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426 Selman Akbulut

0 Introduction

Let Q3 = S3=Q8 be the quaternionic 3{manifold, obtained as the quotient of
the 3{sphere by the free action of the quaternionic group Q8 of order eight,
which can be presented by Q8 = hi; j; k j i2 = j2 = k2 = −1; ij = k; jk =
i; ki = ji. Also Q is the 2{fold branched covering space of S3 branched over
the three Hopf circles; combining this with the Hopf map S3 ! S2 one sees
that Q is a Seifert Fibered space with three singular �bers. Q is also the 3{fold
branched covering space of S3 branched over the trefoil knot. Q can also be
identi�ed with the boundaries of the 4{manifolds of Figure 1 (one can easily
check that the above three de�nitions are equivalent to this one by drawing
framed link pictures). The second manifold W of Figure 1, consisting of a 1{
and 2{handle pair, is a Stein surface by [9]. It is easily seen that W is a disk
bundle over RP2 obtained as the tubular neighborhood of an imbedded RP2

in S4 . The complement of this imbedding is also a copy of W , decomposing
S4 = W ^@ W .

0

=

0
0

Figure 1

In [6], [7] Cappell and Shaneson constructed an s{cobordism H from Q to
itself as follows: Q is the union of an I {bundle over a Klein bottle K and the
solid torus S1 � D2 , glued along their boundaries. Let N be the D2{bundle
over K obtained as the open tubular neighborhood of K � Q � f1=2g in the
interior of Q� [0; 1]. Then they constructed a certain punctured torus bundle
M over K, with @M = @N , and replaced N with M :

H = M ^ (Q� [0; 1] − interior N)

They asked whether H or any of its covers are trivial product cobordisms? Ev-
idently the 2{fold cover of H is an s{cobordism eH from the lens space L(4; 1)

to itself, and the further 4{fold cyclic cover eeH of eH gives an s{cobordism
from S3 to itself. For the past 15 years the hope was that this universal covereeH might be a non-standard s{cobordism, inducing a fake smooth structure on
S4 . In this paper among other things we will prove that this is not the case by
demonstrating the following smooth identi�cation:
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Cappell{Shaneson’s 4{dimensional s{cobordism 427

Theorem 1 eeH = S3 � [0; 1]

We will �rst describe a handlebody picture of H (Figure 47). Let Q� be the
two boundary components of H each of which is homemorphic to Q:

@H = Q− [Q+

We can cap either ends of H with W , by taking the union with W along
Q� � @W :

W� = H ^Q� W

There is more than one way of capping H since Q has nontrivial self di�eo-
morphisms, but it turns out from the construction that there is a ‘natural’ way
of capping. The reason for bringing the rational ball W into the picture while
studying Q is that philosophically the relation of W is to Q is similar to the
relation of B4 to S3 . Unable to prove that H itself is a product cobordism, we
prove the next best thing:

Theorem 2 W− = W

Unfortunately we are not able to �nd a similar proof for W+ . This is because
the handlebody picture of H is highly non-symmetric (with respect to its two
ends) which prevents us adapting the above theorem to W+ . Even though,
there is a way of capping H with W+ which gives back the standard W , it
does not correspond to our ‘natural’ way of capping (see the last paragraph of
Section 1).

The story for W+ evolves in a completely di�erent way: Let fW and fW+ denote
the 2{fold covers of W and W+ respectively (note that �1(W ) = Z2 and fW
is the Euler class −4 disk bundle over S2 ). We will manege to prove fW+ is
standard, by �rst showing that it splits as W#�, where � a certain homotopy
4{sphere, and then by proving � is in fact di�eomorphic to S4 .

Theorem 3 fW+ = fW
It turns out that the homotopy sphere � is obtained from S4 by the Gluck
construction along a certain remarkable 2{knot A � S4 (ie, there is an imbed-
ding F : S2 ,! S4 with F (S2) = A). Furthermore A is the �bered knot in
S4 with �ber consisting of the punctured quaternionic 3{manifold Q0 , with
monodromy �: Q0 ! Q0 coming from the restriction of the order 3 di�emor-
phism of Q, which cyclically permutes the three singular �bers of Q (as Seifert
Fibered space). Recall that, in [15] the Mapping Class group �0(Di�Q) of
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428 Selman Akbulut

Q was computed to be S 3 , the symmetric group on three letters (transposi-
tions correspond to the di�eomorphisms pairwise permuting the three singular
�bers). In fact in a peculiar way this 2{knot A completely determines the
s{cobordism H (this is explained in the next paragraph). Then Theorem 3
follows by showing that the Gluck construction to S4 along A yields S4 , and
Theorem 1 follows by showing eeH = (S3 � [0; 1])#�#�.

Figure 77 describes a nice handlebody description of W+ . One remarkable
thing about this �gure is that it explicitly demonstrates H as the complement
of the imbedded W � W+ (we refer this as the vertical handlebody of H ).
Note that W is clearly visible in Figure 77. It turns out that W+ is obtained
by attaching a 2{handle to the complement of the tubular neighborhood of A
in S4 and the 2{handle H1 is attached the simplest possible way along the
twice the meridional circle of A ! (Figures 77 and 82). Equivalently, W+ is the
complement of the tubular neighborhood of of an knotted RP2 in S4 , which is
obtained from the standardly imbedded RP2 by connected summing operation
RP2#A � S4#S4 = S4 .

Put another way, if f : B2 ,! B4 is the proper imbedding (with standard bound-
ary) induced from A � S4 by deleting a small ball B4 from S4 , then (up to
3{handles) W+ is obtained by removing a tubular neighborhood of f(B2) from
B4 and attaching a 2{handle along the circle in S3 , which links the unknot
f(@B2) twice as in Figure 1. Note that in Figure 1 f(@B2) corresponds to the
the circle with dot. So W+ is obtained by removing a tubular neighborhood
of a properly imbedded knotted 2{disc from S2 � B2 , while W is obtained
by removing a tubular neighborhood of the unknotted 2{disc with the same
boundary. This is very similar to the structure of the fake �shtail of [1]. Also,
it turns out that A is the 3{twist spun of the trefoil knot, and it turns out that
W+ is obtained from W by the Fintushel{Stern knot surgery operation [8].

The reason why we have not been able to decide whether H itself is the product
cobordism is that we have not been able to put the handlebody of H in a
suitable form to be able to apply our old reliable \upside-down turning trick"
(eg [2], [5]), which is used in our proofs. This might yet happen, but until then
potentially H could be a fake s{cobordism.

Acknowledgements We would like to thank R Kirby for giving us constant
encouragement and being a friendly ear during development of this paper, and
also U Meierfrankenfeld for giving us generous help with group theory which
led us to prove the crucial �bration theorem. We also want to thank IAS for
providing a nice environment where the bulk of this work was done. The author
was partially supported by NSF grant DMS 9971440 and by IAS.
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Cappell{Shaneson’s 4{dimensional s{cobordism 429

1 Handlebody of Q� [0; 1]

Let I = [0; 1]. We draw Q� I by using the technique of [1]. Q is the obtained
by surgering S3 along a link L of two components linking each other twice (the
�rst picture of Figure 1), hence Q� I is obtained by attaching two 2{handles
to (S3 − L)� I .

Note that, since 3 and 4{handles of any 4{manifold are attached in a canonical
way, we only need to visualize the 1 and 2{handles of Q� I . Hence it su�ces
to visualize (B3−L0)� I , where L0 is a pair of properly imbedded arcs linking
each other twice, plus the two 2{handles as shown in Figure 2 (the rest are
3{handles).

0

0

B
3

x I

Figure 2

Clearly Figure 2 is obtained �rst by removing the two obvious 2{disks from
B4 = B3�I which L#(−L) bounds, and then by attaching two 2{handles (here
−L denotes the the mirror image of L). This gives the �rst picture of Figure
3. In Figure 3 each circle with dot denotes a 1{handle (ie, the obvious disks it
bounds is removed from B4 ). The second picture of Figure 3 is di�eomorphic to
the �rst one, it is obtained by sliding a 2{handle over a 1{handle as indicated
in the �gure. By an isotopy of Figure 3 (pulling 1{handles apart) we obtain
the �rst picture of Figure 4, which is the same as the second picture, where
the 1{handles are denoted by a di�erent notation (as pair of attaching balls).
Hence Figure 4 gives Q� I .

For a future reference the linking loops a; b of the 1{handles of the �rst picture
of Figure 4 are indicated in the second picture of Figure 4. Notice that we can
easily see an imbedded copy of the Klein bottle K in Q�I as follows: The �rst

Geometry & Topology, Volume 6 (2002)
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0

0

0

0

Figure 3

00 =

a

b

a

b

h

h

Figure 4

picture of Figure 5 denotes K (a square with the opposite sides identi�ed as
indicated). By thickening this to a four dimensional handlebody we obtain the
second picture of Figure 5 which is a D2{bundle N over K (the orientation
reversing 1{handle is indicated by putting \tilde" in the corresponding balls).
The third and the fourth pictures of Figure 5 are also N , drawn in di�erent
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Cappell{Shaneson’s 4{dimensional s{cobordism 431

1{handle notations.

Clearly the handlebody of Figure 5 sits in Figure 4, demonstrating an imbedding
of the disk bundle N over the Klein bottle into Q�I . For the purpose of future
references, we indicated where the linking circle b of the 1{handle lies in the
various handlebody pictures of N in Figure 5 .

Finally in Figure 6 we draw a very useful ‘vertical’ picture of Q�I as a product
cobordism starting from the boundary of W to itself like a collar. Though this
is a seemingly a trivial handlebody of H it will be useful in a later construction.
Later, we will �rst construct a handlebody picture of the s{cobordism H from
Q to itself, and then view it like a collar sitting on the boundary of W , ie, as
a vertical picture of the cobordism starting from the boundary of a W to Q.
Note that N is clearly visible in Figure 6, which is an alternative handlebody
of W (N is lying in the collar of its boundary). Also notice that the operation
Figure 4 ) Figure 6, ie, capping one end of Q � I by W , corresponds to
attaching a 2{handle to Figure 4 along the loop b. Similarly capping the other
end of Q� I by −W corresponds to attaching a 2{handle to it along the loop
a. Note that Figure 4 can also indicate the handlebody of Q0� I , where Q0 is
the punctured Q (in this case we simply ignore the 3{handle).

0

~

~0
0

==
b

b

Figure 5

2 Construction of H

Here we will briefly recall the Cappell{Shaneson construction [6], and indicate
why H is an s{cobordism: Let T0 denote the punctured 2{torus. M is con-
structed by gluing together two T0{bundles over Mobius bands given with the
monodromies:

A =

 
0 1
1 1

!
B =

 
0 −1
−1 −1

!
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0
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Figure 6

Since A2 = B2 these bundles agree over the boundaries of the Mobius bands,
hence they give a bundle M over the the union of the two Mobius bands along
their boundaries (which is the Klein bottle). By using the handle description
of K given by the second picture of Figure 7, we see that M is the T0 {bundle
over K, de�ned by the monodromies

A =

 
0 1
1 1

!
C = B−1A =

 
−1 0
0 −1

!
Let t; x and �; � to be the standard generators of the fundamental groups of

t s t x = s -1 t

Figure 7

K and T0 respectively , then:

�1(M) =

*
t; x; �; � j

t�t−1 = � t�t−1 = ��;
x�x−1 = �−1; x�x−1 = �−1

txt−1 = x−1

+

So x2�x−2 = x�−1x−1 = � , x2�x−2 = x�−1x−1 = � ) x2� = �x2 and
x2� = �x2 .
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Cappell{Shaneson’s 4{dimensional s{cobordism 433

Recall that H = M ^ (Q� [0; 1]− interior N) , which is the same as M ^ h,
where h is a 2{handle (Figure 4). Let us briefly indicated why the boundary
inclusion induces an isomorphism �1(Q) ! �1(H): By Van-Kampen theorem
attaching the 2{handle h introduces the relation xtx−1 = t−1 to �1(M); which
together with txt−1 = x−1 gives t−2 = x2 . Therefore in �1(H) the relations
t2�t−2 = t�t−1 , and t2�t−2 = t��t−1 become: � = t�t−1 , and � = t��t−1 .
Then by substituting � in � , and by using the fact that � commutes with t−2 ,
we get � = 1 and hence � = 1. Hence the boundary inclusions �1(Q)! �1(H)
induce isomorphisms. In fact H is an s{cobordism from Q to itself. From now
on let M̂ denote the corresponding T 2{bundle over K induced by M by the
obvious way, clearly:

M = M̂ −N

3 Handlebody of M̂

From the last section we see that M is obtained by �rst taking the T0 {bundle
T0�−IS1 ! S1 with monodromy −Id , and crossing it by I , and by identifying
the ends of this 4{manifold with the monodromy:

’ =

0B@ 0 1 0
1 1 0
0 0 −1

1CA
This is indicated in Figure 8 (here we are viewing K as the handlebody of the
second picture of Figure 7).

p
-1

S( )1
T0

  x
- I

S
12

=

S
1

x IS

S
1

pM

- I

Figure 8

Drawing the handlebody of M = (T0 �−I S1) �’ S1 directly will present
a di�culty in later steps, instead we will �rst draw the corresponding larger
T 2{bundle

M̂ = (T 2 �−I S1)�’ S1

then remove a copy of N from it. T 2 �−I S1 is obtained by identifying the
two ends of T 2 � I with −Id. Figure 9 describes a two equivalent pictures of
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the Heegaard handlebody of T 2 �−I S1 . The pair of ‘tilde’ disks describe a
twisted 1{handle (due to −Id identi�cation (x; y) ! (−x;−y)). If need be,
after rotating the attaching map of the the twisted 1{handle we can turn it to
a regular 1{handle as indicated by the second picture of Figure 9.

~

~ =
~

Figure 9

Now we will draw M̂ = (T 2�−I S1)�’S1 by using the technique introduced in
[4]: We �rst thicken the handlebody T 2 �−I S1 of Figure 9 to the 4{manifold
T 2 �−I S1 � I (the �rst picture of Figure 10). Then isotop ’: T 2 �−I S1 !
T 2 �−I S1 so that it takes 1{handles to 1{handles, with an isotopy, eg,

’t =

0B@ −t 1− t 0
1− t 1 0

0 0 −1

1CA
Then attach an extra 1{handle and the 2{handles as indicated in second pic-
ture of Figure 10 (one of the attaching balls of the new 1{handle is not visible
in the picture since it is placed at the point of in�nity). The extra 2{handles
are induced from the identi�cation of the 1{handles of the two boundary com-
ponents of T 2�−I S1� I via ’. So, the second picture of Figure 10 gives the
handlebody of M̂ .

We want to emphasize that the new 1{handle identi�es the 3{ball at the center
of Figure 10 with the 3{ball at the in�nity by the following di�eomorphism as
indicated in Figure 11:

(x; y; z)! (x;−y;−z)

Figure 12 describes how part of this isotopy ’t acts on T 2 (where T 2 is repre-
sented by a disk with opposite sides identi�ed). This is exactly the reason why
we started with T 2�−I S1 instead of T 2

0 �−I S1 (this isotopy takes place in T 2

not in T 2
0 !).

Geometry & Topology, Volume 6 (2002)
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~

~

~

~~

Figure 10

Figure 11

y

x

Figure 12

4 Simplifying the handlebody of M̂

We now want to simplify the handlebody of Figure 10 by cancelling some 1{
and 2{handle pairs and by isotopies: We �rst perform the 2{handle slide as
indicated (by the short arrow) in Figure 10 and obtain Figure 13. By doing
the further 2{handle slides as indicated in Figures 13{15 we obtain Figure 16.
Note that while going from Figure 15 to 16 we cancelled a 2{handle with a
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3{handle (ie, we erased a zero framed unknotted circle from the picture).

Figure 17 is the same as Figure 16 except that the twisted 1{handle (two balls
with ‘tilde’ on it) is drawn in the standard way. By an isotopy we go from
Figure 17 to Figure 18. Figure 19 is the same as Figure 18 except that we
drew one of the 1{handles in a di�erent 1{handle notation (circle with a dot
notation).

Note that in our �gures, if the framing of a framed knot is the obvious \black-
board framing" we don’t bother to indicate it, but if the framing deviates from
the obvious black-board framing we indicate the deviation from to the black-
board framing by putting a number in a circle on the knot (−1’s in the case of
Figure 19).

Figure 20 is obtained from Figure 19 by simply leaving out one of the 2 handles.
This is because the framed knot corresponding to this 2{handle is the unknot
with 0{framing !, hence it is cancelled by a 3{handle (this knot is in fact the
‘horizontal’ framed knot of Figure 10).

Figure 21 is the desired handlebody of M̂ , it is the same as the Figure 20,
except that one of the attaching balls of a 1{handle which had been placed at
the point of in�nity is isotoped into R3 .

5 Checking that the boundary of M̂ is correct

Now we need to check that the boundary of the closed manifold M̂ (minus
the three and four handles) is correct. That is, the boundary of Figure 21 is
the connected sum of copies of S1 � S2 ; so that after cancelling them with 3{
handles we get S3 , which is then capped by a 4{ handle. This process is done
by changing the interior of M̂ so that boundary becomes visible: By changing
a 1{handle to a 2{handle in Figure 21 (ie, turning a ‘dotted circle’ to a zero
framed circle) we obtain Figure 22. Then by doing the indicated handle slides
and isotopies we arrive to Figures 23, 24 and 25. Then by operation of turning
a 2{handle to a 1{handle by a surgery (ie, turning a zero framed circle to a
‘dotted circle’) and cancelling the resulting 1{ and 2{handle pair we get Figure
26. By isotopies we obtain the Figure 28, which after surgering the obvious
2{handle becomes S1 �B3 # S1 �B3 with the desired boundary.

Geometry & Topology, Volume 6 (2002)



Cappell{Shaneson’s 4{dimensional s{cobordism 437

~

~
~

~

~

~ ~

~

Figure 13 Figure 14
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Figure 27 Figure 28
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6 Turning M̂ upside down and constructing a han-

dlebody of H

Evidently it is not so easy to obtain the handlebody of M from the closed
manifold M̂ even though M = M̂ −N and N is clearly visible as a subset in
the handlebody of M̂ . For this, we will turn the handlebody of M̂ upside-down
and take all the handles up to N (excluding N ), and then attach a 2{handle h
as indicated in Figures 30 and 31. Recall that this last 2{handle h is attached
along the loop h of Figure 4, ie, h is the loop on @N along which attaching a
2{handle to N gives Q� [0; 1] (here we are using the same notation h for the
2 handle and for its attaching circle).

To turn M̂ upside down we simply take the dual loops (attaching loops of the
2{handles of Figure 21, indicated by the small 0{framed circles in Figure 31)
and the loop h, and then trace them via the di�eomorphism from the boundary
of Figure 21 to the boundary of Figure 28, which is (S1�S2)#(S1�S2) (ie, the
steps Figure 21 ; Figure 28); and then attach 2{handles to (S1�B3)#(S1�
B3) along the image of these loops. Note that, during this process we are free
to isotope these dual loops over the other handles. The reader unfamiliar with
this process can consult [2].

Figure 31 ; Figure 38 is the same as the isotopy Figure 21 ; Figure 28,
except that we carry the dual loops along and isotope them over the handles
as indicated by the short arrows in these �gures.

More explanation: By isotoping the dual loops as indicated in Figure 32 we
arrive to Figure 33. The move Figure 33 ; Figure 34 is the same as Figure
Figure 25 ; Figure 26. The move Figure 34 ; Figure 35 is just an isotopy
(rotating the lover ball by 3600 around the y{axis). By performing the handle
slides as indicated by the arrows in the �gures we obtain Figure 35 ; Figure 38.
By changing the 1{handle notation we obtain Figure 39, by rotating the upper
attaching ball of the 1{handle by 3600 we obtain Figure 40. Then by a handle
slide (indicated by the arrow) we obtain Figure 41. Changing the notation of
the remaining 1{handles to ‘circles-with-dots’ we get Figure 42. Then by the
indicated handle slide we get Figure 43, which is the same as Figure 44 (after
an isotopy). The indicated handle slides gives the steps Figure 44 ; Figure
47. Figure 47 is our desired handlebody picture of H . The reader is suggested
to compare this picture with the picture of Q0 � I in Figure 4. Here we also
traced the position of the loop a lying on the boundary of Q0 � I .

Geometry & Topology, Volume 6 (2002)
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3

Figure 45

Figure 46
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7 Capping the boundaries of H with W

H has two boundary components homeomorphic to Q, @H = Q−[Q+ . Recall
that by capping the either ends of H with W we obtained W� = H ^Q� W ,
and the handlebodies of W− , W+ are obtained by attaching 2{handles to H
along the loops a, b in @H = @(Q� I), respectively (Figure 4).

Proposition 4 W− = W

Proof The di�eomorphism @(Q � I) � @H , takes the loop in a of Figure 4
to the loop a of Figure 47. By attaching a 2{handle to Figure 47, along the
0 framed loop a (and cancelling the resulting unknotted 0{framed circles by
3{handles) we get Figure 48. By the further indicated handle slide we obtain
Figure 49. One of the 2{handles of Figure 49 slides-o� over the other and
becomes free, and hence gets cancelled by a 3{handle. So we end up with
W .

The story with W+ evolves di�erently, in coming sections we will see that W+

has a more amusing nontrivial structure. In the next section we will use W+

to examine H more closely.

8 Checking that the boundary of H is correct

A skeptical reader might wonder how she can verify that the boundary of Figure
47 is the same as the boundary of Q�I ? We will check directly from Figure 47
that it has the same boundary as Figure 4. This will also be useful for locating
the position of the loops a, b in Figure 47. By turning the 1{handles to 2{
handles (ie, by replacing dotted-circles by 0{framed circles), and by blowing
up { then handle sliding { then a blowing down operation (done twice) we
obtain Figure 47 ; Figure 50. By isotopies and the indicated handle sliding
operations we obtain Figure 50 ; Figure 58. By the indicated handle sliding
operation, and by surgering the 2{handles of Figure 58 we obtain Figure 59
which is Q� I .

By tracing back the boundary di�eomorphism Figure 59 ; Figure 47 gives
the positions of the curves a and b on the boundary of Figure 47, which is
indicated in Figure 60. Recall that attaching a 2{handle to Figure 60 along b
(with 0{framing) gives W+ . Attaching a 2{handle to b and handle slidings and
cancelling a 1{ and 2{ handle pair gives Figure 61, a picture of W+ which is
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seemingly di�erent than W . Figure 61 should be considered a \vertical picture"
of H built over the handlebody of W (notice W is visible in this picture). In
the next section we will construct a surprisingly simpler \vertical" handlebody
picture of H .

9 Vertical handlebody of H

Here we will construct a simpler handlebody picture of H as a vertical cobor-
dism starting from the boundary of W to Q. This is done by stating with
Figure 6, which is W = W ^@ (Q � I), and then by replacing in the interior
an imbedded copy of N � Q � I by M . This process gives us W+ , with an
imbedding W � W+ , such that H = W+ − W . This way we will not only
simplifying the handlebody of H but also demonstrate the crucial di�erence
between W+ and W−

We proceed as in Figure 31, except that when we turn M upside down we
add pair of 2{handles to the boundary along the loops H1 and H2 of Figure 6
(instead of the loop h of Figure 4). This gives Figure 62. We then apply the
boundary di�eomorphism Figure 21 ; Figure 28, by carrying the 2{handles
H1 and H2 along the way (we are free to slide H1 and H2 over the other
handles). For example, Figure 68 corresponds to Figure 36.

By performing the indicated handle slides (indicated by the short arrows) we
obtain Figure 68 ; Figure 69, which corresponds to Figure 37. Then by
performing the indicated handle slides we obtain Figure 69 ; Figure 71. We
then change the 1{handle notation from pair of balls to the dotted-circles to
obtain Figure 72; and by the indicted handle slides Figure 72 ; Figure 77 we
arrive to Figure 77. Figure 77 is the desired picture of W+ .

Next we check that the boundary of the manifold of Figure 77 is correct. This
can easily be done by turning one of the dotted circles to a 0{framed circle, and
turning a 0{framed circle to a dotted circle as in Figure 78 and then by cancelling
the dotted circle with the −1 framed circle which links it geometrically once
(ie, we cancel a 1{ and 2{handle pair). It easily checked that this operation
results W and a disjoint 0{framed unknotted circle, which is then cancelled by
a 3{handle. So we end up with W , hence W+ has the correct boundary.
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10 A knot is born

By twisting the strands going through the middle 1{handle, and then by sliding
H1 over this 1{handle we see that Figure 77 is di�eomorphic to the Figure
79 (similar to the move at the bottom of the page 504 of [2]). Figure 79
demonstrates the complement of the imbedding f : B2 ,! B4 with the standard
boundary, given by the \dotted circle" A (the 1{handle). This follows from
the discussion on the last paragraph of the last section. Because there by
changing the interior of Figure 77 we checked that as a loop A is the unknot
on the boundary of the handlebody X consisting of all the handles of Figure
77 except the 1{handle corresponding to A and the last 2{handle H1 . The
same argument works for Figure 79. In addition in this case, the handlebody
consisting of all the handles of the Figure 79 except the 1-handle corresponding
to A and the the 2-handle H1 , is B4 . So W+ is obtained from B4 by carving
out of the imbedded disk bounded by the unknot A (i.e creating a 1{handle A)
and then by attaching the 2{handle H1 . Hence by capping with a standard
pair (B4; B2) we can think of f as a part of an imbedding F : S2 ,! S4 . Let
us call A = F (S2).

We can draw a more concrete picture of the knot A as follows: During the next
few steps, in order not to clog up the picture, we won’t draw the last 2{handle
H1 . By an isotopy and cancelling 1{ and 2{handle pair we get a di�eomorphism
from Figure 79, to Figures 80, 81 and �nally to Figure 82. In Figure 82 the
‘dotted’ ribbon knot is really the unknot in the presence of a cancelling 2 and
3{handle pair (ie, the unknotted circle with 0{framing plus the 3{handle which
is not seen in the �gure). So this ribbon disk with the boundary the unknot in
S3 , demonstrates a good visual picture of the imbedding f : B2 ,! B4 .

10.1 A useful fundamental group calculation

We will compute the fundamental group of the 2{knot complement S4−A, ie,
we will compute the group G := �1(Y ), where Y is the handlebody consisting of
all the handles of Figure 79 except the 2{handle H1 . Though this calculation is
not necessary for the rest of the paper, it is useful to demonstrate why W+−W
gives an s{cobordism. By using the generators drawn in Figure 83 we get the
following relations for G:

(1) x−1yt−1x−1t = 1
(2) x−1yxy = 1
(3) txt−1y−1 = 1
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From (1) and (2) we get t−1x−1t = xy , then by using (3) =) t3 = (tx)3 . Call
a = tx so t3 = a3 . By solving y in (3) and plugging into (2) and substituting
x = t−1a we get ata = tat−2a3 = tat−2t3 = tat. Hence we get the presentation:

G = ht; ajt3 = a3; ata = tati
Notice that attaching the 2{handle H1 to Y (ie, forming W+) introduces
the extra relation t4 = 1 to G, which then implies t = x, demonstrating an
s{cobordism from the boundary of W to the boundary to W+ . The following
important observation of Meierfrankenfeld has motivated us to prove the crucial
�bration structure for A in the next section.

Lemma 5 [14] G contains normal subgroups Q8 and Z giving the exact
sequences:

1! Q8 ! G! Z! 1

1! Z! G! SL(2;Z3)! 1

Proof Call u := ta−1 = y−1 and v := a−1t = x−1 . First notice that
the group hu; vi generated by u and v is a normal subgroup. For example,
since u = ta−1 = a−1t−1at = a−1v−1t = a−1v−1av =) a−1va = uv−1 2
hu; vi. Also since v = a−1t = a−1ua =) a−1ua = v 2 hu; vi. Now
we claim that hu; vi = Q8 . This follows from a3 = t3 2 Center(G) =)
u = a−3ua3 = a−1(vu−1)a = vu−1v−1 =) uvu = v . So vu−1 = a−1va =
a−1(uvu)a = (a−1ua)(a−1va)(a−1ua) = v(vu−1)v , implying vuv = u. So
hu; vi = hu; v j uvu = v; vuv = ui, which is a presentation of Q8 .

For the second exact sequence take Z = ht3i and then observe that G=ht3i =
SL(2;Z3) (for example, by using the symbolic manipulation program GAP
one can check that G=ht3i has order 24, then use the group theory fact that
SL(2;Z3) is the only group of order 24 generated by two elements of order
3)

10.2 Fiber structure of the knot A

Consider the order three self di�eomorphism �: Q ! Q of Figure 84. As
described by the the pictures of Figure 85, this di�eomorphism is obtained by
the compositions of blowing up, a handle slide, blowing down, and another
handle slide operations. � permutes the circles P;Q;R as indicated in Figure
84, while twisting the tubular neighborhood of R by −1 times. Note that Q
can be obtained by doing −1 surgeries to three right-handed Hopf circles, then
� is the map induced from the map S3 ! S3 which permutes the three Hopf
circles. Let Q0 denote the punctured Q, then:
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Proposition 6 The knot A � S4 is a �bered knot with �ber Q0 and mon-
odromy �.

Proof We start with Figure 86 which is the knot complement Y . By introduc-
ing a zero framed unknotted circle (ie, by introducing a cancelling pair of 2{and
3{handles) we arrive to the Figure 87. Now something amazing happens!: This
new zero framed unknotted circle isotopes to the complicated looking circle of
Figure 88, as indicated in the �gure. The curious reader can check this by
applying the boundary di�eomorphism Figure 77 ) Figure 78 to Figure 88
(replacing dotted circle with a zero framed circle) and tracing this new loop
along the way back to the trivial loop!. By isotopies and the indicated handle
slides, from Figure 88 we arrive to Figure 92.

Now in Figure 92 we can clearly see an imbedded copy of Q � [0; 1] (recall
Figures 3 and 4). We claim that, in fact the other handles of this �gure has the
role of identifying the two ends of Q� [0; 1] by the monodromy �. To see this,
recall from [4] how to draw the handlebody of picture of :

Q0 � [0; 1]=(x; 0) � (�(x); 1)

For this, we attach a 1{handle to Q0� [0; 1] connecting the top to the bottom,
and attach 2{handles along the loops γ # �(γ) where γ are the core circles
of the 1{handles of Q� 0 and �(γ) are their images in Q� 1 under the map
� (the connected sum is taken along the 1{handle). By inspecting where the
2{handles are attached on the boundary of Q0� [0; 1] (Figure 93), we see that
in fact the two ends are identi�ed exactly by the di�eomorphism �. Note that,
by changing the monodromy of Figure 94 by �−1 we obtain Figure 95, which
is the identity monodromy identi�cation Q� S1 .

11 The Gluck Construction

Recall that performing the Gluck construction to S4 along an imbedded 2{
sphere S2 ,! S4 means that we �rst thicken the imbedding S2�B2 ,! S4 and
then form:

� = (S4 − S2 �B2) ^ S
2 �B2

where  : S2�S1 ! S2�S1 is the di�eomorphism given by  (x; y) = (�(y)x; y),
and �: S1 ! SO(3) is the generator of �1(SO(3)) = Z2 .
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Proposition 7 The Gluck construction to S4 along the 2{knot A gives back
S4 .

Proof The handlebody of Figure 96 describes the Gluck construction of S4

along A, which can be equivalently described by Figure 97 (recall Figure 79 ;

Figure 82 identi�cation). By introducing a cancelling 1 and 2{handle pair we
get Figure 98, and by cancelling 1 and 2{handle pair from Figure 98 we obtain
Figure 99.

Now in Figure 100 we introduce a cancelling pair of 2 and 3{handles. In Figure
100 only the new 2{handle \m" is visible as the zero framed unknotted circle.
It is important to check that this new 2{handle is attached along the unknot!
(this can be checked by tracing m along the boundary di�eomorphisms Figure
100 ; Figure 101, and Figure 98 ; Figure 97, and Figure 81 ; Figure 78).

In Figure 100 by sliding the +1 framed 2{handle over the 0 framed 2{handle
m, we obtain Figure 102. Now comes an important point!: Notice that the
1{handles of Figure 102 are cancelled by 2{handles (ie, through each circle-
with-dot there is a framed knot going through geometrically once). So in fact
after cancelling 1 and 2{handle pairs, Figure 102 becomes a handlebody con-
sisting of only two 2{handles and two 3{handles. Now, rather than performing
these 1 and 2{handle cancellations and drawing the resulting handlebody of 2
and 3{handles, we will turn the handlebody of Figure 102 upside down. This
process is performed by taking the dual loops of the 2{handles as in Figure
103 (ie, the small 0{framed circles), and by tracing them under the bound-
ary di�eomorphism from the boundary of the handlebody of Figure 103 to
@(S1�B3 # S1�B3), and then by attaching 2{handles to S1�B3 # S1�B3

along the images of these dual loops. It is important to note that along this
process we are allowed to slide the dual 2{handles over each other and over the
other handles.

By a blowing up and down operation, and by isotopies and the indicated handle
slides Figure 103 ; Figure 112 we arrive to the handlebody of Figure 112,
and by sliding one dual 2{handle over the other one we obtain Figure 113.
Now by applying Figure 113 to the boundary di�eomorphism Figure 77 ;

Figure 78 we obtain Figure 114 (note that the handlebody of Figure 114 is just
S1�B3 # S1�B3 , it happens to look complicated because of the presence of the
dual 2{handles). By sliding the dual 2{handles over each other (as indicated
in the �gures), and by a blowing up and down operation and isotopies we arrive
to Figure 121 which is B4 .
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Remark 8 Note that there is an interesting similarities between this proof
and the steps Figure 19 ; Figure 29 of [5], which was crucial in showing that
the 2{fold covering space of the Cappell{Shaneson’s fake RP4 is S4 , [10].

Corollary 9 eeH = S3 � [0; 1]

Proof Showing eeH = S3 � [0; 1] is equivalent to showing that the 4{manifold

obtained by capping the boundaries of eeH with 4{balls is di�eomorphic to S4 .
Observe that under the 8{fold covering map �: S3 ! Q the loop C of Figure
122 lifts to a pair of linked Hopf circles in S3 , each of it covering C four times
(this is explained in Figure 123). By replacing C in @(W ) by the whole stands
of 1{ and 2{handles going through that middle 1{handle as in Figure 79 (all
the handles other than H1 ), and by lifting those 1 and 2{handles to S3 we
obtain the 8{fold covering of H , with ends capped o� by 4{balls. Since the
monodromy � has order 3, each strand has the monodromy �4 = �. So we need
to perform the Gluck construction as in Figure 124, which after handle slides
becomes �#� = S4 (because we have previously shown that � = S4 ). Note
that the bottom two handlebodies of Figure 124 are nothing but S4 Glucked
along A, along with a cancelling pair of 2 and 3{handles (as usual in this pair
the 2{handle is attached to the unknot on the boundary, ie, the horizontal
zero-framed circle, and the 3{handle is not drawn).

Corollary 10 fW+ = fW
Proof By inspecting the 2{fold covering map in Figure 123, and by observing
that �2 = �−1 we get the handlebody of fW+ in Figure 125. As before, since
the −4 framed handle is attached along the trivial loop on the boundary we
get fW+ = fW#�, where � is the S4 Glucked along A (recall the previous
Corollary), hence we have fW+ = fW = Euler class− 4 disk bundle over S2

Remark 11 An amusing fact: It is not hard to check that the 2{knot comple-
ment Y is obtained by the 0-logarithmic transformation operation performed
along an imbedded Klein bottle K in M̂ − S1 � B3 (which is M̂ minus a 3{
handle) ie, in Figure 21. This is done by �rst changing the 1{handle notation
of Figure 21 (by using the arcs in Figure 126) to circle-with-dot notation, then
by simply exchanging a dot with the zero framing as indicated by the �rst pic-
ture of Figure 127. The result is the second picture of Figure 127 which is Y .
This operation is nothing other than removing the tubular neighborhood N of
K from M̂ − S1 � B3 and putting it back by a di�eomporphism which is the
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obvious involution on the boundary. It is also easy to check that by performing
yet another 0{logarithmic transformation operation to Y along an imbedded
K gives S1 �B3 (this is Figure 77 ) Figure 78). So the operations

S1 �B3 ) Y ) M̂ − S1 �B3

are nothing but 0{logarithmic transforms along K. Note that all of the 4{
manifolds S1 � B3 , Y and M are bundles over S1 ,with �bers B3 , Q0 , and
T0 �−I S1 respectively.

Remark 12 Recall [12] that a knot �n−2 � Sn is said to admit a strong
Zm{action if there is a di�eomorphism h: Sn ! Sn with

(i) hm = 1

(ii) h(x) = x for every x 2 �n−2

(iii) x; h(x); h2(x); ::; hm−1(x) are all distinct for every x 2 Sn − �n−2

By the proof of the Smith conjecture when n = 3 the only knot that admits a
strong Zm action is the unknot. For n = 4 in [11] Gi�en found knots that admit
strong Zm actions when m is odd. Our knot A � S4 provides an example of
knot which admits a strong Zm action for m 6= 0 mod 3. This follows from
Proposition 7, and from the fact that A is a �bered knot with an order 3
monodromy.

Remark 13 Recall the vertical picture of H in Figure 77, appearing as W+−
W . We can place H vertically on top of Q � I (Figure 4) by identifying Q+

with Q� 1
Z := H ^Q+ (Q� I)

Resulting handlebody of Z is Figure 128. As a smooth manifold Z is nothing
other than a copy of H . So Figure 128 provides an alternative handlebody
picture of H (the other one being Figure 47).

Remark 14 Let X4 be a smooth 4{manifold, and C � X4 be any loop with
the property that [C] 2 �1(X) is a torsion element of order �1 mod 3, and
U � S1 �B3 be the open tubular neghborhood of C . We can form:

X̂ := (X − U) ^@ Y

Recall that �1(Y ) = ht; ajt3 = a3; ata = tati, so by Van-Kampen theorem we
get �1(X̂) = �1(X), in fact X̂ is homotopy equivalent to X . In particular
by applying this process to X = M3 � I , where M3 is a 3{manifold whose
fundamental group contains a torsion element of order �1 mod 3, we can
construct many examples of potentially nontrivial s{cobordisms X̂ from M to
itself.
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12 More on A

In this section we will give even a simpler and more concrete description of
the 2{knot A. As a corollary we will show that W+ is obtained from W by
performing the Fintushel{Stern knot surgery operation by using the trefoil knot
K ([8]). It is easy to check that Figure 129, which describes A (recall Figure
82), is isotopic to Figure 130. To reduce the clutter, starting with Figure 130
we will denote the small 0{framed circle, which links A twice, by a single thick
circle � .

By performing the indicated handle slide to the handlebody of Figure 130 we
arrive to Figure 131, which can be drawn as Figure 132. By introducing a
cancelling pair of 1 and 2{handles to the handlebody of Figure 132, then sliding
them over other handles, and again cancelling that handle pair we get Figure
133 (this move is self explanatory from the �gures). Then by an isotopy we get
Figure 134, by the indicated handle slide we arrive to Figure 135. By drawing
the \slice 1{handle" (see [2]) as a 1{handle and a pair of 2{handles we get
the di�eomorphism Figure 135 ; Figure 136, and a further handle slide gives
Figure 137, which is an alternative picture of the 2{knot complement A. The
reader can check that the boundary of Figure 137 is standard by the boundary
di�eomorphism Figure 137 ; Figure 138, which consists of a blowing-up +
handle sliding + blowing-down operations (done three times).

A close inspection reveals that the handlebody of the 2{knot complement A in
Figure 135 is the same as Figure 139. Figure 139 gives another convenient way
of checking that the boundary of this handlebody is standard (eg, remove the
dot from the slice 1{handle and perform blowing up and sliding and blowing
down operations, three times, as indicated by the dotted lines of Figure 140).
Now we can also trace the loop � into Figure 140, so Figure 140 becomes
handlebody of W+ . By drawing the slice 1{handle as a 1{handle and a pair of
2{handles we get a di�eomorphism Figure 140 ; Figure 141. Clearly Figure
142 is di�eomorphic to Figure 141. Now by introducing a cancelling pair of 2
and 3{handles we obtain the di�eomorphism Figure 142 ; Figure 143 (it is
easy to check that the new 2{handle of Figure 143 is attached along the unknot
on the boundary).

Now, let us recall the Fintushel{Stern knot surgery operation [8]: Let X be
a smooth 4{manifold containing an imbedded torus T 2 with trivial normal
bundle, and K � S3 be a knot. The operation X ; XK of replacing a tubular
neighborhood of T 2 in X by (S3−K)�S1 is the so called Fintushel{Stern knot
surgery operation. In [1] and [3] an algorithm of describing the handlebody of
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XK in terms of the handlebody of X is given. From this algorithm we see
that Figure 144 ; Figure 143 is exactly the operation W ; WK where K is
the trefoil knot. And also it is easy to check that Figure 144 ; Figure 145
describes a di�emorphism to W . Hence we have proved:

Proposition 15 W+ is obtained from W by the Fintushel{Stern knot surgery
operation along an imbedded torus by using the trefoil knot K

Remark 16 Note that we in fact proved that the knot complement S4 − A
is obtained by from S1 � B3 by the Fintushel{Stern knot surgery operation
along an imbedded torus by using the trefoil knot K. Unfortunately this torus
is homologically trivial; if it wasn’t, from [8], we could have concluded that W+

(hence H ) is exotic.

Remark 17 Now it is evident from From Figure 139 that A is the 3{twist
spun of the trefoil knot ([16]). This explains why A is the �bered knot with
�bers Q (which is the 3{fold branched cover of the trefoil knot). After this
paper was written, we were pointed out that in [13] it had proven that the
Gluck construction to a twist-spun knot gives back S4 . So in hind-sight we
could have delayed the Proposition 7 until this point and deduce its proof from
[13], but this would have altered the natural evolution of the paper. Our hands-
on proof of Proposition 7 should be seen as a part a general technique which
had been previously utilized in [2], [5].

Finally, note that if An is the n{twist spun of the trefoil knot (Figure 146),
then one can check that its fundamental group generalizes the presentation of
A:

Gn = ht; a ja = t−natn; ata = tati = ht; a jtn = an; ata = tati
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