when the
sequence fw(i)g is unbounded as then JT = J . In the case where fw(i)g is
bounded, then T = 1 since � is open; thus JT = J and Lemma 5.7 again
follows.

This step starts the task by verifying that CT is an HWZ subvariety. In this
regard, remember that an HWZ subvariety is characterized by the requirement
that the exterior derivative of the contact form for S1 � S2 has �nite integral
over both the concave side and the convex side ends. Here, the contact form is
−(1− 3 cos2 �)dt−

p
6 cos sin2 �d’, and its exterior derivative is integrable over

each end of �i . Indeed, the value of this integral is bounded independent of
the index i, for an application of Stokes’ theorem identi�es it only as a function
of the integers in the set I . Now, as the exterior derivative of the contact
form restricts to any J {pseudoholomorphic subvariety as a non-negative form,
it follows that this exterior derivative is a non-negative form on the ends of CT .
Thus, (5.56) and the dominated convergence theorem guarantee the �niteness
of the integral of this 2{form over each end of CT .

Step 6 This step veri�es that CT avoids the � 2 f0; �g locus. In particular, it
follows from (5.55) that sin � > � on CT granted that such is the case on each
�i . To �nd such an �, remember that each J i agrees with J where sin � < � .
With this understood, take � to be less than the minimum of �; (2=3)1=2 and
the values of sin �0 on the closed Reeb orbits that correspond to the integers
in the set I . The set of points in �i where sin � < � is then compact and
J {pseudoholomorphic. Were it non-empty, then the function h=f on each
component would have a �nite minimum or maximum depending on the sign of
cos � . However, as previously established, this function doesn’t have �nite local
maxima or minima on a region in a J {pseudoholomorphic subvariety which
avoids the � 2 f0; �g locus.

Step 7 The topology of CT is the subject of Steps 7 and 8. The story starts
with a brief digression to recall that the critical point of df on each �i occurs
on the s = 0 locus. As this locus is compact, so the critical value, fi , of f on
�i takes values in some compact and index i independent interval of R. Thus,
there is an in�nite subset of indices i for which the corresponding set ffig
converges. Pass to this subsequence when considering f�ig and then renumber
consecutively from 1. With this now understood, let f0 denote the limit of the
set ffig.
To continue, remark that each end of CT has an associated pair of integers
(m;m0) which is characterized in part by the condition that md’−m0dt restricts
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to the end in question as an exact form. In this regard, the large and constant jsj
slices on the end are circles which converge as jsj ! 1 to a multiple wrapping
of a closed, Reeb orbit, whose �0 values is determined by the quotients of m and
m0 by their greatest common divisor. Up to the action of the group T , the sign
of m or m0 �nishes the speci�cation of this closed Reeb orbit. Meanwhile, the
greatest common divisor of m and m0 is the multiplicity by which the constant
jsj circles wrap the limit closed Reeb orbit.

With the preceding understood, suppose that a given convex side end of CT is
characterized by (m;m0) with m 6= 0. Then, for all c � 1, the jf j = c level
set in CT has a component in this end. It then follows from (5.55) that the
jf j = c level set of �i lies in a tubular neighborhood of the jf j = c level set of
CT when i is large, and so the integral of the 1{form md’ −m0dt about the
jf j = c level set in �i is zero. However, the integral of the form md’ −m0dt
about any component of a large and constant level set of jf j in �i must be a
non-zero multiple of either mp0 −m0p or else mq0 −mq . Indeed, this can be
seen by using Stokes theorem to compute these integrals for �i in the limit
that c ! 1. This implies that m0=m is either p0=p or q0=q . Moreover, it
then follows from (5.56) that the signs of m and p agree in the former case,
while those of m and q agree in the latter. Finally, as there are precisely two
components to the jf j = c locus in �i when c > jf0j, so (5.55) and (5.56) have
the following additional consequence: There are two m 6= 0 convex side ends to
CT , one with (m;m0) = a−1(p; p0), the other with (m;m0) = b−1(q; q0). Here,
a and b are positive integers.

Slight modi�cations of the preceding arguments also prove that CT has a single
m 6= 0, convex side end; and for this end, (m;m0) = c−1(p+ q; p0 + q0) where c
is a positive integer.

Step 8 Now consider the possibility that CT has an end with m = 0. If such
an end were on the convex side of R� (S1�S2) and if h > 0 on this end, then
such an end would contain a circle component of the jhj = � level set for all
� � 1. Moreover, dt would restrict to this circle and thus to a neighborhood
as an exact 1{form. The absurdity of this conclusion in the case where neither
p0 , q0 nor p0 + q0 is zero can be seen as follows: Under this last assumption,
the 1{form dh also has exactly one critical point on each �i . This follows from
from the fact that d’ has but one zero, and that J 0 maps d’ into a multiple of
dh. (The latter point follows from (5.28), (5.37) and (5.38).) Thus, as long as
� is not the absolute value of the critical value of h on a given �i , there are two
components to the jhj = � level set, both circles and dt is not exact on either
one since neither p, q , or (p + q) is zero. Thus, (5.55) forbids a convex side
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m = 0 end in this case. A completely analogous argument forbids a concave
side m = 0 end when neither p0 , q0 nor p0 + q0 is zero.

On the other hand, if p0 were zero, then h has precisely one non-compact level
set on �i because, as argued in Step 3, it has but one such on �r(i) . Now,
either � is less than or greater than the value of h on its non-compact level
set. If either, then the h = � level set has a single component and qd’ − q0dt
is zero on this component, not dt.

Modulo some straightforward notational changes, this last argument rules out
the case q0 = 0 too. Thus, the only case left to consider has p0 + q0 = 0. In
this case, the locus on �i where jhj = � > 0 consists of a pair of circles, and
pd’− p0dt is not exact on both, so dt can’t be exact on either.

Step 9 With the preceding understood, it follows that CT has two convex side
ends and one concave side end, with integers a−1(p; p0) and b−1(q; q0) associated
to the convex side ends, while c−1(p + q; p0 + q0) is associated to the concave
side end. Here, a, b and c are positive integers. Moreover, the integers a, b
and c are constrained by the requirement that p=a + q=b = (p + q)=c and its
analog using p0 and q0 . In particular, because � 6= 0, these constraints require
a = b = c. The next paragraph establishes that CT is the image of C0 via a
JT {pseudoholomorphic immersion, and the subsequent paragraph then argues
that a = b = c = 1 and thus ends the proof of Lemma 5.7 where neither p, q
nor p+ q is zero.

To argue that CT is the image of C0 via a JT {pseudoholomorphic immersion,
�rst observe that the function f has precisely one critical value on CT , this
being f0 . Indeed, a critical value at some f = f1 must change the connectivity
of the constant f level sets as this critical value is crossed. When the index
i is large, such a change must also occur near the f = f1 level set on �i . In
particular, such a change happens only at the critical value of f on �i , and as
these critical values tend to f0 as i tends to in�nity, so it follows that f1 = f0 .
Moreover, the fact that there are at most two points in �i which share any
given (t; f) value implies that there is precisely one critical point of f on CT ,
and that the latter is non-degenerate. Then, Euler characteristic considerations
imply that CT is the image of C0 via a JT {pseudoholomorphic map and Lemma
5.6 implies that this map is an immersion.

Now consider the assertion that a = b = c = 1. For this purpose, let R be very
large and let CRT � CT denote the subset where two constraints are obeyed:
First, jf j � R; and second, jf j � 1=R at the points where s � (2

p
6)−1 lnR.

For large R, this is a smooth manifold with boundary, where the boundary
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consists of three circles, one on each end of CT . Let �R
i � �i denote the

analogous set. Being immersed, CT has a well de�ned normal bundle, and
then when i is large with R �xed, �R

i lies in the image of a disk subbundle
via the exponential map. Moreover, the normal bundle lifts to C0 , and the
restriction of its projection to the inverse image of �R

i can be used to de�ne a
proper covering map from C0 to itself whose degree is the integer a. However,
this means that a = 1 as Euler characteristics behave multiplicatively under
coverings.

Step 10 This step and Step 11 discuss the proof of Lemma 5.7 in the case
where one of p, q or p+ q is zero. In all of these three cases, the arguments are
much like those used in the preceding steps to prove the lemma when none of p,
q and p+q is zero. In particular, only the signi�cant di�erences are highlighted
and the details are left for the most part with the reader. Only the p = 0 case
is given below as the q = 0 and p+ q = 0 discussions are completely analogous
to the p = 0 one.

As indicated above, this step and the next assume that p = 0. For this case, as
in Step 1, the argument begins with a de�nition of the sequence fw(i)gi=1;2;::: .
However, the task here requires a preliminary digression. To start the digres-
sion, choose some small, constant � which is neither 0 nor q=q0 . For such a
choice, the form dt − �d’ restricts without zeros on the closed Reeb orbits
that are de�ned by the ends of �i . As argued in the proof of Lemma 5.6,
this form, d� , has but one zero on �i , with the latter non-degenerate and of
hyperbolic type. Meanwhile, it follows from (5.28) and (5.31{32) that the form
J 0 � (dt− �d’) has can be written as �0df + �0dh, where �0 and �0 are func-
tions of f and h, and where �0 is positive. Thus, each Jr in (5.48) also sends
dt−�d’ to a 1{form �rdf +�rdh with both �r and �r functions of (f; h) and
with �r > 0. In particular, as �r > 0, there exist smooth functions ur and
�r of f and h, de�ned where sin � > 0 and such that (�rdf + �dh) = e�rdur .
Indeed, with �r > 0, the vector �eld �r@h−�r@f is nowhere zero and nowhere
tangent to the constant h level sets. As a consequence, ur can be viewed as a
measure of distance along the integral curves of this vector �eld starting from
the f > 0 portion of the h = 0 level set.

Note, by the way, that ur varies smoothly with r 2 [0; 1]. Moreover, up to
additive constants, ur is r{independent on the two components of R�(S1�S2)
where jsj is so large that Jr = J .

With the digression now over, choose a sequence fr(i)gi=1;2;::: � � with limit
T . As dur(i) is proportional to Jr(i)(dt−�d’), so the function ur(i) has a single
critical point on �r(i) , and the latter is a non-degenerate saddle point. In any
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event, take w(i) to equal minus the value of the coordinate s at this critical
point. As in Part 1, if the resulting sequence fw(i)g is not bounded, then pass
to subsequence of f1; 2; : : :g for which the corresponding sequence fw(i)g is
non-convergent and either strictly positive and increasing, or strictly negative
decreasing. Then, re-index the subsequence so the labels i are consecutive and
start at 1.

De�ne, as before, the corresponding translated sequence f�ig. With but minor
modi�cations (one such switches the roles of f and h), the argument in Step 3
establish an index i independent bound for the integral of ! over the intersec-
tion of �i with any given compact subset K � R� (S1�S2). A repeat of Step
4 now �nds a subsequence of the indexing set (hence renumbered consecutively
from 1) and data f(Sk;mk)g such that (5.55) and (5.56) hold. Here again,
fSkg is a �nite set of distinct, irreducible, JT {pseudoholomorphic subvarieties
in R�(S1�S2) and each mk is a positive integer. Once again, set CT � [kSk .

Step 11 This step discusses the veri�cation that CT is the image of the thrice
punctured sphere C0 by a JT {pseudoholomorphic map, that CT avoids the
� 2 f0; �g locus, and that its ends are constrained by I as those of C 0 are by
the third point of (5.42). Given the above, then Lemma 5.7 follows as argued
at the beginning of Step 5.

To start, note that the arguments in Steps 5 and 6 work here to prove that CT
is an HWZ subvariety on which sin � enjoys a positive lower bound.

To continue the veri�cation, pass to a subsequence of the index set (hence
renumbered consecutively from 1) so that the resulting sequence of the critical
values of the functions ur(i) on �i converge, and let u0 denote the limiting
value. In this regard, remember that the sole critical point of each ur(i) on
�i sits on the compact, s = 0 locus while fur(i)g converges uniformly to uT .
Thus, the associated sequence of critical values is bounded.

Given the preceding, then the arguments in Steps 7 and 9 apply in this case
after some minor modi�cations and establish that CT has precisely three ends,
two on the convex side of R� (S1�S2) and one on the concave side. Moreover,
the convex side ends are characterized by integers (0; p0) and (q; q0), while
the concave side end is characterized by (q; p0 + q0). Furthermore, the �nal
arguments in Step 9 also apply here after a minor change to prove that CT is
the image of C0 via a JT {pseudoholomorphic immersion. In this regard, the
only substantive modi�cation to the arguments in Steps 7 and 9 involves the
replacement of the function f by uT when level sets are considered on CT , and
the replacement of f by ur(i) when considering level sets on �i .
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(h) Theorem A.4 and the number of double points

This last section explains how Proposition 5.1’s classifying set I determines
Proposition 3.1’s double point number, mC , for any subvariety in I ’s compo-
nent of the moduli space of @ = 2, thrice-punctured spheres. The following
proposition summarizes the story and the remainder of this subsection is then
occupied with its proof. Note that all assertions in Theorem A.4 that concern
the subvarieties from Theorem A.2 follow directly from the next proposition.

Proposition 5.9 Suppose that I = f(p; p0); (q; q0)g obeys the constraints
listed in Proposition 5.1. If C 2 M is parameterized by I as in Proposi-
tion 5.1 then C has only transversal double point singularities. Moreover, the
double point number mC from Proposition 3.1 is one half of the number of
ordered pairs (�; �) 2 S1 � S1 with � 6= �0 , neither equal to 1 and such that
�p�0 q = �p

0
�0 q
0

= 1. For example, mC = 0 if and only if one of the following
conditions hold

� � = 1,

� � = 2,

� There exists a pair (m;m0) 2 f(p; p0); (q; q0); (p+ q; p0+ q0)g with both m
and m0 divisible by �.

For a second example, if � � 3 is prime and the third condition above does
not hold, then mC = 2−1(� − 1).

By the way, the condition in the third point of this proposition is equivalent to
the following:

There exist distinct pairs (a; a0); (b; b0) in the indicated set and
integers, c and c0 , such that ac0 − a0c = 1 and bc0 − b0c = −1. (5.57)

Thus, if mC = 0 by virtue of the third condition in Proposition 5.9, then both
pairs in the indicated set that are not mentioned consist of relatively prime
integers. In any event, an example where the third point holds has p = 2,
p0 = 1, q = 1, q0 = 2 and so � = 3. By comparison, the condition in the third
point of the proposition does not hold in the � = 3 case where p = 4, p0 = 1,
q = 1 and q0 = 1.

Proof of Proposition 5.9 The proof starts with a computation of the double
point number for the spheres in the image of the composition ��� as described
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in Subsections 5c-e. The proof then explains why this double point number is
preserved through the deformations of Subsections 5f and 5g. The details are
presented in six steps.

Step 1 This step computes the corresponding double point number, m� , for
the image in C��C� of the map � that is de�ned in Section 5c via (5.20) from
the set I . In particular, the discussion that follows proves the singularities of
the � image of C0 are purely transversal double points and that each assertion
about mC in Proposition 5.9 also hold for m� . In particular, m� = 0 if and
only if one of the three points in Proposition 5.9 hold, and m� = 2−1(� − 1)
when � � 3 is prime and the third point in Proposition 5.9 does not hold.

With the preceding goal in mind, note that z 6= w 2 C0 are sent to the same
point by � if and only if

zp(1− z)q = wp(1− w)q and zp
0
(1− z)q0 = wp

0
(1− w)q

0
: (5.58)

The �rst observation here is that these equalities admit no non-trivial �rst-order
deformations by virtue of the fact that � 6= 0. Thus, the intersections of the �
image of small open disks in C0 are either empty or transversal.

Here is the second observation: The two equations in (5.58) imply that z� = w�

and also (1− z)� = (1− w)� . Thus,

w = �z and (1− w) = �0(1− z) (5.59)

where � and �0 are distinct complex numbers, neither are equal to 1, and
�� = �−�0 = 1. The fact that m� = 0 when � is either 1 or 2 follows
immediately from this last point. This noted, assume that � > 2 in the
remainder of this step.

With the pair (�; �0) given, subject to the constraints just stated, then the
solutions z and w to (5.59) are given by

z = (1− �0−1)=(1 − ��0−1) and w = (1− �0)=(1 − �−1�0): (5.60)

In this regard, note that there are (� − 1)(� − 2) choices for � and �0 that
satisfy the constraints and no two choices for such a pair determine the same
pair (z;w). Moreover, as z is the complex conjugate of w , no two pair of � , �0

determine either the same z or the same w in (5.60). This last point implies the
claim that the singularities of � are purely transversal double points. Moreover,
it implies that the number m� is half the number of pairs (�; �0), neither 1,
both �{roots of unity, distinct, and such that (z;w) in (5.60) satis�es (5.58).
Thus, m� it is at most 2−1(� − 1)(�− 2).
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Now, not all pairs (�; �0) with neither 1, distinct and both �{roots of unity
produce, via (5.60), a solution to (5.58). In particular, (5.58). places the
following additional constraints on (�; �0).

�p�
0q = 1 and �p

0
�
0q0 = 1: (5.61)

As the solutions to (5.61) are pairs of �{roots of unity, the number m� is
thus seen equal to one half of the number solutions (�; �0) to (5.61) which are
distinct and such that neither is equal to 1. Thus, the general characterization
of m� is identical to Proposition 5.9’s characterization of mC .

Now turn to the characterization of the m� = 0 cases. The �rst part of this
task veri�es that m� 6= 0 unless one of the three points in the proposition hold.
For this purpose, suppose � > 2. Now, �x a primitive �{root of unity, � . This
done, then the pair (� = �q

0
; �0 = �−p

0
) solves (5.61) as does (� = �q; �0 = �−p).

Note that the former obeys the condition � 6= �0 if p0 + q0 6= 0 mod (�) and
the latter if p + q 6= 0 mod (�). Thus, as the third point of the proposition
is not operative, one of these pair, say (�q; �−p), is still a viable candidate for
producing a double point. In particular, the latter fails to produce a double
point only if one of q or p is divisible by �. For the sake of the argument,
suppose that p is divisible by �. This understood, then q is not divisible by �
since p+ q is not. However, as � = pq0 − p0q and p is divisible by � and q is
not, so p0 is divisible by �. But this conclusion is nonsense as the divisibility
of both p and p0 by � invokes the third point of the proposition. Thus, p is
not divisible by �, and by symmetry, neither is q . Thus, m� is non-zero when
the third point of the proposition is not operative.

As m� = 0 if either of the �rst two points in the proposition hold, consider
whether m� is necessarily zero when the third point holds. For this purpose,
suppose, for the sake of argument, that both q and q0 are divisible by �. This
the case, then a solution (�; �0) to (5.61) with � 6= 1 requires �p = 1 and
�p
0

= 1. However, there is no � 6= 1 solution to these last two constraints
because, as noted in (5.57), p and p0 are relatively prime. (To see why such is
the case, �x integers c and c0 such that pc0 − p0c = 1. Then, given that both
�p = 1 and �p

0
= 1, so �pc

0
= �p

0c and thus �pc
0−p0c = 1.)

Analogous arguments deal with the cases where either p and p0 or else p + q
and p0 + q0 are divisible by �.

To �nish the story for m� , consider now the value of m� when � � 3 is prime
and the third point in the proposition is not operative. For this purpose, note
�rst that q and q0 are relatively prime. Indeed, as � = pq0− p0q , any common
divisor of q and q0 must divide �. Thus, as � is prime and not a common
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divisior of q and q0 , so only 1 divides both simultaneously. Likewise, p and p0

are relatively prime. In any event, as q and q0 are relatively prime, there exist
a pair of integers, c and c0 , such that

qc0 − q0c = 1: (5.62)

Note that the pair c and c0 are unique up to adding to c an integer multiple
of q while simultaneously adding the same multiple of q0 to c0 .

Now, given such a pair, de�ne a homomorphism from the group of �{roots of
unity to itself via the formula

� ! �0[�] � �−(pc0−p0c): (5.63)

Note that this homomorphism is insensitive to the choice of the pair (c; c0) in
(5.62).

By virtue of (5.62), the homomorphism in (5.63) has the property that both
(�0[�])q = �−p and (�0[�])q

0
= �−p

0
. Thus, the pair (�; �0[�]) solves (5.61).

Moreover, (5.61) together with the failure of the third point in the proposition
imply that this homomorphism has trivial kernel and no �xed elements. As a
direct consequence, the set of solutions (�; �0) to (5.61) with � 6= 1, �0 6= 1 and
� 6= �0 are parameterized by the non-trival �{roots of unity via � ! (�; �0[�]).
In this regard, note that one element of a solution pair to (5.61) determines the
other member in the case where � is prime. In any event, as there are �− 1
non-trivial �{roots of unity, so m� = 2−1(�− 1) as claimed.

Step 2 This step counts the number of intersections between the � image of
C0 and the image of the map that has the form of (5.20) but with a0 di�erent
from the choice for �. For this purpose, �x (a; a0) for �, some non-negative
real number � � 1, and another small number � > 0. Note that when neither
p, q nor p+ q is zero, then � = 0 is a permissable choice, but not so otherwise.
In any event, with these parameters chosen, let �� denote the version of (5.20)
where (a; a0) are replaced by (ei��a; ei�a0). A straightforward argument along
the lines of the derivation of (5.20) �nds that the images of � and �� intersect
in

1 + 2m� + (gcd(p; p0)− 1) + (gcd(q; q0)− 1) + (gcd(p + q; p0 + q0)− 1) (5.64)

points. Moreover, all of these intersection points count with weight +1 to the
intersection number between �(C0) and ��(C0).

By way of an explanation of the various terms in (5.64), note that for small
�, the left most term, 1, is contributed by an intersection very near the single
critical point of �. Of course, the 2m� term counts the intersections near the
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double points of �. The other terms count intersections that are, for small �,
in the � images of points that have distance d on the Riemann sphere that is
o(�) from one or another of the punctures. In particular, for each such point,

�−1j�j � d � �j�j (5.65)

where � � 1 is independent of the point, � (if less than 10−3 ) and the param-
eters r , a and a0 that appear in (5.20). However, � depends on � if one of p,
q or p+ q vanishes.

For example, the contribution of the term that is third to the left, 1 less than
the greatest common divisor of p and p0 , counts the number of intersection
points whose �{inverse image have distance d as in (5.65) from the puncture
at the origin in C. The next term counts points whose �{inverse image has
distance d from 1 2 C; and the right most term counts those whose �{inverse
image has distance 1=d from the origin in C.

Step 3 With � and � chosen, make the parameter r in (5.20) very large and
make the parameters R0 , R1 and R1 in the de�nition of Section 5d’s map �
extremely large as well. With such choices, the composition � �� immerses C0

in R�(S1�S2) as described in Section 5e. Note that ��� also immerses C0 in
R� (S1 �S2). Moreover, if the parameters r , R0 , R1 and R1 are su�ciently
large, then the intersection points between the � � � and � � � images of C0

are the images under � of the corresponding � and �� versions in C� � C� .
Indeed, this conclusion follows from (5.65) and Lemma 5.5.

With the preceding understood, choose one of the R’s worth of subvarieties
C 2 MI that approaches � � �(C0) as jsj ! 1. This done, let C� 2 MI

denote the image of C under the action of the subgroup of T that sends the
coordinate ’ to ’ + � and the coordinate t to t + ��. Thus, the large jsj
asymptotics of C� are identical to those of � � �� .

With C and C� de�ned, here is the key point to take from this step:

The intersection number of C with C� is given by (5:64): (5.66)

As explained next, (5.66) follows from homological considerations. Indeed, �x
some small neighborhood, U � S1 � S2 of the closed Reeb orbits in C ’s limit
set that is disjoint from its rotated version, U� . This done, then there exists
s0 � 1 so that the constant jsj > s0 slices of C and also � � �(C0) lie in U
while those of C� and � � ��(C0) lie in U� . Now, remark that for su�ciently
large s0 , the homology classes de�ned by C and � � �(C0) are homologous rel
the set of points (s;w) 2 R � (S1 � S2) with jsj � s0 and w 2 U . Likewise,
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the classes de�ned by C� and ����(C0) are homologous rel those points (s;w)
where jsj � s0 and w 2 U� . These last two points imply (5.66).

Step 4 For each large s0 , view the number of jsj < s0 intersections between
C and C� as a piece-wise constant function, f(�; s0), of the parameter �. As
explained below, the � ! 0 limit of f(�; s0) exists for all s0 su�ciently large
and this limit is equal to 2mC + 1. Granted this last conclusion, then the value
of mC can be found by counting the the large jsj intersections of the small �
versions of C and C� . The latter task occupies Steps 5 and 6 below.

To verify that asserted � ! 0 behavior of f(�; s0), reintroduce the C{version
of the normal disk bundle N0 ! C0 and its exponential map q : N0 ! R �
(S1�S2) as described in (3.12). Thus, C is the image via q of the zero section
of N0 . Moreover, given s0 , then the jsj � s0 portion of C� is obtained as the
composition of q with a section, �� , of the normal bundle N ! C0 that lies in
N0 over the jsj � s0 portion of C and whose norm is everywhere bounded by
j�j. This then implies that the number of jsj � s0 intersections of C and C� is
equal to the sum of twice mC with the algebraic count of the zeros of �� that
lie where jsj � s0 .

To prove that the latter count equals 1, remember that fC�g is constructed
by the action of the 1{parameter subgroup of T generated by �@t + @’ . This
implies that j�j−1�� converges pointwise on C as �! 0 to the section of N that
is obtained by projecting the vector �eld �@t + @’ onto C0 ’s normal bundle. In
this regard, the latter vanishes only at the critical point of the 1{form dt−�d’,
for then �@t + @’ is tangent to C . Now, as argued in Section 4f, the generic
� version of the 1{form dt − �d’ has a single, non-degenerate zero on C . In
fact, unless one of p, q or p+ q is zero, such is the case for the � = 0 version.
In any event, the preceding implies that the generic � and su�ciently small �
versions of �� have one zero, this with multiplicity one sitting very close to the
zero of dt.

Step 5 The proof of Proposition 5.9 is completed here and in Step 6 with the
veri�cation of the following claim:

Let (m;m0) denote either (p; p0), (q; q0) or (p+q; p0+q0). There are
gcd(m;m0) − 1 intersections between C and the small � versions
of C� at very large values of jsj on the corresponding (m;m0) end
of C . (5.67)

With regards to this claim, note that it follows immediately when gcd(m;m0) =
1 from the identi�cation in the previous step of the small � limit of �−1�� . This
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understood, suppose that gcd(m;m0) = n > 1. Also, suppose that m 6= 0. The
m = 0 cases are treated by analogous arguments and so left to the reader.

To begin, use (2.13) to parameterize the large jsj portion of the end in ques-
tion using coordinates (�; �) 2 Z=(2�jmjZ)� [�0;1) and functions x(�; �) and
w(�; �). In this regard, no generality is lost by assuming that both jxj and jwj
tend to zero as � ! 1, and as indicated in Proposition 2.3, their sizes are
O(e−��) at large � where � > 0 is constant. This said, then the analogous end
of the small C version of C� is parameterized using coordinates (�; �) with the
pair (x;w) replaced by (x+ ��;w) where � � 1 + �m0=m is positive when � is
very small.

Given the preceding, it then follows that the intersections at large � on the
(m;m0) end of C occur at and only at the values of (�; �) where

x(�; �) = x(� + 2�rm=n; �) + �� and w(�; �) = w(� + 2�rm=n; �) (5.68)

for some r 2 f1; : : : ; n − 1g. Thus, (5.67) follows by demonstrating that there
exists, for each such r and for small �, precisely one pair (�; �) where (5.68)
holds. The remainder of this step argues that there is at least one pair (�; �)
where (5.68) holds for any given r . The subsequent step proves that there is at
most one such pair for each r .

To establish that (5.68) can be solved, note �rst that the zero locus of the
di�erence, w � w(� + 2�rm=n; �) − w(�; �) intersects each large and constant
� circle. This follows from the fact that the average of w over such a circle
is zero. Let x denote the corresponding di�erence of the values of x. Then,
as a direct consequence of the discussion in Step 7 of Section 2a, the w = 0
locus has the structure of an oriented, embedded graph. Here, the orientation
is given by the restriction of the 1{form dx. To elaborate, this graph has the
following properties:

� Each vertex is a w = 0 critical point of w .

� Each edge is an embedded, open arc, disjoint from the vertices and from
all other edges.

� The 1{form dx has nowhere zero pull-back to the edges.

� The intersection of the graph with some open neighborhood of each vertex
is a �nite union of embedded, half open arcs with endpoints lying on the
vertex, but disjoint otherwise. Moreover, the tangent lines to the arcs
at the vertex are well de�ned and disjoint. The interior of each arc is
part of an edge of the graph. The number of such arcs is non-zero and
even. Exactly half of the arcs are oriented by dx so x increases towards
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the vertex while half are oriented by dx so that x decreases towards the
vertex.

� If �1 � �0 is chosen to be su�ciently generic, then the � = �1 locus
intersects the graph only in its edges and this intersection is transversal.

(5.69)

It is important to note that the conclusions in the preceding paragraph and the
assertions in (5.69) hold for the w = 0 locus and for the same reasons, when w
and x � (x(� + 2�rm=n; �)− x(�; �) are de�ned using any value of r 2 (0; n).

The fact that any r 2 (0; n) version of the w = 0 locus has the structure just
described and the fact that x is a bona�de function implies a great deal about
the large � portion of these loci. The picture of the w = 0 locus drawn below
is based on two consequences of this structure: First, there are no non-trivial,
closed, oriented paths in the w = 0 locus. Second, there are no non-compact,
oriented paths in the w = 0 locus with � unbounded at both ends.

These last two points imply that the w = 0 locus can be described as follows:
Fix su�ciently large �1 > �0 making sure that the � = �1 circle misses all
vertices of the w = 0 locus and such that �1 is a regular value of � on each
edge. This done, there exist three �nite sets, #0; #+ and #− , of oriented paths
in the � � �1 portion of the w = 0 locus. The union of all of these paths is
the whole � � �1 portion of this locus. Meanwhile, no two paths in this union
share any edge, although two paths can intersect at a vertex. The set #0 is
distinguished by the fact that each of its paths have both ends on the � = �1

locus. Meanwhile � is unbounded on paths in either #+ or #− ; each such path
has but one end on the � = �1 circle. The paths in #+ are distinguished from
those in #− by the fact that � is unbounded in the oriented direction on a path
in #+ , while �! �1 in the oriented direction on a path in #− . By the way, as
x ! 0 as � ! 1, these last points imply that x is negative and increasing in
the unbounded direction on the paths in #+ , but positive and decreasing in the
unbounded direction on the paths in #− . Finally, note that as � is unbounded
on the w = 0 locus, neither ’+ nor ’− is empty and these sets must have the
same number of elements.

The preceding picture of the w = 0 locus directly implies the following:

With �2 > �1 and r 2 (0; n) �xed, there exists �1 such that
0 < � < �1 is su�ciently generic, then each � > �2 point where
the �{version of (5.68) holds lies on an edge of a path in ’− .
Conversely, each path in #− contains precisely one � > �2 point
where this same version of (5.68) holds. (5.70)
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Step 6 This step completes the proof of Proposition 5.9 by demonstrating
that the set #− contains at most one element. To start the demonstration,
remark that the number of elements of #− is constant as r varies in (0; n).
Indeed, this number is locally constant because w vanishes transversely on the
edges of the graph and therefore constant on (0; n) as the latter is connected.

As an aside, note that the number of paths in #0 can change as r varies. For
example, a path in #0 can concatonate at some value of r with one in either #+

or #− . Conversely, a piece of a path in either #+ or #− can become a path in
#0 at some value of r . The fact that the number of elements in #0 can change
is related to the fact that the number of elements in #0 depends on the choice
of the parameter �1 .

In any event, consider the w = 0 locus when r is positive but very small. In this
case, w(�; �) = (2�rn=m)w� (�; �) +O(r2) and so the w = 0 locus converges as
r ! 0 to the locus where w� = 0. In fact, �x a generic �3 � �1 and then take
r very small but positive. Thus, if w(�; �3) = 0 at some � = �3 , then there is
precisely one � 2 (�3; �3 + 2�rn=m) where w� ; (�; �3) = 0. Thus, the � = �3

circle has at least as many zeros of w� as elements in #− [ #+ .

Meanwhile, as x = (2�rn=m)x� (�; �)+O(r2), it follows that x� < 0 on at least
as many of the w� = 0 points on the � = �3 circle as there are elements in #
and x� > 0 on at least as many as there are elements in #− . This said, note
that by virtue of (2.15) or, equivalently, the �rst point in (2.19), the w� = 0
locus is the xu = 0 locus, where u = sign(p)e�� with � de�ned as in (2.15)
from the pair m and m0 via the corresponding angle �0 for the associated closed
Reeb orbit. All of this understood, then the argument subsequent to (4.44) in
Section 4g �nds the absolute value of the Euler class of C0 no less than the
number of elements in #− . Thus, #− has at most one element as claimed.

6 The structure of the @ = 3, thrice-punctured
sphere moduli space

This section describes the moduli spaces of the triply punctured spheres with
three convex side ends that arise in Part d of the third point of Proposition 4.2
and in so doing provides a proof of Theorem A.3. The following proposition
restates the latter for use here:

Proposition 6.1 The components of the moduli space of thrice-punctured,
@ = 3 spheres which arise in Part (d) of the third point in Proposition 4.2 can
be described as follows:
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(A) The components are in 1{1 correspondence with the unordered sets of
three pair of integers that are constrained in the following way: The set
in question, I, can be ordered as f(p; p0),(q; q0), (k; k0)g with

� p+ q + k = 0 and p0 + q0 + k0 = 0.

� jk=k0j >
p

3=
p

2.

� f(p; p0); (q; q0)g obey the three constraints in Proposition 5.1.

In this regard, a set I with an ordering that satis�es these three conditions
has precisely two distinct orderings that satisfy the conditions.

(B) This 1{1 correspondence has the following properties

� The component of the moduli space that is labeled by I � f(p; p0);
(q; q0); (k; k0)g is a smooth manifold that is R� T equivariantly di�eo-
morphic to (0; 1) � R � T . Here, R� T acts on the moduli space via
its isometric action on R� (S1 � S2) and it acts on (0; 1) �R� T by
ignoring the (0; 1) factor and acting as itself on the R� T factor.

� Thus, the quotient of the moduli space by the R � T action is (0; 1),
and an identi�cation is provided by composing the preceding di�eo-
morphism with the projection map from (0; 1) �R� T .

� This quotient has a natural compacti�cation as [0; 1] where the two
added points label the R�T quotient of two components of the moduli
space of thrice-punctured, @ = 2, spheres that arise in Part d of the
third point in Proposition 4.2. Moreover, the relevant components of
the @ = 2 moduli space are labeled as in Proposition 5.1 by the �rst
two pairs from the two orderings of I that obey the three constraints
listed above in Part A.

The proof of this proposition is summarized in Subsection 6d, below. The results
in Subsections 6a-d provide various pieces of the proof. The �nal subsection
explains via Proposition 6.9 how the set I determines the number of double
points of any immersed sphere in its moduli space component. All assertions
of Theorem A.4 about the subvarieties that appear in Theorem A.3 follows
directly from Proposition 6.9.

(a) Initial constraints on the @ = 3, thrice-punctured sphere moduli
spaces

Let C � R � (S1 � S2) denote one of the thrice-punctured spheres under
consideration. As described in Section 4a, each end of C determines a unique,
ordered pair (m;m0) of integers. However, the three pair, f(p; p0); (q; q0); (k; k0)g
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determined by C are not completely independent. Some initial constraints on
this set are:

Constraint 1 No pair in f(p; p0); (q; q0); (k; k0) can vanish identically.

Constraint 2 p+ q + k = 0 and p0 + q0 + k0 = 0.

Constraint 3 � � pq0 − qp0 6= 0.

Constraint 4 If (m;m0) 2 f(p; p0); (q; q0); (k; k0)g and m < 0, then m0 6= 0.

With regard to the third constraint, note that � is also equal to pk0 − kp0

and kq0 − qk0 and thus the � 6= 0 assertion does not require the ordering of
the set f(p; p0); (q; q0); (k; k0)g. The arguments for the �rst three constraints
are analogous to those given in Section 5a for the triply punctured spheres
with @ = 2, and so omitted except for the remark that the second constraint
here di�ers by a sign from the second constraint in Section 5a. The fourth
constraint follows from the observation that an m < 0 and m0 = 0 end would
be asymptotic to the � 2 f0; �g locus.

(b) The structure of each component

Let I � f(p; p0); (q; q0); (k; k0)g denote an unordered set of integer pairs that
obeys the three constraints listed. Given such I , let MI denote the space of
pseudoholomorphic, @ = 3, thrice-punctured spheres from Part d of the third
point of Proposition 4.2 whose ends are described as in (5.1) by I .

An argument that is essentially identical to the one used in Section 5b’s proof of
Proposition 5.2 establishes that each component of MI is a smooth manifold,
R�T equivariantly di�eomorphic to N �R�T ; here N is either a circle or an
interval. As seen below in this subsection N is, in all cases, an interval. The
next proposition makes the o�cial assertion:

Proposition 6.2 Let I = f(p; p0); (q; q0); (k; k0)g denote an unordered set of
pairs of integers that obeys the constraints listed in the statement of Proposition
6.1. Then, every component of MI is di�eomorphic to (0; 1)�R�T . Moreover,
there exists such a di�eomorphism that is R� T equivariant when R� T acts
on MI via its isometric action on R� (S1 � S2), and on (0; 1)�R� T via its
natural action on the factor R� T .

The remainder of this subsection contains the following proof.
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Proof of Proposition 6.2 The proof is lengthy and so divided into seven
steps.

Step 1 Let H �MI denote a component. Suppose C � H and focus attention
on an end of C characterized by integers (m;m0) as in (5.1). In the case where
m 6= 0, this end is parameterized at large values of jsj by coordinates (�; u)
where � 2 R=(2�jmjZ) and sign(m)u 2 [R;1) for some suitably large constant
R. This parameterization is given by (2.19) with p = m and p0 = m0 . Thus,
x and y are functions of � and u, which obey (2.20). In the m = 0 case,
the (0;m0) end of C is parameterized by (�; u) where � 2 R=(2�jm0jZ) and
sign(m0)u 2 [R;1) via (t = t0 + x; f = y; ’ = �; h = u). Here, x and y are
functions of � and u which obey the version of (2.20) where the role of (t; f)
are switched with that of (’; h).

The following lemma describes the juj ! 1 behavior of y for any pair (m;m0).
For this purpose, introduce

�0 � 4j cos �0jjm0=mj(1 + (m0=m)2 sin2 �0)−1: (6.1)

Note that �0 is determined by the pair (m;m0).

Lemma 6.3 The restrictions juj�0y(�; u) to the constant u circles converge
in the C1 topology as juj ! 1 to the constant function. Moreover, the
assignment to each C 2 H of the resulting constant de�nes a smooth function
on H .

Proof of Lemma 6.3 The convergence of y(�; u) in the case where m0 = 0
is stated and proved as Lemma 5.8 in the previous section. Save for nota-
tional changes, the m0 6= 0 cases have the identical argument. For example,
in the cases where m 6= 0, one should set w � 6−1=2(1 + (m0=m) sin2 �0)−1=2

y=(u sin2 �) and � � (1 + (m0=m)2 sin2 �0)−1=26−1=2 ln(juj). This done, then
(5.52) holds for � provided that the

p
6 in the lower right entry in L0 is replaced

�1 = (1+(m0=m) sin2 �0)1=2(
p

6+�0). The modi�cations to the argument given
subsequent to (5.52) are of a similar nature.

With the preceding understood, let Y : H ! R denote the function which
assigns to C the juj ! 1 limit of the C version of juj�0y(�; u). To prove that
Y has bounded �rst derivative on H , consider that a tangent vector to C in
H can be represented where jsj is large on the (m;m0) end of C by functions
(x0; y0) of � and u which obey the linearized version of (2.20). Moreover, jx0j
and jy0=uj are bounded as juj ! 1. With this understood, essentially the same
argument that proved Lemma 5.8 proves that juj�0y0 also has a unique limit as
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juj ! 1. The latter conclusion implies that the function Y is at least Lipschitz
on H . The behavior of the higher order derivatives of Y can be analyzed in a
similar manner using the parameterization of a neighborhood of C in H that
is provided by Proposition 3.2 and Steps 5 and 6 of its proof. The details of
this analysis is straightforward and so omitted.

Step 2 The purpose of this step is to highlight and then prove the following:

Lemma 6.4 The set I = f(p; p0); (q; q0); (k; k0)g has a canonical element for
which the corresponding function Y : H ! R described by Lemma 6.3 is never
zero. In this regard, if (k; k0) denotes the canonical element, then k < 0 and
k0 6= 0.

Proof of Lemma 6.4 As is demonstrated below, this constraint is a con-
sequence of C ’s avoidance of the � 2 f0; �g locus. To start the argument,
consider an end of C where the integer m is not zero. Then the ratio h=f is
de�ned at large jsj on this end and for large jsj, behaves as

h=f = (m0=m) sin2 �0 + sign(m)juj−�0−1(Y + o(1)) :

In particular, when m0 and Y have the same sign, then jh=f j > jm0=mj sin2 �0

at large jsj on this end; and when their signs di�er, then jh=f j < jm0=mj sin2 �0

at large jsj on the end in question.

To see where this leads, note that at least one of p, q , and k is negative. If
one, denote it by k . If two, then, as argued in the eighth step of Section 5’s
proof of Constraint 4, the number jm0=mj sin2 �0 is smallest for precisely one,
so denote the latter by k . In either case, let C− � C denote the component
of the subset of points where f < 0 which contains the (k; k0) end. Note that
k0 6= 0 because of the fourth constraint in Subsection 6a, above.

With the preceding understood, suppose that the sign of the (k; k0) end’s version
of Y is opposite that of k0 . Then jh=f j at large jsj on this end is less than
its jsj ! 1 limit. Meanwhile, h=f cannot change sign in the closure of C−
since a zero of h on C where f � 0 is precluded when C is disjoint from the
� 2 f0; �g locus. Thus, jh=f j is nowhere zero in C− , diverges as the boundary
of C− is approached, and its in�mum is not its jsj ! 1 limit on C− . This can
happen only if h=f has a local extreme point in C− which is a forbidden event
as (4.21) makes h=f subject to the maximum principle. In this regard, a point
must be added in the case where the f = 0 locus is non-compact. For such to
happen, then one of p and q must be zero, say p. This implies that the large
jsj portion of the f = 0 locus sits on the (p = 0; p0) end of C . However, jhj
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diverges at large jsj on this end, while Lemma 6.3 guarantees that f limits to
zero as jsj ! 1 on this end. Therefore, jh=f j diverges on the (p = 0; p0) end
of C as well.

Now consider the possibility that Y = 0 for this same (k; k0) end of C . Were
such the case, the argument given below establishes that there are still points at
large jsj on this end where jh=f j < jk=k0j sin2 �0 . Thus, the argument from the
previous paragraph applies and yields the same contradictory conclusions. With
the preceding understood, suppose that Y = 0 on an end of C characterized
by integers (m;m0) with m 6= 0.

For this purpose, return to the (m;m0) version of (2.20). Set v = sign(m)u and
view w � sin−2 �y as a function of � and v . With these changes, the second of
the equations in (2.20) has the schematic form

x� = wv + �0v
−1w + r(w); (6.2)

where jr(w)j � �v−1w2 with � some constant. This last equation yields an
impossible conclusion under the assumption that y and thus w have a de�nite
sign at large values of v . To see how, introduce w(v) �

R
w(�; v)d� to. Then

(6.2) implies that

j(v�0w)vj < �v�0v−1

Z
w2(�; v) d� : (6.3)

Now, as Y = 0, so limv!1 v�0w = 0 and so integration of (6.3) yields the
inequality

v�0 jw(v)j < � sup
v0�v

(v
0�0 jw(v0)j) j

Z
v0�v

w(v0)v
0−1 dv0j : (6.4)

Note that the derivation of (6.4) exploits the lack of a sign change in w . In any
event, recall that �0 > 0, and thus (6.4) implies that

v�0 jw(v)j < � 0v−�0 sup
v0�v

(v
0�0 jw(v0)j) (6.5)

where � 0 = 2��−1
0 sup(v

0�0 jw(v0)j). Of course (6.5) asserts the ridiculous when
v is large.

An argument that is almost identical to that just given also establishes the
following:

Lemma 6.5 If there is a single (m;m0) 2 I with m > 0, denote the latter by
(p; p0). If there are two m > 0 pairs in I and if m0 has the same sign for both,
denote by (p; p0) that for which jm=m0j sin2 �0 is greatest. Finally, if there are
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two m > 0 pairs and the corresponding m0 are opposite, denote by (p; p0) that
for which jm0j is greatest. Then, the (p; p0) version of Y is never zero and its
sign is opposite that of p0 .

Step 3 An embedded copy of N in H is obtained by the choice of a slice across
H for the action R � T . For the purpose of de�ning such a slice, remember
that R� T is the subgroup in Isom(R� (S1 � S2)) where the action of the R
factor is generated by @s while @t and @’ generate the actions of the respective
S1 factors of T = S1 � S1 . This said, the de�nition of the slice involves three
conditions. Before these conditions are stated, remark that at least one of the
integers p, q and k must be positive, and with this understood, take (p; p0) as
in Lemma 6.5. Then, the �rst condition assert the vanishing of the constant
term on the right hand side of (5.1) for (p; p0) end of C , and the second asserts
the vanishing of the (k; k0) version of this same constant. As was the case
with the @ = 2 triply punctured spheres, these �rst two conditions force the
vanishing of the (q; q0) version of (5.1)’s right hand side constant term. The
�nal condition on the slice involves the (k; k0) version of the function Y from
Lemma 6.3. According to Lemma 6.4, this function is nowhere zero, and with
this understood, a slice of the R factor in R� T is obtained by requiring that
jY j = 1. Here, it is important to note that a 2 R � R � T sends Y to
e−
p

6(1+�0)aY .

Step 4 With N � H so identi�ed, de�ne a function, F : N ! R by assigning
to each C 2 N the value of the (p; p0) end version of the function Y . With F
understood, then Proposition 6.2 is an immediate consequence of

Lemma 6.6 So de�ned, the function F has no critical points on N .

The proof of Lemma 6.6 occupies this step and the next two steps in Proposition
6.2’s proof.

Proof of Lemma 6.6 To begin the proof, suppose, for the sake of argument,
that C 2 N were a critical point of this function F . To study the implications
for C , it is important to remember that the tangent space to C in H consists
of the 4{dimensional space of bounded sections of C ’s normal bundle that are
annihilated by the C version of the operator in (3.5). In this regard, remem-
ber that C is the image of C0 via a pseudoholomorphic immersion and so the
pullback of T (R� (S1�S2)) via this immersion splits orthogonally as a direct
sum of oriented, J {invariant 2{plane bundles. The di�erential of the immer-
sion canonically identi�es one of these subbundles with TC0 ; the orthogonal
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complement of the latter is the ‘normal bundle to C ’ in R� (S1 � S2). Thus,
with a pseudoholomorphic immersion of C0 into R � (S1 � S2) understood,
vector �elds pullback to C0 as sections of the pullback of T (R�(S1�S2)). For
example, the vectors @s , @t and @’ pullback to sections over C0 of the pullback
of T (R� (S1 � S2)).

With these reminiscences now ended, note that THjC has a three-dimensional
subspace which is spanned by the projections onto C ’s normal bundle of the
vector �elds @s , @t and @’ . Denote the latter by �s , �t and �’ , respectively.
The tangent vector, � , to N at C provides a fourth basis element for THjC . In
particular, to say that � is tangent to N at C places three constraints on the
behavior of � , whether or not C is a critical point of F . The assumption that C
is a critical point places an additional constraint on � . As argued subsequently,
these constraints are not mutually self-consistent.

Step 5 This step describes the aforementioned four constraints on � . In
particular, these constraints involve the asymptotics of � on both the (p; p0)
and (k; k0) ends of C . In particular, �x attention �rst on the (k; k0) end of C .
Reintroduce the coordinates (�; u) on this end and then any element of THjC
at large juj can be viewed as a pair (x0; y0) of functions of � and u which obey
the linearized version of (2.20) subject to the constraint that jx0j and jy0=uj are
bounded as juj ! 1. As indicated in the proof of Lemma 6.3, both x0 and
juj�0y0 have limits as juj ! 1. With this point understood, here are the �rst
and second requirements for � : The � version of the functions x0 and y0 obey

� limjuj!1 x0 = 0

� limjuj!1 juj�0y0 = 0 (6.6)

Indeed, these constraints are required for movement along N in the direction
of � to preserve the de�ning slice conditions that come from the (k; k0) end.

By the same reasoning, the (p; p0) version of the function x0 must also satisfy
the �rst point (6.6) if � is to be tangent to N . This is the third requirement
for � . Finally, the (p; p0) version of the function y0 must satisfy the second
point in (6.6) if C is to be a critical point of the function F . This is the fourth
constraint on � .

Step 6 As is demonstrated momentarily, it is impossible for (6.6) to hold at
both the (k; k0) and (p; p0) ends of C . The proximate cause of this incompati-
bility stems from the second point in (6.6) which requires both the (k; k0) and
(p; p0) versions of the function y0 to have zeros at arbitrarily large values of the
coordinate juj. Indeed, the proof that such zeros exist amounts to a linearized
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version of the argument in the proof of Lemma 6.4 that surrounds (6.2){(6.5).
However, more must be said about these zeros of y0 . In particular, both the
(k; k0) and (p; p0) versions of x0 and y0 have the following property:

Given R > 0, there exists � > 0 such that the function x0 take
every value in (−�; �) at some juj > R zero of y0 . (6.7)

The validity of (6.7) is justi�ed below, so accept it for now.

This large juj behavior of the � version of y0 on the two ends of C is used
below to �nd a constant r and two distinct points in C0 where �’ + r� is
zero. But �’ + r� can have at most one zero for the following reason: All of its
zeros count with the positive weight to any Euler class computation. Thus, if
�’+r� has two or more zeros, then a standard perturbation argument provides
at least two zeros for �’ + r� + ��t for any small in absolute value constant �.
Of course, the latter is also annihilated by the operator D , so all of its zeros
also count with positive weight. Thus any Euler number calculation that uses
�’ + r� + ��t gives 2 or more for an answer. On the other hand, for a suitably
generic choice of �, the Euler count of the zeros of �’ + r�+ ��t can be used to
compute the expression he; [C]i − 2mC that appears in Proposition 3.2. And,
as this expression equals 1, so �’ + r� + ��t has but one zero on C0 .

To �nd r which makes �’ + r� vanish at two points, �rst note that on both
(k; k0) and (p; p0) ends of C , the �’ version of the functions x0 and y0 has
x0 � 1 and y0 � 0. Thus, �’ and � are colinear at all (�; u) where the �
version of y0 is zero. With the preceding understood, choose R � 1 and then
take r so that 1=r is less than the smallest of the two � values provided by the
(k; k0) and (p; p0) versions of (6.7). Then (6.7) guarantees a zero for �’+r� = 0
on the (k; k0) end of C and another on the (p; p0) end.

Step 7 It remains now only to justify (6.7). For this purpose, note that the
pair (x0; y0) obey the linearized version of (2.20) and so

x0u = −g−2 sin−2 � y0� + �1y
0 and x0� = sin−2 � y0u + �2y

0; (6.8)

where �1;2 are bounded functions of � and u. Note that (6.8) asserts that
(x0; y0) obeys a Cauchy Riemann equation to order jy0j. In particular, argu-
ments akin to those used in Appendix A of [22] can be brought to bear and
establish the following: First, the simultaneous zeros of y0 and dy0 are isolated
points. Second, the zero set of y0 constitutes an oriented graph, G, whose ver-
tices are these simultaneous zeros. Here, the orientation on the edges is de�ned
by the pullback of dx0 . Finally, each vertex has a non-zero and even number of
incident edges, with precisely half oriented by dx0 to point into the vertex.
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The preceding properties of G have (6.7) as a consequence. To see that such
is the case, note �rst that G has no closed, oriented loops since its orientation
form, dx0 , is the di�erential of a bona�de function. Thus, as there are points
in G where jsj is arbitrarily large, so there is an oriented path in G, starting
on some large, but constant jsj slice and on which jsj is unbounded. Indeed,
such a path is constructed by following an oriented edge until it hits a vertex,
and then continuing out from the vertex along another edge with the outward
pointing orientation. Only �nitely many paths of this sort which start at some
�nite jsj slice will have jsj bounded since none are closed loops and only �nitely
many can intersect any given constant jsj locus. Use up the �nitely many with
both ends hitting a chosen constant jsj locus and then start another at a very
large jsj zero of y0 . The latter must have one end where jsj is unbounded.

Next, remark that y0 is negative on one side of any edge, and positive on the
other; and which side has which sign is determined by the orientation because
(6.8) asserts that dx0 ^ dy0 > 0 where y0 = 0 and dy0 6= 0. In particular, as
y0 is also a bona�de function, there are two distinct paths in G which start
on some large, but constant jsj slice on which jsj is unbounded. More to the
point, jsj ! 1 in the direction oriented by dx0 on one of them, while jsj ! 1
in the direction oriented by dx0 on the other. However, since jx0j limits to zero
as jsj ! 1, so x0 must be negative on the �rst of these paths, and x0 must be
positive on the second. Given that jx0j ! 0 as jsj ! 1, these last conclusions
directly imply (6.7).

(c) The limits on a component of MI

Supposing that MI is non-empty, focus attention on a component H � MI .
As was just proved, H=(R � T ) is an open interval, and so any slice in H of
the R � R � T action is non-compact. This said, the focus here is on the
limiting behavior of non-convergent sequences in such a slice. In this regard,
the discussion is simplest when the integer q from I is non-zero, for in this
case, none of p, q or k is zero and dt has exactly one zero upon pullback to
any C 2 H . In particular, with q 6= 0, a slice, Hs , of the R action on H is
obtained by requiring that s equal 0 at the zero of dt. In the case where one
of p, q or k is equal to zero, choose some � 6= 0 and not equal to one of the
�nite ratios p0=p, q0=q or k0=k . For such �, the form dt − �d’ pulls back to
any C 2 H with but one zero. In this case, a slice, Hs , of the R action on H
is obtained by the condition that s = 0 at the zero of dt− �d’.

The assignment to each C 2 Hs of the maximum of s on C de�nes a con-
tinuous function S : Hs ! [0;1). This function S is proper; as can be
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shown with an essentially verbatim repetition of arguments from Section 5g.
Thus, a sequence fCig 2 Hs has no convergent subsequences provided that
fS(Ci)g is unbounded. In particular, �x attention on such a sequence where
S(Ci) > S(Ci+1). For this sequence, minimal modi�cations of arguments from
Section 5g �nd a subsequence (hence renumbered consecutively from 1) of fCig
which converges as described in Step 4 of Section 5g to one of the @ = 2, triply
punctured spheres from Part d of the third point of Proposition 4.2.

Let C denote this limit triply punctured sphere. Up to the action of T , this
sphere is described by a set IC = f(a; a0); (b; b0)g of pairs of integers with
�C = ab0 − ba0 positive. In this regard, arguments from Section 5g can be
employed to deduce that IC is a subset of I . As is argued below, the pair
(m;m0) from I that is missing from IC obeys

p
3=
p

2 < jm0=mj <1: (6.9)

These last conclusions have the following consequence:

Let I denote an unordered set of pairs of integers that corresponds
to a component of the moduli space of @ = 3, thrice-punctured
spheres from Part d of the third point of Proposition 4.2. Then I
satis�es the three constraints in Part A of Proposition 6.1.

Before discussing (6.9), agree on the notational convention that orders the in-
tegers in I so that IC = f(p; p0); (q; q0)g; thus (k; k0) is the pair from I that is
missing from IC . Now, to prove (6.9), translate the elements in the convergent
sequence fCig by the R{factor in R � T so that S(Ci) = 0. Use fCig � H
to denote the resulting sequence. The zero of dt on Ci now occurs where
s = −S(Ci) and so the corresponding sequence of points has no convergent
subsequence in any part of R� (S1 � S2) where s is bounded from below. Ar-
guments such as found in Section 5g apply now to the sequence fCig and �nd
a subsequence which converges as described in Step 4 of Section 5g to a cylin-
der from Example 6 in Section 4a, parameterized by the pair whose respective
components are the quotients of k and k0 by their greatest common divisor.
This implies that jk0=kj >

p
3=
p

2 because a cylinder with jk0=kj <
p

3=
p

2 is
ruled out by the arguments from Step 6 of Section 5g which �nd �I > 0 such
that sin � > �I on every C 2MI .

Being an open interval, H=(R � T ) has two ends and so two distinct, triply
punctured, @ = 2 spheres can be expected as limits of non-convergent sequences
in Hs . As argued in the next subsection, this is indeed the case; and the next
lemma describes the relation between resulting two versions of Proposition 5.1’s
data set IC :
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Lemma 6.7 Suppose that IC = f(p; p0); (q; q0)g satis�es Proposition 5.1’s
constraints with the additional requirement that k � p + q and k0 � p0 + q0

obey jk0=kj >
p

3=
p

2. Then IC contains a unique pair (m;m0) such that the
following is true:

� jm0=mj >
p

3=2.

� When (m;m0) = (p; p0), de�ne IC0 � f(q; q0); (−k;−k0)g; and when
(m;m0) = (q; q0), de�ne IC0 � f(−k;−k0); (p; p0)g. Then IC0 also sat-
is�es Proposition 5.1’s constraints.

Note here that IC is never the same as IC0 .

Proof of Lemma 6.7 The discussion here considers various cases in turn,
with the sign(p) = sign(q) case treated �rst. Consider �rst the existence of
(m;m0) in this case. To start the story, note that � � pq0 − qp0 > 0 is both
k0p− kp0 and kq0 − qk0 , and as the signs of p, q and k agree, so

q0=q > k0=k > p0=p : (6.10)

Thus, at least one of q0=q or p0=p has absolute value greater than
p

3=
p

2. Note
that the �rst and third constraints in Proposition 5.1 hold automatically for IC0
no matter which of the pair (p; p0) or (q; q0) ends up as (m;m0). Thus, only
the second constraint is open to debate.

For the sake of argument, suppose that k0=k > 0 so that q0=q is guaranteed
larger than

p
3=
p

2. Either the obvious choice, f(−k;−k0); (p; p0)g, for IC0

obeys the constraint of the second point of Proposition 5.1 or not. If not, then
jp0=pj had better be greater than f

p
3=
p

2g, and it is. Indeed, if the obvious
f(−k;−k0); (p; p0)g does not obey the constraint in Proposition 5.1’s second
point, then p0 + k0 must be negative and both p0 and k0 must also have the
same sign unless p0 = 0. Now, p0 6= 0 is precluded by the second point of
Proposition 5.1; the latter requires q0 > 0 when p0 = 0, so k0 = q0 + p0 makes
k0 > 0 when p0 = 0. Thus, both k0 and p0 are negative. Since k0 < 0, so
k < 0 and then the positivity of � = pk0 − p0k requires p < 0. But then
jp0=pj >

p
3=
p

2 by virtue of the third constraint in Proposition 5.1.

Thus, (m;m0) = (p; p0) satis�es the �rst constraint of Lemma 6.7 and so the
set f(q; q0); (−k;−k0)g is also a candidate for IC0 . To verify the second con-
straint of Proposition 5.1, consider the consequences of its violation. This
occurs when q0 > 0 and k0 > 0. But, as previously argued, k0 < 0 or else the
set f(−k;−k0); (p; p0)g would serve for IC0 .

Now consider the uniqueness question for this �rst case when k0=k > 0. In
particular, in the light of the preceding discussion, it is enough to verify that
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f(q; q0); (−k;−k0)g cannot satisfy the requirements of Lemma 6.7 when f(−k;
−k0); (p; p0)g does. For this purpose, note that when −k0 and p0 have opposite
signs then the second point of Proposition 5.1 applies to f(−k;−k0); (p; p0)g to
force k0 > 0 and p0 > 0. If the second point is to apply to f(q; q0); (−k;−k0)g
as well, then q0 must be negative. However, if k0 is positive, then so is k and
thus so is q , and then (6.10) is violated. On the other hand, if k0 and p0 have
the same sign, then k0 and p0 have opposite signs. This requires q0 and p0 to
have opposite signs so q0 > 0 and p0 < 0 by an application of the second point
in Proposition 5.1 to f(p; p0); (q; q0)g. But now the fact that q0 > 0 and k0 < 0
violates this same point when applied to f(q; q0); (−k;−k0)g.

The argument for the case where the signs of p and q agree and k0=k < 0 is
obtained from the preceding argument by changing various signs.

Consider next the case for Lemma 6.7 when p and q have di�erent signs. Again,
the existence question is treated �rst. To start, suppose that p is negative. Thus
(p; p0) obeys the �rst constraint of Lemma 6.7 because of the third constraint
in Proposition 5.1. In this case, IC0 = f(q; q0); (−k;−k0)g does not also satisfy
the constraints from Proposition 5.1 only if both k0 > 0 and q0 � 0. In this
regard, consider �rst the case that k > 0 too. As k and q have the same sign,
the positivity of � demands q0=q > k0=k >

p
3=
p

2, so the (q; q0) pair all obeys
the �rst constraint in Lemma 6.7. Moreover, now IC0 = f(−k;−k0); (p; p0)g
has the same sign for both primed pair and so obeys the second constraint in
Proposition 5.1.

Suppose next that p < 0 and k < 0. As noted, the second constraint of
Proposition 5.1 fails for the corresponding IC0 only when both k0 > 0 and
q0 � 0. However, this last possibility is precluded by virtue of the fact that
� = kq0 − qk0 is positive.

Now suppose that p > 0 and q < 0. Here, the (q; q0) pair obeys the �rst
constraint in Lemma 6.7. The corresponding IC0 does not obey the second
constraint of Proposition 5.1 only when k0 < 0 and p0 > 0. However, this
requires q0 < 0 and so is precluded by the f(p; p0); (q; q0)g version of the second
constraint of Proposition 5.1.

The argument for the uniqueness assertion in Lemma 6.7 for the case where p
and q have di�erent signs is straightforward and left to the reader.

Finally, consider the case where one of p or q vanishes. The existence argument
where p = 0 is given below; the q = 0 existence argument and the uniqueness
arguments are left to the reader as both are reasonably straightforward.
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In the case where p = 0, then p0 6= 0 and so the (p; p0) pair obeys the �rst
condition in Lemma 6.7. The second condition of Proposition 5.1 is violated
for the corresponding IC0 only if q0 > 0 and k0 > 0. Since p = 0, the positivity
of � requires that k and q have opposite sign to p0 . If p0 < 0, then both have
positive sign and q0=q > k0=k >

p
3=
p

2; thus (q; q0) obeys the �rst constraint
in Lemma 6.7. Moreover, the corresponding IC0 obeys the second constraint as
its primed entries have the same sign. Meanwhile, if p0 > 0, then k and q are
negative and now (q; q0) obeys the �rst constraint in Lemma 6.7 by virtue of the
fact that f(p; p0); (q; q0)g obeys the third constraint in Proposition 5.1. In this
case, the corresponding IC0 = f(−k;−k0); (p; p0)g obeys the second constraint
in Proposition 5.1 because its �rst primed entry is negative and the second is
positive.

(d) The existence of @ = 3, thrice-punctured sphere moduli spaces

This subsection gives a construction for points in the moduli spaces that are de-
scribed by Proposition 6.1. For this purpose, �x a set I as described in Part A of
the proposition, and �x one of the two ways to order I as f(p; p0); (q; q0); (k; k0)g
so that the three points of this same Part A hold. The subset f(p; p0); (q; q0)g � I
then labels a component of the moduli space of @ = 2, thrice-punctured spheres
from Proposition 5.1. There is a unique point, C 0 , in this same moduli space
where the following two constraints hold: The �rst constraint requires the van-
ishing of the constant term on the right side of (5.1) for each end of C 0 . The
statement of the second constraint depends on whether or not one of p, q or
p+q is zero. If none vanish, then C 0 is constrained so that the sole point where
dt is zero on TC 0 occurs where s = 0. In the case where one of these integers
equals zero, �x � 6= 0 nor equal to any m0=m for (m;m0) 2 I . With � �xed,
the second constraint requires that s = 0 at the sole point in C where dt+ ed’
is zero on TC 0 .

Now consider that the pair (k0; k) labels a component of the moduli space of
pseudoholomorphic cylinders from Example 6 of Section 4a. To be precise here,
introduce m to denote the greatest, common (positive) divisor of k and k0 , and
then introduce k � k=m and k0 � k0=m. It is the pair (k; k0) that determines
the moduli space. In any event, with S 2 R �xed, the latter moduli space
contains a unique point, CS , where the following two conditions hold: First,
the constant term on the right-hand side of (5.1) is zero for each end of CS .
Second, the maximum value of s is CS is equal to S .

When S � 1, these subvarieties C 0 and CS are used below to construct an
element, C , in the I {labeled component, MI , of Proposition 6.1’s moduli space
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of thrice-punctured. Of course, the construction of C veri�es the existence
assertion of Proposition 6.1. Moreover, certain properties of the construction
are used to prove some of the other assertions (4.15) of Proposition 6.1. In
particular, the latter are described in the following result.

Proposition 6.8 Fix a set, I , of three pair of integers that satisfy the con-
straints in Part A of Proposition 6.1, and �x one of the two orderings I as
f(p; p0); (q; q0); (k; k0)g so as to satisfy these constraints. Given � > 0, there
exists S0 > 1 and an embedding, �, from [S0;1) into HI with the following
properties:

� If C = �(S), then C = C− [C+ where C� are open sets, the (k; k0) end
of C is in C− , the (p; p0) and (q; q0) ends are in C+ , and

supz2C−dist(z;CS) + supz2C−dist(z;C 0) < � (6.11)

� The projection of the image of � to MI=(R � T ) de�nes a proper em-
bedding of the closed half line [S0;1) into MI=(R� T ).

Moreover, if C 2MI and S(C) > S0 +1, then there exists γ 2 R�T such that
γ(C) is in the image of the version of the map � as de�ned by one or the other
of the two orderings of I that satisfy the constraints in Part A of Proposition
6.1.

This proof of this proposition is given momentarily. Accept it for now, and here
is the completion of the following proof.

Proof of Proposition 6.1 Consider �rst the assertions of Part A: The fact
that MI = ; unless I obeys the constraints in Part A was established in Sub-
section 6c, above, while the su�ciency of these constraints follows directly from
the asserted existence of Proposition 6.8’s map �. (Remember that Lemma
6.9 justi�es the claimed existence of two orderings for I that obey Part A’s
conditions.)

As for the assertions in Part B, the claimed structure of a component of MI

as the product (0; 1) � (R� T=ΓI) is proved as Proposition 6.2. The fact that
MI has but a single component follows from the third point of Proposition 6.8.
Finally, the asserted properties of the two point compacti�cation of MI=(R�T )
are direct consequences of the �rst and second points of Proposition 6.8.

The remainder of this subsection contains the following proof.

Proof of Proposition 6.8 The construction of C from C 0 and CS constitutes
a by now standard ‘gluing construction’ for pseudoholomorphic subvarieties.
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Such gluing constructions were �rst introduced by Floer [4] as analogies to
similar constructions that are used to construct self-dual connections on 4{
manifolds. In any event, the details of the construction are left to the reader
save for the outline that follows.

To begin the outline, remark that all of the gluing construction can be construed
in the following way: The subvariety C is obtained from a small normed section,
� , of certain complex line bundle over C0 . Here, this line bundle is the normal
bundle to a symplectic immersion of C0 whose image is very close to C on
the s < 3S=4 portion of the latter and whose image is very close to CS on
the complement of the s < −S=4 portion of this cylinder’s (−k;−k0) end.
To be more explicit, the image of this immersion agrees with C 0 on the s <
−S=4 portion of the latter and it sits very close to CS on the complement
of the s < 3S=4 portion of this cylinder’s (−k;−k0) end. In particular, near
this part of CS , the immersion is an embedding obtained by composing the
exponential map from (3.12) with a suitably chosen, m-multivalued section of
the cylinder’s normal bundle. Then, where s 2 [−S=4; 3S=4], these two portions
of the immersion are extended and sutured together using cut-o� functions.

In any event, the resulting immersion of C0 is everywhere symplectic and pseu-
doholomorphic for an almost complex structure that is pointwise close to J ,
even where s 2 [S=4; 3S=4]. (Proposition 2.3 is needed for this last conclusion.)
With the immersion of C0 constructed, the subvariety C is the image of the
composition of a section, � , of C0 ’s normal bundle with an exponential map
such as that used in (3.12).

De�ned as it is by � , the subvariety C is pseudoholomorphic provided � solves
an inhomogeneous version of the C0 version of the equation in the third point
of (3.12). In this regard, �x n � 0 and then the relevant inhomogeneous
term is O(eS=�) as measured with the L2

n;� norm in (3.14). Here, � � 1 is
independent of S when the latter is large. (Proposition 2.3 is required to
obtain these bounds.) The implicit function theorem can be employed as in
Step 1 of the proof of Proposition 3.2 to �nd a small pointwise norm solution to
this inhomogeneous equation which is L2 orthogonal to the kernel of D . The
existence of such a solution veri�es the �rst point of Proposition 6.8.

Of course, the application here of the implicit function theorem to the inho-
mogeneous version of (3.12) requires some sort of S independent bound on the
norm of the inverse of the operator D that appears in this version of (3.12).
In the case at hand, such a bound exists when S is large; its existence follows
from the fact that the analogous D has trivial cokernel on both C 0 and on the
m{fold covering space of CS . The fact that the C 0 version of D has trivial
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cokernel is proved as Proposition 4.6. Analogous arguments, or a separation of
variables analysis can be used to establish this same conclusion for the opera-
tor on the m{fold cover of CS . (Remember that CS is invariant under an S1

subgroup of T .)

The use made here of the implicit function theorem has the second point of
Proposition 6.8 as a straightforward consequence.

Implicit function theorem conclusions typically have uniqueness as well as ex-
istence rami�cations, and the former play a key role in the proof of the �nal
assertion of Proposition 6.8. In particular, as applied here, the implicit function
theorem can be used to prove that � is the only small pointwise norm solution
to this inhomogeneous equation which is L2 orthogonal to the kernel of D .
This last conclusion has the following consequence:

There exists � > 0 such that if S is large and if a given C 2MI

has all points distance � or less from CS [ C 0 , then there exists
γ 2 R� T such that γ(C) is in the image of �. (6.12)

With (6.12) understood, the proof of the �nal assertion of Proposition 6.8 begins
by noting that the two orderings of I that satisfy the constraints of Part A of
Proposition 6.1 each de�ne, for S � 1, a pair (CS ; C 0). Then, the arguments
from Section 6c lead to the following conclusion: Given � > 0, a good portion
of the points in C have distance � or less from one of these versions of CS [C 0
when S(C) is large. To be more precise, �x R > 1 and there exists S0 such that
when S(C) > S0 , then the portion of C with distance less than � from CS [C 0
contains all points except possibly those in the set, U , of points that both lie
in the bounded component of the locus in C ’s (k; k0) end where s � S(C)−R,
and lie where s � R.

This said, turn attention to the subset U . For this purpose, reintroduce the
cylinder C where both k’ − k0t = 0 and h=f = (k0=k) sin2 �0 . According to
Proposition 1.2, when R is large, then all of the s � S(C) − R half cylinder
in CS whose boundary is nearest to U has distance less than e−R=� from C .
The same is true for the s � R half cylinder in C 0 . Here, � � 1 can be taken
to be independent of R. (Remember that jk0=kj >

p
3=
p

2 and that sin2 �0 is
bounded away from zero.) With these points taken, the manner of convergence
described in Section 6c implies the following: When � is �xed, R is large, and
then S(C) is very large, the points in U where s = R or s = S(C)R obey

jk’− k0tj < �2 + 2e−R=� and j(h=f)− (k0=k) sin2 �0j � �2 + 2e−R=� : (6.13)
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Now, as remarked previously on many occasions, both k’ − k0t and h=f are
subject to the mercy of the maximum principle. This implies that jk’ − k0tj
is bounded by �2 + 2e−R=� on the whole of U , as is j(h=f) − (k0=k) sin2 �0j
provided that f 6= 0 on U . In this regard, the convergence described in Section
6c implies that the sign of f is that of k on both boundaries of U , and as f is
also subject to the maximum priniciple, so f is, indeed, nowhere zero on U .

Next, remark that as U lies in the (k; k0) end of C and is far from a critical
point of f (where s = 0), so it can be parameterized as in (2.19) by variables
(�; u) using the functions (x; y) of (�; u). The conclusions of the previous
paragraph now translate as the assertion that both jxj and juj−1jyj are bounded
by �2 + 2e−R=� on U .

The preceding point is relevant because the metric distance of a point in U
from the cylinder C is bounded by �(jxj + juj−1jyj) where � is independent
of R and � when S(C) is large. Thus, small �, large R and very large S(C)
implies that C obeys the assumptions in (6.12) for one or the other of the two
possible versions of CS [C 0 that are provided by I .

(e) The number of double points

The next proposition describes the double point number mC of a subvariety C
that comes from any of the moduli space components that appear in Proposition
6.1. In particular, this proposition directly implies all assertions of Theorem
A.4 that concern subvarieties from Theorem A.3.

Proposition 6.9 Let I = f(p; p0); (q; q0); (k; k0)g satisfy the requirements in
Proposition 6.1 so as to describe a component of the moduli space of @ = 3,
thrice-punctured spheres that appear in Part d of the third point of Proposition
4.2. Let C denote some subvariety in this component of the moduli space.
Then, mC is equal to one half of the number of ordered pairs (�; �0) 2 S1 � S1

with � 6= �0 , neither equal to 1 and such that �p�
0q = �p

0
�
0q0 = 1.

Note that the count for mC is the same as that given in Proposition 5.9 for the
case when f(p; p0); (q; q0)g determine the latters moduli space component. This
said, it follows that mC = 0 here if and only if either jpq0 − p0qj is one or two,
or if both integers in at least one of the pair (p; p0), (q; q0) and (k; k0) is evenly
divisible by pq0 − qp0 .

By the way, in spite of the appearance to the contrary, the preceding and
Proposition 6.9’s count of mC is insensitive to the ordering of the set I .
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The remainder of this subsection contains the following proof.

Proof of Proposition 6.9 Let C be as described in the proposition, and,
with � small and su�ciently generic and � > 0 but small, let C� denote the
translate of C via the element in T that moves t to t + �� and ’ to ’ + �.
Here, � is chosen so that the Reeb orbits that are determined by C are pairwise
distinct from those deterimined by C� . This understood, then it follows from
the gluing construction of C ’s moduli space in Section 6d that the intersection
number between C and C� is given by the formula in (5.64) where m� is the
number that is described in Step 1 of the proof of Proposition 5.9. In this
regard, note that m� is equal to Proposition 6.9’s asserted value for mC .

The preceding understood, then the relationship between the afore-mentioned
C−C� intersection number and the number mC is as described in Step 4 of the
proof of Proposition 5.9; the same argument gives the justi�cation. Moreover,
the claim in (5.67) is valid here as well, and with an identical proof. Of course,
this implies that mC has the value asserted by Proposition 6.9.

Acknowledgements

The author thanks Jerrel Mast for pointing out some errors in a preprint version
of this article.

The author is supported in part by the National Science Foundation.

References

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry in Riemannian
geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975a) 43{69

[2] Y Eliashberg, Invariants in contact topology, from: \Proceedings of the Inter-
national Congress of Mathematicians, Berlin (1998)", Vol II, Documenta Math-
ematica, Extra Volume ICM (1998) 327{338

[3] Y Eliashberg, E Hofer, in preparation

[4] A Floer, Morse theory for Lagrangian intersections, J. Di�. Geom. 28 (1988)
513{547

[5] P Gri�ths, J Harris, Principles of Algebraic Geometry, J Wiley and Sons,
New York (1978)

[6] M Gromov, Pseudoholomorphic spheres in symplectic manifolds, Invent. Math
82 (1985) 307{347

[7] R Gompf, private communication.

Geometry & Topology, Volume 6 (2002)



814 Cli�ord Henry Taubes

[8] H Hofer, Pseudoholmorphic curves in symplectizations with applications to the
Weinstein conjecture in dimension 3, Invent Math 114 (1993) 515{563

[9] H Hofer, Dynamics, topology and holomorphic curves, from: \Proceedings of
the International Congress of Mathematicians, Berlin 1998", Vol I, Documenta
Mathematica, Extra Volume ICM (1998) 255{280

[10] H Hofer, Holomorphic curves and dynamics in dimension 3, from: \Symplectic
Geometry and Topology", (Eliashberg and Traynor, editors) IAS/Park City
Mathematics Series 7, American Mathematical Society, Providence RI (1999)
37{101

[11] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves
in symplectizations I: Asymptotics, Ann. Inst. Henri Poincar�e 13 (1996) 337{379

[12] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves
in symplectizations II: Embedding controls and algebraic invariants, Geom. and
Funct. Anal. 5 (1995) 270{328

[13] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves
in symplectizations III: Fredholm theory, preprint.

[14] R B Lockhart, R C McOwen, Elliptic di�erential operators on non-compact
manifolds, Ann. Sci. Norm. Sup. Pisa IV-12 (1985) 409{446

[15] C Luttinger, unpublished
[16] D McDu�, The local behavior of J{holomorphic curves in almost complex man-

ifolds, J. Di�. Geom. 34 (1990) 679{712
[17] C B Morrey, Multiple Integrals in the Calculus of Variations, Springer{Verlag,

Berlin (1966)
[18] D McDu�, D Salamon, J{Holomorphic Curves and Quantum Cohomology,

University Lecture Series 6, American Mathematical Society, Providence RI
(1994)

[19] C H Taubes, Seiberg{Witten invariants and pseudoholomorphic subvarieties
for self-dual, harmonic 2{forms, Geom. Topol. 3 (1999) 167{210

[20] C H Taubes, Seiberg{Witten invariants, self-dual harmonic 2{forms and the
Hofer{Wysocki{Zehnder formalism, from: \Surveys in Di�erential Geometry,
VII", International Press (2000) 625{672

[21] C H Taubes, The geometry of the Seiberg{Witten invariants, from: \Proceed-
ings of the International Congress of Mathematicians, Berlin 1998", Vol II,
Documenta Mathematica, Extra Volume ICM (1998) 493{504

[22] C H Taubes, The structure of pseudoholomorphic subvarieties for a degenerate
almost complex structure and symplectic form on S1 � B3 , Geom. Topol. 2
(1998) 221{332

[23] C H Taubes, L2 Moduli Spaces on 4{Manifolds with Cylindrical End, Interna-
tional Press, Cambridge MA (1993)

[24] C H Taubes, Gr!SW; from pseudoholomorphic curves to Seiberg{Witten so-
lutions, J. Di�. Geom. 51 (1999) 203{334.

Geometry & Topology, Volume 6 (2002)


