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800 Dusa McDu� and Jennifer Slimowitz

1 Introduction

In this paper we provide a su�cient condition for a path �t , 0 � t � 1 in the
Hamiltonian group Ham(M) to be length minimizing with respect to the Hofer
norm among homotopic paths with �xed endpoints. This extends the work done
by Hofer [7], Bialy{Polterovich [2], Ustilovsky [31], and Lalonde{McDu� [10]
on characterizing geodesics in Ham(M). We will work throughout on a closed
symplectic manifold (M;!), though our results extend without di�culty to the
group Hamc(M;!) of compactly supported Hamiltonian symplectomorphisms
when M is noncompact and without boundary.

There are several more or less equivalent de�nitions of the Hofer norm. We will
use Hofer’s original de�nition. Namely, we de�ne the length L(Ht) of a time
dependent Hamiltonian function Ht: M ! R for 0 � t � � to be

L(Ht) =
Z �

0

�
max
x2M

Ht(x)− min
x2M

Ht(x)
�
dt:

The length of the corresponding path �Ht ; 0 � t � �; in Ham(M) is also taken
to be L(Ht), and the Hofer norm k�k of � 2 Ham(M) is the in�mum of the
lengths of all of the paths from the identity to �.1 This norm does not change
if we restrict attention to paths parametrized by t 2 [0; 1], since this amounts
to replacing Ht; t 2 [0; � ]; by �H�t; t 2 [0; 1]. Hence, unless explicit mention is
made to the contrary, all paths will be assumed to be so parametrized.

Although the Hofer norm is simply de�ned, it is di�cult to calculate in general.
One can separate this question into two: the �rst is to calculate the minimum
of the lengths of paths between id and � in some �xed homotopy class, and the
other is to minimize over the set of all homotopy classes. We call paths that
realise the �rst minimum length minimizing in their homotopy class (or simply
length minimizing), and those realising the second absolutely length minimizing.
It is hard to �nd absolutely length minimizing paths except in the very rare
cases when �1(Ham(M)) is known. However the �rst problem is often more
manageable. Also, in cases where there is a natural path from the identity to �
| for example if there is a path induced by a circle action such as a rotation |
one can look for conditions under which this natural path is length minimizing.

A simple example of an absolutely length minimizing path is rotation of S2

through � radians: see [10], II Lemma 1.7. The proof can be generalized to
rotations of CP2 and of the one-point blow up of CP2 : see Slimowitz [30].

1We �x signs by choosing �Ht to be tangent to the vector �eld X de�ned by !(X; �) =
dH:
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Hofer{Zehnder capacity and length minimizing Hamiltonian paths 801

Because the argument uses explicit embeddings of balls, it is too clumsy to
work for general manifolds.

1.1 Statement of main results

In this note we concentrate on paths �Ht ; t 2 [0; 1], that are generated by
autonomous (ie time independent) Hamiltonian functions H: M ! R. Our
aim is to understand the set

�H = f� : the flow ��Ht ; t 2 [0; 1]; of �H is length minimizing

in its homotopy classg:

It is easy to see that this set is always a closed interval. It has nonempty
interior by Proposition 1.14 in [10].2 There are Hamiltonians H on manifolds
with in�nite fundamental group such that �H = [0;1), ie, the flow of �H
is absolutely length minimizing for all � > 0. Here the lower bound for the
length is provided by the energy{capacity inequality on the universal cover:
see [10] Lemma 5.7. When M is closed and simply connected, in all known
examples (other than circle actions that have ��H1 = id for some � > 0) the
distance between the identity and the symplectomorphism ��H1 tends to in�nity
as � ! 1.3 However, this path does not remain length minimizing for all �.
Thus in the simply connected case one expects �H to be a compact interval
[0; �max(H)] for all H .

The next result applies to all symplectic manifolds, and follows by an easy
application of the curve shortening technique of [10] I Proposition 2.2.

Lemma 1.1 Suppose that H is a Hamiltonian that assumes its maximum
values on the set Xmax . Then, if there is a Hamiltonian symplectomorphism �
of M such that �(Xmax) \Xmax is empty, �max <1.

2The papers [10] were written at a time when it was not yet understood how to de�ne
Gromov{Witten invariants for general symplectic manifolds M . Therefore, many of
the results in part II have unnecessary restrictions. In particular, in Theorems 1.3
(i) and 1.4 and in Propositions 1.14 and 1.19 (i) one can remove the hypothesis that
M has dimension � 4 or is semi-monotone. The point is that these results rely on
Proposition 4.1, and so use the fact that quasicylinders Q = (M � D2;Ω) have the
nonsqueezing property. This is now known to hold for all M .

3Added Dec 01: In fact there are many other paths ��H1 ; � � 0; that remain a
bounded distance from id. For example, if F has support in a ball B and  (B)\B = ; ,
de�ne H = F − F �  . Then ��H1 = ��F1 �  � (��F1 )−1 �  −1 remains at a distance
2k k from id.
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802 Dusa McDu� and Jennifer Slimowitz

In this case one can estimate �max by comparing the displacement energy of
a neighborhood N of Xmax with the growth of H on N . For a discussion of
related questions see Polterovich [25].

If H is generic and hence a Morse function, it follows from the above lemma that
�max(H) <1. However, one can get a sharper estimate for �max by looking at
the linearized flow near a critical point p of �H . In suitable coordinates, this
has the form e−t�JQ where Q is the Hessian of H at p and J is the standard
almost complex structure. We will say that p is overtwisted for �H if A = −JQ
has an imaginary eigenvalue i� with � > 2� . This is equivalent to saying that
the linearized flow of �H at p has a nonconstant periodic orbit of period < 1:
see Section 3.2. Ustilovsky’s analysis in [31] of the second variation equation for
geodesics shows that the path ��Ht ; t 2 [0; 1]; ceases to be length minimizing as
soon as all the global maxima of �H are overtwisted. A similar result applies
to minima, and also to certain degenerate H : see [10].

If p is an overtwisted local extremum of H , a celebrated result of Weinstein [32]
implies that the nonlinear flow of �H near p also has nonconstant periodic
orbits of period < 1. Hence it is natural to make the following conjecture.

Conjecture 1.2 The path �Ht ; t 2 [0; 1]; is length minimizing in its homotopy
class whenever its flow has no nonconstant contractible periodic orbits of period
< 1.

Hofer showed in [7] that this is true for compactly supported Hamiltonians on
R2n by using a variational argument that does not extend to arbitrary man-
ifolds: see also Section 5.7 in [9]. It was also established in the cases when
M has dimension two or is weakly exact in [10] Theorem 5.4. In this paper
we extend the arguments in [10] to arbitrary manifolds. Unfortunately this
does not quite allow us to prove the full conjecture. The problem is that there
are functions H with no nonconstant periodic orbits but yet with overtwisted
critical points, and, for technical reasons, our argument cannot cope with such
points. However, it is well known that for generic H this problem does not oc-
cur; generic overtwisted critical points always give rise to 1{parameter families
of contractible periodic orbits of period < 1. For the sake of completeness, we
give a simple topological proof of this in Lemma 3.4 below and also describe
Moser’s example of an overtwisted Hamiltonian whose only periodic orbit is
constant.

In view of this, it is useful to make the following de�nition.
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Hofer{Zehnder capacity and length minimizing Hamiltonian paths 803

De�nition 1.3 A periodic orbit is called fast if its period is < 1. Given an
(autonomous) Hamiltonian H we denote by P(H) the set of its fast contractible
periodic orbits, and by Pcrit(H) the set of fast periodic orbits of the linearized
flows at its critical points. We will say that H is slow if the only elements in
P(H) and Pcrit(H) are constant paths.

Here is the main result of this paper.

Theorem 1.4 Given a closed symplectic manifold (M;!), let �Ht , 0 � t � 1;
be the path in Ham(M) generated by the autonomous Hamiltonian H: M !
R. If H is slow, then this path is length minimizing among all homotopic paths
between the identity and �H1 .

Note that the path remains length minimizing in its homotopy class even if H
has periodic orbits of period exactly equal to 1. To see this, �rst apply the
theorem to (1 − ")H for " > 0 and then use the fact that the set �H de�ned
above is closed.

This theorem applies in particular to semi-free Hamiltonian circle actions �Ht ,
t 2 S1 = R=Z. Recall that these are actions in which the stabilizer subgroups
of each point are either trivial or the full group. Thus in this case all non�xed
points lie on periodic orbits of period exactly 1. Moreover, because the flow
�Ht on M is congugate to its linearization near the critical points, it is easy to
see that none of these points are overtwisted.

Corollary 1.5 Every semi-free symplectic S1 action on a closed symplectic
manifold (M;!) represents a nontrivial element γ in �1(Symp(M;!)). More-
over, if the action is Hamiltonian, the corresponding loop has minimal length
among all freely homotopic loops in Ham(M;!).

Proof If the action is not Hamiltonian then the result is obvious (and the
semi-free condition is not needed) since in this case the image of the loop under
the flux homomorphism

�1Symp(M;!)! H1(M;R)

is nonzero. For Hamiltonian loops, Theorem 1.4 implies that they are length
minimizing paths from id to id in their homotopy class. Because the constant
path to id is always shorter than the given loop the latter cannot be null homo-
topic. The last statement is an easy consequence of the conjugacy invariance
of the norm.

Geometry & Topology, Volume 5 (2001)



804 Dusa McDu� and Jennifer Slimowitz

Somewhat surprisingly, there seems to be no elementary proof of the �rst state-
ment in this corollary. It would be interesting to know if it remains true in
the smooth category. In particular, do arbitrary smooth semi-free S1 actions
on M represent nontrivial elements in �1(Di�(M)) or even in �1(H(M)),
where H(M) is the group of self-homotopy equivalences of M ? This is true
for nonHamiltonian symplectic loops, since the flux homomorphism extends to
�1(H(M)).4

Observe also that the semi-free condition is needed. Consider, for example, the
S1 action on CP2 given by:

[z0 : z1 : z2] 7! [ei�z0 : e−i�z1 : z2]:

This is null-homotopic, while points such as [1 : 1 : 0] have Z=2Z stabilizer.
Clearly, a general Hamiltonian S1 action remains length minimizing for time
1=k where k is the order of the largest isotropy group.

As a byproduct of the proof we also calculate a very slightly modi�ed version
of the Hofer{Zehnder capacity for cylinders Z(a), where

Z(a) = (M �D(a); ! � �a)

and (D(a); �a) is a 2{disc with total area a. To explain this, we recall the
de�nition5 of the Hofer{Zehnder capacity cHZ :

cHZ(N;!) = supfmax(H) H 2 Had(N;!)g

where the set Had(N;!) of admissible Hamiltonians consists of all of the au-
tonomous Hamiltonians on N such that

(a) For some compact set K � N − @N , HjN−K = max(H) is constant;

(b) There is a nonempty open set U depending on H such that HjU = 0;

(c) 0 � H(x) � max(H) for all x 2 N ;

(d) All fast contractible periodic solutions of the Hamiltonian system _x =
XH(x) on N are constant.

4Added in Dec 01: Claude LeBrun pointed out that the diagonal S1 action on C2

given by multiplication by ei� induces a semifree action on S4 that represents the
trivial loop in �1(S0(5)) � �1(Di�(S4)). For further work on this subject see [19].

5Hofer originally considered Hamiltonian systems in R2n and hence had no need to
restrict to contractible periodic orbits in condition (d) below. In the de�nition of cHZ
given in [9], this condition is not imposed. We have inserted it here to make cHZ as
relevant to our problem as possible. This de�nition appears in Lu [14], who pointed out
that the monotonicity axiom has to be suitably modi�ed. It is called the �1 {sensitive
Hofer{Zehnder capacity in Schwarz [27].
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Hofer{Zehnder capacity and length minimizing Hamiltonian paths 805

As explained above, our arguments are sensitive to the presence of overtwisted
critical points. Hence we de�ne the modi�ed capacity c0HZ as follows:

c0HZ(N;!) = supfmax(H) H 2 H0ad(N;!)g
where the set H0ad(N;!) of admissible Hamiltonians consists of all autonomous
Hamiltonians on N that satisfy conditions (a), (b), (c) above as well as the
following version of (d):

(d 0 ) H is slow.

These capacities are closely related. Clearly cHZ � c0HZ . Our discussion above
implies that the set H0ad(N;!) has second category in Had(N;!): see Corol-
lary 3.5. Furthermore the two capacities may agree: it is not hard to see that
they both equal a on the 2{disc (D(a); �a).6 Since the capacity of the product
Z(a) is at least as large as that of (D(a); �a), the di�cult part of the next
proposition is to �nd an upper bound for c0HZ(Z(a)).

Proposition 1.6 Let (M;!) be any closed symplectic manifold. Then

c0HZ(M �D(a); ! � �a) = a:

There are several ways in which one could try to generalize the main theorem.
Siburg showed in [29] that the conjecture holds for flows generated by time
dependent Hamiltonians on R2n provided that these also have isolated and
�xed extremal points. (The �xed extrema are needed to ensure that the path
is a geodesic: see [2].) Although it seems very likely that Theorem 1.4 should
hold on general M in the time dependent case, the method used here is not
well adapted to tackle this problem. In fact, while our paper was being �nished,
Entov developed in [3] a rather di�erent approach as part of a larger program
that has some very interesting applications. It may well be that his method
would be better in the time dependent case: see Remark 2.10.

It is also natural to wonder what happens when H does have nonconstant fast
periodic orbits and/or overtwisted critical points. For example we might take an
H that satis�es the conditions of the theorem and consider the flow of �H for
� > 1. It would seem plausible that if some critical point of index lying strictly
between 0; 2n becomes overtwisted �H would remain length minimizing, at
least for a while. One problem here is that a critical point that is just on
the point of beoming overtwisted (ie, has eigenvalue 2�i) is degenerate as far
as Floer theory is concerned. The main step in our proof is to demonstrate
that a particular moduli space of Floer trajectories is nonempty, which we do

6In fact, there are no known examples where they di�er.
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806 Dusa McDu� and Jennifer Slimowitz

by a deformation argument. Thus we need to know that the relevant spaces
of Floer trajectories are regular when � varies from 0 to 1, and it is here
that the overtwisted critical points would cause a problem: see Lemma 3.6. If
degenerations occur, one must either carry through a detailed analysis of the
degeneration or argue that this moduli space is nonempty for cohomological
reasons. Since both approaches would take us rather far from the main theme
of this paper, we will not pursue them further here.

1.2 Techniques of proof

The proofs of the above results employ the criteria for length minimizing paths
developed in [10]. For the convenience of the reader, this is explained in Section
2 below. The idea is to compare the length of the path with the capacity of
an associated region in M � R2 that is roughly speaking a cylinder. In order
to make the method work, it would su�ce to know that the Hofer{Zehnder
capacity cHZ satis�es the area{capacity inequality

cHZ(Z(a)) � a;
on all cylinders. This is equivalent to saying that every Hamiltonian H: Z(a)!
[0; c], that is identically zero on some open subset and equals its maximum value
c on a neighborhood of the boundary @Z(a), has fast periodic orbits as soon as
c > a. In [8], Hofer and Viterbo prove this statement for weakly exact (M;!),
ie, when !j�2(M) = 0. Their argument was extended to all manifolds by Liu{
Tian in [11]. As these authors point out, the \usual" theory of J {holomorphic
curves is not much help even in the semi-positive case because one must use
moduli spaces on which there is an action of S1 . Their paper establishes the
needed technical basis | S1{equivariant Gromov{Witten invariants and virtual
moduli cycles | to prove Proposition 1.6 stated above. However, they do
not consider arbitrary Hamiltonians but a special class that is relevant to the
Weinstein conjecture, and their paper is organised in such a way that one cannot
simply quote the needed results. This question is discussed further in Section
3.3.

In fact the above area{capacity inequality is more than is needed for the problem
at hand, and it is convenient to consider another modi�cation of cHZ de�ned
by maximizing over a restricted class of Hamiltonians that are compatible with
the �bered structure of the cylinder. This makes the geometry of the problem
more transparent and hence allows us to work with semi-positive M without
using virtual moduli cycles at all.

Here is a version of our main technical result. It is somewhat simpli�ed since
we in fact need an analogous result to hold for quasicylinders, rather than just

Geometry & Topology, Volume 5 (2001)
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for cylinders: see Section 2. It will be convenient to think of the base disc D(a)
of Z(a) = M � D(a) as being a disc on the Riemann sphere S2 = C [ f1g
with center at 1, and hence to call the central �ber M1 = M � f1g.

Proposition 1.7 Let F : Z(a)! [0; c]; be a Hamiltonian function such that

(i) its only critical points occur in the sets M1 and M �U0 , where U0 is a
connected neighborhood of the boundary @D(a);

(ii) near the central �ber M1 , F = HM+�(r) where HM is a Morse function
on M , and � is a function of the radial coordinate r that is < �r2 near
r = 0;

(iii) F : Z(a)! [0; c] is surjective, and is constant and equal to its maximum
value on M � U0 .

Then, if c > a, F is not slow, ie, it has either a nonconstant fast periodic orbit
or an overtwisted critical point.

This paper is organized in the following way. The second section describes the
criteria for length minimizing paths developed by Lalonde and McDu� in [10]
and explains the role of Hofer{Zehnder capacities. The third gives the proofs of
the area{capacity inequality and of Proposition 1.7. We discuss in detail some
technicalities about the intersections of bubbles and Floer trajectories, that are
omitted from standard references such as [5].

Acknowledgements This paper is a development of part of the second au-
thor’s thesis. The authors thank Helmut Hofer, Francois Lalonde, GuangCun
Lu, Leonid Polterovich, and Dietmar Salamon for very helpful comments, and
also Karen Uhlenbeck who pointed out a signi�cant gap in a much earlier ver-
sion of the argument. The �rst author thanks Harvard University for providing
a congenial atmosphere in which to work on this paper. The �rst author is
partially supported by NSF grants DMS 9704825 and 0072512. The second au-
thor was supported in 1998{9 by a grant awarded by the North Atlantic Treaty
Organization.

2 Criteria for length minimizing paths

We briefly describe the Lalonde{McDu� criterion for �nding paths that are
length minimizing in their homotopy class. In [10], they �rst derive a geometric
way of detecting that L(Ht) � L(Kt) for two Hamiltonians Ht and Kt on M .
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808 Dusa McDu� and Jennifer Slimowitz

Then, they determine su�cient conditions involving symplectic capacities for
this geometric requirement to be satis�ed.

For technical reasons it is convenient to restrict to Hamiltonians Ht that are
identically 0 for t near 0; 1. This restriction does not cause any problems: it
is easy to see that every time independent Hamiltonian H may be replaced
by one of the form �(t)H that satis�es the above condition and has the same
length and time 1{map as before.

2.1 Estimating Hofer length via quasicylinders

To begin, we must make a few de�nitions and set some notation. Suppose
we have Ht , a time dependent Hamiltonian function on the closed symplectic
manifold (M2n; !). We may assume7 that for each t,

min
x2M

Ht(x) = 0:

We denote the graph ΓH of Ht by

ΓH = f(x;Ht(x); t)g �M � R� [0; 1]:

Now, given some small � > 0 choose a function ‘(t): [0; 1]! [−2�; 0] such thatR 1
0 −‘(t)dt = � . A thickening of the region under ΓH is

R−H(�) = f(x; s; t) ‘(t) � s � Ht(x)g �M � [‘(t);1)� [0; 1]:

Since Ht � 0 for t near 0; 1 we may arrange that R−H is a manifold with corners
along s = 0; t = 0; 1 by choosing the function ‘(t) so that its graph is tangent
to the lines t = 0; t = 1.

Similarly, we can de�ne R+
H(�) to be a slight thickening of the region above

ΓH :
R+
H(�) = f(x; s; t) Ht(x) � s � �H(t)g �M � R� [0; 1]

where �H(t) is chosen so that

�H(t) � max
(
t) = max

x2M
Ht(x);

Z 1

0
(�H(t)−max

t
)dt = �:

We de�ne
RH(2�) = R−H(�) [R+

H(�) �M � R� [0; 1]:
7There is a slight technical problem here when the function t 7! min(t) =

minx2M Ht(x) is not smooth. In this case, we replace Ht by Ht + m(t) where m(t)
is a smooth function that is everywhere � min(t) and is such that min(t) −m(t) has
arbitrarily small integral. This slightly changes the areas of the regions R�H . However,
this can be absorbed into the � fudge factor: we only need to measure lengths exactly
for time independent H .
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Hofer{Zehnder capacity and length minimizing Hamiltonian paths 809

We equip R−H(�), R+
H(�), and RH(2�) with the product symplectic form Ω =

! � � where � = ds ^ dt. In particular, for any Hamiltonian Ht , (RH(�);Ω)
is symplectomorphic to the product (M � D(a);Ω) where D(a) denotes the
2{disc D2 with area a = L(H) + 2� .

Now, suppose Ht and Kt are two Hamiltonians on M such that �H1 = �K1 and
the path �Ht for 0 � t � 1 is homotopic (with �xed endpoints) to the path �Kt
in Ham(M). There is a map g: ΓK to ΓH de�ned by

g(x; s; t) = (�Ht � (�Kt )−1(x); s −K(x) +H(�Ht � (�Kt )−1(x)); t):

This map g extends to a symplectomorphism of R+
K(�), and we de�ne

(RH;K(2�);Ω) = R−H(�) [g R+
K(�):

We assume that the functions ‘ and �H are chosen so that RH;K(2�) is a
smooth manifold with boundary. The contractibility of the loop �Ht � (�Kt )−1

in Ham(M;!) implies that (RH;K(2�);Ω) is di�eomorphic to a product (M �
D;Ω) by a di�eomorphism that is the identity near the boundary and is sym-
plectic on each �ber. However Ω may not be a product, and so we make the
following de�nition.

De�nition 2.1 Let (M;!) be a closed symplectic manifold and D a set dif-
feomorphic to a disc in (R2; �) where � = ds ^ dt. Then, the manifold
Q = (M �D;Ω) endowed with the symplectic form Ω is called a quasicylinder
if

(i) Ω restricts to ! on each �bre M � fptg;
(ii) Ω is the product ! � � near the boundary M � @D .

If Ω = ! � � everywhere, not just near the boundary, Q is called a split
quasicylinder. The area of any quasicylinder (M � D;Ω) is de�ned to be the
number A such that

vol (M �D;Ω) = A � vol (M;!):

Thus if (M �D(a);Ω) is split, its area is simply a.

Since (RH;K(2�);Ω) has trivial monodromy round its boundary, it is not hard
to see that it is a quasicylinder: see [10] IISection 2.1. However, it may not be
split.

The key to the analysis is the following lemma taken from [10] II, Lemma 2.1,
whose proof we include for the convenience of the reader. It shows that if the
areas of both quasicylinders (RH;K(2�);Ω) and RK;H(2�);Ω) are greater than
or equal to L(Ht) for all � , then L(Ht) � L(Kt).

Geometry & Topology, Volume 5 (2001)



810 Dusa McDu� and Jennifer Slimowitz

Lemma 2.2 Suppose that L(Kt) < L(Ht) = A: Then, for su�ciently small
� > 0, at least one of the quasicylinders (RH;K(2�);Ω) and (RK;H(2�);Ω) has
area < A.

Proof Choose � > 0 so that

L(Kt) + 4� < L(Ht):

Evidently,

vol(RH;K(2�)) + vol(RK;H(2�)) = vol(RH(2�)) + vol(RK(2�))
= (volM) � (L(Ht) + L(Kt) + 4�)
< 2(volM) � L(Ht)

where RH(2�) = R−H(�) [R+
H(�).

To proceed, one needs some way of �nding lower bounds for the area of a quasi-
cylinder. The arguments in [10] use symplectic capacities, which are functions
from the set of symplectic manifolds to R [ f1g satisfying certain properties;
in particular, they are invariant under symplectomorphisms.

Suppose we have chosen a particular capacity c and symplectic manifold (M;!).
We say the area{capacity inequality holds for c on M if

c(M �D;Ω) � area of (M �D;Ω)

holds for all quasicylinders (M � D;Ω). It is useful to make the following
de�nition.

De�nition 2.3 The capacity c(Ht) of a Hamiltonian function Ht is de�ned
as

c(Ht) = minf inf
�>0

c(R−H(�)); inf
�>0

c(R+
H(�))g:

Now, take a manifold M and a capacity c such that the area{capacity inequality
holds for c on M , and suppose that we have a Hamiltonian Ht: M ! R for
which

c(Ht) � L(Ht):

Then, for any Hamiltonian Kt generating a flow �Kt which is homotopic with
�xed end points to �Ht (and thus has �K1 = �H1 ), we can embed R−H(�) into
RH;K(2�) and R+

H(�) into RK;H(2�). Thus, we know

L(Ht) � c(Ht) � c(R−H(�)) � c(RH;K(2�))

L(Ht) � c(Ht) � c(R+
H(�)) � c(RK;H(2�));
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with the last inequality in both lines holding by the monotonicity property of
capacities. Since the area{capacity inequality holds, we know that the areas
of both quasicylinders RH;K(2�) and RK;H(2�) must be greater than or equal
to their capacities and hence greater than or equal to L(Ht). Therefore, by
Lemma 2.2, L(Kt) � L(Ht): This proves the following result (Proposition 2.2
from [10], Part II.)

Proposition 2.4 Let M be any symplectic manifold and Ht2[0;1] a Hamilto-

nian generating an isotopy �Ht from the identity to � = �H1 . Suppose there
exists a capacity c such that the following two conditions hold:

(i) c(Ht) � L(Ht) and

(ii) for all Hamiltonian isotopies �Kt homotopic rel endpoints to �Ht , t 2
[0; 1], the area{capacity inequality holds (with respect to the given ca-
pacity c) for the quasicylinders RH;K(2�) and RK;H(2�).

Then, the path f�Ht gt2[0;1] minimizes length among all homotopic Hamiltonian
paths from id to �.

Hence, to show that Ht generates a length minimizing path f�Ht gt2[0;1] , we
need only produce a capacity c that satis�es the above conditions (i) and (ii).
Various results were obtained in [10] by using the Gromov capacity cG and the
Hofer{Zehnder capacity cHZ . It seems to be best to use cHZ , since condition
(i) holds for it almost by de�nition whenever H has no nontrivial fast periodic
orbits, while (i) is very restrictive for cG . On the other hand, the existence of
Gromov{Witten invariants on general symplectic manifolds allows one to show
easily that condition (ii) holds for cG , while the proof of (ii) for cHZ is more
subtle. Liu{Tian consider a very closely related question in [11], and using their
methods one can prove that (ii) holds for the very slightly modi�ed version c0HZ
of cHZ on any manifold: see Section 3.3.

In view of the complexity of the constructions in [11], we present in the next
section a di�erent modi�cation of the Hofer{Zehnder capacity for which one
can prove condition (ii) without too much di�culty in the semi-positive case.
This capacity cf is de�ned for �bered spaces such as quasicylinders, satis�es (i)
whenever H is slow and also satis�es (ii) for any closed M . It depends on some
extra structure that we need to choose and so is not de�ned for all symplectic
manifolds. Note that the only properties of the capacity c that we used above
are that it is de�ned for sets such as R�H(�) and that it has the monotonity
property

c(R−H(�)) � c(RH;K(2�)); c(R+
H(�)) � c(RK;H(2�)):
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2.2 The Hofer{Zehnder capacity for �bered spaces

We �rst explain what is meant by a �bered symplectic manifold.

De�nition 2.5 We will say that the symplectic manifold (Q;Ω) is �bered
with �ber (M;!) if there is a submersion �: Q ! D2 such that Ω restricts
to a nondegenerate form on each �ber Mb = �−1(b), where (Mb; !b) is sym-
plectomorphic to (M;!) for one and hence all b. In this case, because D2 is
contractible one can use Moser’s theorem to choose an identi�cation sQ of Q
with M �D2 so that !b = ! for all b. sQ is said to normalize Q if in addition
there is a small closed disc U1 in D2 with center 1 so that Ω restricts to
! � � on M � U1 , where � is the area form ds ^ dt as before. A symplectic
embedding  : Q! Q0 is said to be normalized if it takes the central �ber M1
in Q to that in Q0 and if

 = (sQ0)−1 � sQ
on some neighborhood of M1 that need not be the whole of �−1U1 .

Using the symplectic neighborhood theorem it is easy to see that every �bered
space can be normalized near any �ber. Further, every quasicylinder (Q;Ω)
is �bered, though in general the identi�cation Q ! M � D2 that occurs in
the de�nition of a quasicylinder is a normalization only near �bers that are
su�ciently close to the boundary. It is also not hard to see that the spaces
(R�H(�);Ω) can be �bered with �bers �−1(b) of the form f(x; sb(x); tb) : x 2
Mg: the restriction of Ω to such sets equals ! since tb is �xed. We will assume
that the �bers lying in the part of R−H(�) with s < 0 are flat, ie, also have �xed
s{coordinate sb(x) = sb . This normalizes R−H(�) near some �ber M0 with
s < 0. Similarly, the �bration of R+

H(�) is chosen to have flat �bers s = const
near its upper boundary s = �H(t). This means that spaces such as RH;K(�)
have two possible normalizations, one at a �ber where s < 0 and the other
near its upper boundary. However, it is not hard to see that there is a �berwise
symplectomorphism taking one to the other so that they are equivalent.

De�nition 2.6 Given a normalized �bered space Q, we de�ne the set Hf;ad(Q)
of admissible Hamiltonians to be the set of all functions F : Q ! [0;1) such
that:

(i) in some neighborhood M �U1 of the central �ber M1 , F = HM +�(r)
where HM is a Morse function on M , and � is a function of the radial
coordinate r of the disc that is < �r2 ;

(ii) F � 0 everywhere and is constant and equal to its maximum on a product
neighborhood M � U0 of the boundary;
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(iii) the only critical points of F occur on M1 and in M � U0 ;

(iv) F is slow.

De�nition 2.7 We de�ne the Hofer{Zehnder capacity of a normalized �bered
space Q by

cf (Q) = supfmax(F ) F 2 Hf;ad(Q)g

Clearly, this capacity cf has the appropriate monotonicity property, ie, cf (Q) �
cf (Q0) whenever there is a normalized symplectic embedding Q ! Q0 . In
particular,

cf (R−H(�)) � cf (RH;K(2�)); cf (R+
H(�)) � cf (RK;H(2�)):

The following proposition, which is proved in Section 3, shows that cf also
satis�es condition (ii) in Proposition 2.4.

Proposition 2.8 For any normalized quasicylinder (Q;Ω) of area A,

cf (Q) � A:

We next check condition (i).

Lemma 2.9 If H: M ! R is slow, then cf (H) � L(H).

Proof This is essentially [10] II, Proposition 3.1. We will prove that cf (R−H(�))
� L(H). The case of R+

H(�) is similar: indeed R+
H(�) is symplectomorphic to

R−m−H(�), where m = maxH .

By assumption, H has minimum value 0. Let m be its maximum, and consider
the set

SH;� = f(x; �; �) 2M �D(m+ �=2) j 0 � � � H(x) + �=2g;

where (�; �) are the action-angle coordinates on the disc given in terms of polar
coordinates (r; �) by

� = �r2; � =
�

2�
:

This space SH;� is essentially the same as R−H(�). Indeed, it is not hard to check
that there is a symplectic embedding SH;� ! R−H(�) of the form (x; �; �) 7!
(x; �(�; �)) for some area preserving map �: R2 ! R2: Moreover, SH;� is �bered
with central �ber at (�; �) = (0; 0), and we may choose this embedding so that
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it respects suitable normalizations of both spaces. Hence it su�ces to show
that for all " > 0

cf (SH;�) � L(H)− ":

To see this, �rst consider the function F = m−H(x) + �. This is constant and
equal to m + �=2 on @SH;� , and its flow is given by

�tF : (x; �; �) 7! (�tH(x); �; � + t):

Since H is slow and the critical points of H give rise to periodic orbits for F
with period precisely 1, F is also slow. Now smooth out F to F" : SH;� ! R,
where

F"(x; �; �) =

8>><>>:
(1− ") (m−H(x) + ��(�)) ; if � < �=4;
(1− ")F (x; �; �) if �=4 � � � H(x) + �=4;
(1− ") (m− ��(H(x) + �=4− �)) ; if H(x) + �=4 � � �

H(x) + �=2:

Here " > 0, and ��(�) is a increasing smooth surjection �: [0; �] ! [0; �] that
is � �2 near 0 and equals � when � � �=6. Since the flow of (1 − ")F goes
slower than that of F when " > 0, (1 − ")F is slow. Now the bump function
��(�) must have derivative slightly > 1 somewhere. Hence when we turn it
on the flow in the � {direction goes slightly faster. However, for each given "
we can clearly choose �� so that the product (1 − ")��(�) is slow. A similar
remark applies to the smoothing at @SH;� . Hence F" is slow and has maximum
value m− " = L(H)− ".

If H were a Morse function, F" would be admissible, ie, belong to Hf;ad(SH;�),
and the proof would be complete. Hence the last step is to alter F" near the
central �ber by replacing H with a function that is independent of � for � near
0 and restricts to a Morse function HM on M1 . This is easy to do without
introducing any nonconstant fast periodic orbits since we just need to change
H in directions along which its second derivative is small. See, for example,
Lemma 12.27 in [17] that shows that H is slow whenever its second derivative
is su�ciently small.

Proof of Theorem 1.4

This follows by the preceding lemma and by the remarks at the end of Section
2.1.

Remark 2.10 Suppose that Ht is a time dependent Hamiltonian. The space
R−H is again essentially the same as SH;� where this is de�ned to be the set of
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points (x; �; �) with 0 � � � H� (x), and we can de�ne the (time independent)
Hamiltonian F near its boundary @S to be (a smoothing of) m−H� (x) + � as
before. The problem is that this function is not well de�ned on the central �ber
M1 since � is not a coordinate there, and there seems to be no satisfactory
way of understanding when one can make such an extension. In particular, it
seems one would need the restriction of F to M1 to have the same norm as
Ht and yet be slow. Entov in [3] connects the Hamiltonian H to the geometry
of a �bered space via the choice of suitable connection rather than by the
construction of the Hamiltonian F . The condition on the connection is local
while our condition on F (that it should be slow) is global. Hence his approach
seems better adapted to this problem.

3 The area{capacity inequality

We begin by sketching the proof of this inequality for semi-positive M using
the set up in Hofer{Viterbo [8]. Section 3.2 contains more technical details, and
Section 3.3 discusses the case of general M .

3.1 Outline of the proof

For simplicity, we will assume for now that M is semi-positive, ie, that one of
the following conditions holds:

(a) the restriction to �2(M) of the �rst Chern class c1(M) of M is positively
proportional to [!] { the monotone case; or

(b) the minimal Chern number N of M is > n− 2, where 2n = dimM .

In this case the Gromov{Witten invariants on M can be de�ned naively, ie,
bubbles can be avoided, simply by choosing a generic J on M : see [18]. It
is not necessary to use the virtual moduli cycle. Notice that usually one asks
that N > n− 3 in (b). Strengthening this requirement allows us to say that no
element of a generic 2{parameter family of almost complex structures on M
admits a holomorphic curve of negative Chern number.

We will assume in what follows that (Q;Ω) is a quasicylinder and that F is an
admissible Hamiltonian in the sense of De�nition 2.6. In particular, this means
that for all � � 1 the only 1{periodic orbits of the flow of �F on M1 are
constant and occur at the critical points pk of F . Thus every Floer trajectory
for �F on M1 converges to these critical points. Our aim is to show:
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Proposition 3.1 If F is an admissible Hamiltonian on the quasicylinder
(Q;Ω) and if M is semi-positive then kFk � areaQ.

Because (Q;Ω) is a product near its boundary @Q we can identify this to a
single �ber M0 and so replace Q by (V = M � S2;Ω) where Ω restricts to !
on each �ber.

De�nition 3.2 An Ω{tame almost complex structure J on V will be said to
be normalized if each �ber is J {holomorphic and if in addition it is a product
near both M0 and M1 .

Thus each such J de�nes a 2{parameter family of !{tame almost complex
structures on M , and by our assumptions on M we can assume that there are
no J {holomorphic spheres that have Chern number < 0 and lie in a �ber of
V . Since the existence of such curves is what necessitates the introduction of
virtual moduli cycles, we will be able to count curves in V (and hence de�ne
appropriate Gromov{Witten invariants) provided that we are in a situation
where the only bubbles that appear lie in its �bers.

The idea of the proof is to assume that kFk > areaQ and to �nd a contradic-
tion. Let A = [pt � S2] 2 H2(V ). It is shown in [10] that there is a family of
noncohomologous symplectic forms Ωs on V starting with Ω0 = Ω such that
Ω1 is a product. Hence the �bered space (V;Ω) is deformation equivalent to
a product, which implies that Gr(A) = 1, where the Gromov invariant Gr(A)
counts the number of J {holomorphic A{spheres in V going through some �xed
point p in V for su�ciently generic J . We will choose p to be some minimum
p1 2M1 of F , and will �x the parametrizations u of the spheres by requiring
that

u(0) 2M0; u(1) 2M1; u(1) = p1 2M1;
where M1 is some �ber distinct from M0;M1 . The arguments given in Sec-
tion 3.2 below show that one can calculate Gr(A) using generic normalized J .
Hence, for such J the number of these curves will sum up to 1 when counted
with the appropriate signs. (In fact, in this semi-positive case, one can use mod
2 invariants and so ignore the sign.)

We now \turn on" the perturbation corresponding to the Hamiltonian flow of
�F for increasing � � 0.8 The resulting trajectories u have domain C and in

8One must be very careful with signs here since there are many di�erent conventions
in use. We have chosen to use the upward gradient flow of F (even though it is more
usual to use the downward flow) because this �ts in with our set-up. Since F takes
its maximum on M0 we need to consider trajectories going from this maximum to a
minimum: see Lemma 3.3 below.
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terms of the coordinates (s; t) of (−1;1)� S1 satisfy the following equation
for some �:

@su+ J(u)@t(u) = � (gradF ) � u; (1)
lim

s!−1
u(s; t) 2M0; lim

s!1
u(s; t) = p1; (2)

where gradF is the gradient of F with respect to the metric de�ned by Ω and
J . Because dF = 0 near M0 the map u is J {holomorphic for s << 0 and
so, by the removable singularity theorem, does extend to a holomorphic map
C ! V . Thus u is a generalized Floer trajectory of the kind considered in
[8, 21], and we will call it a �{trajectory. Because its limit at 1 is a point, it
also extends to a continuous map S2 ! V that represents the class A. It is
shown in [8] that the algebraic number of solutions to this equation is still 1
for small �.

Given F and a normalized J , let C = CA be the moduli space consisting of all
pairs (u; �) where � 2 [0; 1] and u: R � S1 ! V satis�es equations (1), (2) as
well as the following normalization condition:

(�) u(0; 0) 2M1 where M1 is a �ber of Q distinct from M0;M1 .

Note that Ω(A) is precisely the area of Q. The crucial ingredient that ties the
solutions of the above equation to the area{capacity inequality is the fact that
the size kFk of F gives an upper bound for �.

Lemma 3.3 If (u; �) 2 CA then �kFk < Ω(A) = area Q.

Proof A standard calculation shows that the action functional

a(s) =
Z

(−1;s]�S1

u�Ω +
Z 1

0
�H(u(s; t))dt

is a strictly increasing function of s. Since F (p1) = 0 and F jM0 = kFk by
construction, the action a(s) satis�es

lim
s!−1

a(s) = �kFk; lim
s!1

a(s) = Ω(A):

Hence �kFk < Ω(A) as claimed.

Note that if p1 is a nonovertwisted critical point of F of Morse index k , then
the formal dimension of C is 1 + k (see for example [21]) and so equals 1 with
the current choice of p1 . Because A is not a multiple class, it follows from
the standard theory that for any M we can regularize the moduli space C by
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choosing a generic normalized J : see Section 3.2. Hence for such a choice C is
a manifold of dimension 1 lying over [0; 1] via the projection

pr: C ! [0; 1]; (u; �) 7! �:

Because � is restricted to the interval [0; 1], C could have boundary over � =
0; 1. As mentioned above, 0 is a regular value for pr for generic J , and the
algebraic number of points in pr−1(0) is 1. On the other hand, we know from
Lemma 3.3 above that, if kFk � areaQ, the set pr−1(�) is empty for � = 1.
The only way to reconcile these statements is for C to be noncompact.

Noncompactness of C

Noncompactness in a moduli space of J {holomorphic Floer trajectories is
caused either by the bubbling o� of J {holomorphic spheres or by the split-
ting of Floer trajectories. Now bubbling is a codimension 2 phenomenon, and
so, provided that we can make everything regular by choosing a suitably generic
J , it will not occur along the 1{dimensional space C . It is easy to see that all
bubbles have to lie in some �ber. Hence, by our choice of normalization for J ,
we can avoid all bubbles. (There are some extra details here that are discussed
in Section 3.2 below.)

Floer splitting is harder to deal with since it occurs in codimension 1: a generic
1{parameter family of Floer trajectories can degenerate into a pair of such tra-
jectories. For example, the trajectories in C could converge to the concatenation
of a �{trajectory u: C! V in class A−B that converges to some critical point
pk on M1 of index k together with a Floer �{trajectory in M1 from pk to
p1 in class B 2 H2(M). We will see in Lemma 3.7 below that these are the
only degenerations that happen generically. Observe also that these degenera-
tions do not occur in the situation treated by Hofer{Viterbo because of their
topological assumptions on M .

To analyse this situation further, denote by

CA−B(pk)

the space of all pairs (u; �), where u: C! V is a solution to equations (1), (2)
with p1 replaced by pk , that is normalised by condition (�) and represents the
class A−B . Similarly, denote by

F = FB(pk)

the space of all pairs (v; �) where v: R � S1 ! M1 is a Floer trajectory for
�F from pk to p1 in class B . Note that the classes B that occur here are
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constrained by the inequality !(B) < !(A). Moreover, since our assumption
is that kFk > areaQ, we can slightly perturb F within the class of admis-
sible Hamiltonians to make HM slow and generic in the sense of Lemma 3.6.
That lemma then says that we can choose J so that all the relevant moduli
spaces of simple trajectories are regular, ie, have dimension equal to their for-
mal dimension. Thus CA−B(pk) will have dimension −2c1(B) + k + 1, where
k = index pk . Further if B 6= 0 is a simple (ie nonmultiple) class, then F has
dimension 2c1(B) − k + 1. Because F and JM are independent of the time
coordinate t and because the trajectories in F limit on �xed points rather
than nonconstant periodic orbits, there is a 2{dimensional reparametrization
group acting on the trajectories in F . Thus we need 2c1(B) − k + 1 � 2 for
F to be nonempty, while we need −2c1(B) + k + 1 � 0 for CA−B(pk) to be
nonempty. Therefore, if these spaces are both nonempty, F has dimension 2
and CA−B(pk) has dimension 0. Hence these spaces both consist of discrete sets
of points, which, for generic J , will project to disjoint sets in the �{parameter
space. Thus this kind of degeneration does not occur for generic J .

The crucial point in this argument is that the elements in F have an S1 sym-
metry. This presents a problem, since in general one cannot regularize Floer
moduli spaces containing multiply covered trajectories unless one allows either
the Hamiltonian F or the almost complex structure J to depend on t: see [5].
The usual way to deal with this is to assume that M is monotone: see Floer [4].
However, we now show that in our special situation this assumption is unnec-
essary.

First observe that we must also avoid the case when the trajectory itself is
independent of t, since then the S1 action becomes vacuous. But this could only
happen if B = 0 and our choice of p1 implies both that k � 0 and that B 6= 0.
(Because the action a(s) is strictly increasing and F (pk) � F (p1) we must have
!(B) > 0.) The above argument shows that we need 2c1(B) − k + 1 � 2 and
hence c1(B) > 0 for F to be nonempty when B is simple and J is generic.
Moreover, if there is a multiply covered trajectory in class ‘B; ‘ > 1; from pk
to p1 then it covers an underlying simple trajectory in class B between these
points. Therefore we must have c1(B) > 0 and 2c1(B)− k+ 1 � 2 in this case
too. But then the formal dimension −2‘c1(B) + k + 1 of CA−‘B(pk) is always
negative. But, because A−‘B is not a multiple class, this moduli space consists
of simple trajectories. Therefore our assumptions imply that it is regular and
hence empty for generic J .

It follows (modulo a few details discussed in Section 3.2 below) that there are
no degenerations of the trajectories in C for � 2 [0; 1]. But we saw earlier that
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if kFk � areaQ these trajectories must degenerate, ie, C cannot be compact.
Therefore kFk < areaQ.

We have used the fact that none of the critical points of F are overtwisted twice
in the above argument. First, it implies that the contribution of each critical
point pk to the dimension of CA is just its Morse index k and so is � 0. Second,
we need the space of �{trajectories to p to be regular for each � 2 [0; 1] which
is impossible if the linearized flow at p has a periodic orbit of period �.

3.2 More details

We �rst discuss the behavior of the flow near overtwisted critical points, and
then give more details of the transversality arguments needed to understand
the compacti�cation of C .

Overtwisted critical points

Since this question is local, we consider Hamiltonians H: R2n ! R with a
nondegenerate critical point at 0. We denote the Hessian by Q so that the
linearized flow at 0 is eAt where A = −J0Q. The eigenvalues of A occur
in real or imaginary pairs ��;�i�, � 2 R, or in quadruplets ��;��; � 2
C− (R[ iR). Correspondingly, R2n decomposes as a symplectically orthogonal
sum of eigenspaces, one for each pair or quadruplet. We will be concerned with
the partial decomposition

R2n = E �
kX
j=1

Ej

where the purely imaginary eigenvalues of A are ��1; : : : ;��k and Ej ⊗ C is
the sum of the eigenspaces for the pair �i�j , and E�C is the sum of the others.
Observe that each Ej contains a subspace of dimension at least 2 that is �lled
out by periodic orbits of eAt of period 2�=�j . Indeed, for each eigenvector
v 2 C2n in Ej ⊗C the intersection of Ej with the subspace C v �C v consists
entirely of such periodic orbits. Hence, if A has imaginary eigenvectors the
linearized flow always has nonconstant periodic orbits.

However this is not necessarily true for the nonlinear flow �Ht . Moser considers
the following example in [20]:9

H(z1; z2) =
1
2

(jz1j2 − jz2j2) + (jz1j2 + jz2j2)<(z1z2):

9He uses complex variables. Observe that if zk = xk + iyk the Hamiltonian flow
with our sign conventions can be written as _zk = −2i(@H=@zk).
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Clearly, the eigenvalues of AH are �i. However, it is easy to check that the time
derivative of the function =(z1z2) is strictly negative whenever (z1; z2) 6= (0; 0):
Hence there are no nonconstant periodic orbits.

The problem here is that the two eigenvalues are equal. More generally, similar
phenomena can occur if any pair i�; i�0 of eigenvalues are resonant, ie, if the
ratio �0=� is integral. The next result is well known, and is proved in the real
analytic case in Siegel{Moser [28] Section 16.

Lemma 3.4 Suppose in the above situation that i� is an imaginary eigenvalue
of A of multiplicity 1 that is nonresonant in the sense that the ratio �0=� is
nonintegral for all other imaginary eigenvalues i�0 of A. Then the flow �Ht of
H has a periodic orbit of period close to 2�=� on every energy surface close to
zero.

Proof The linearized flow around f0g is eAt where A = −J0Q. As above
R2n decomposes as a symplectically othogonal sum E0 � E� , where E� is a
2{dimensional space �lled by periodic orbits of period 2�=� and the restriction
of A to E0 has no eigenvalues of the form ik�; k 2 Z. Consider the level set

S1 = fx 2 R2n : HQ(x) = 1g
of the quadratic part HQ of H . By construction, it intersects E� in a periodic
orbit γ for etA of period T = 2�=�. The �rst return map �γ of this orbit can
be identi�ed with the restriction eTA0 of eTA to E0 . Hence our assumptions
on the eigenvalues of A imply that its only �xed point is at the origin. Thus
its Gauss map

g: S2n−3 ! S2n−3; v 7! �γ(v)− v
k�γ(v)− vk

is well de�ned. Observe that g has degree 1. In fact it is injective. For,
otherwise there would be vectors v;w lying on di�erent rays in E0 such that
�γ(v) − v = �γ(w) − w . Since �γ is linear, this would imply that it has 1 as
an eigenvalue, contrary to hypothesis.

Now consider the functions x 7! "−2H("x). Since they converge to HQ as "
decreases to 0, for each �xed su�ciently small " the orbits that start near γ
remain near γ for t 2 [0; T ]. Hence the �rst return map given by following
these orbits round γ is a perturbation �"γ of �γ . Hence its Gauss map is also
de�ned and has degree 1 for small ". But this means that the Gauss map
cannot extend over the interior of S2n−3 ; in other words, �"γ must have a �xed
point. This corresponds to a closed periodic orbit of "−2H("x) that is close
to γ and has period T" close to T . Since "−2H("x) is conjugate to H , this
implies that H also has a periodic orbit of period T" .
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Corollary 3.5 If a generic H has an overtwisted critical point, ie, if its Hessian
has imaginary eigenvalue i� with � > 2� , then its flow has a nonconstant
periodic orbit of period < 1.

Proof The hypotheses of the above lemma are satis�ed for generic H .

Lemma 3.6 Suppose that the Hamiltonian H on M is slow. Then H has
arbitrarily small perturbations H 0 such that for generic J the moduli spaces
of simple Floer trajectories for �H 0; � 2 [0; 1]; in classes B 2 H2(M) are all
regular.

Proof If necessary, we �rst replace H by cH for some c close to 1 so that nei-
ther H nor its linearized flows have nonconstant periodic orbits of period � 1.
Then slightly perturb H so that it is also a Morse function. Finally, note that
by [5] Remark 7.3 we may perturb H to H 0 so that for all � 2 [0; 1] the critical
points of �H 0 satisfy the nondegeneracy conditions of [5] Lemma 7.2 with re-
spect to a generic set of J and for all �. Thus simple (ie nonmultiply covered)
Floer trajectories all have regular injective points in the sense of [5] Section 7.
The result now follows by [5] Theorem 7.4.

As always, it is not enough to know that trajectory spaces are regular. One
also needs to show that their closures have the right dimension. This will follow
from Lemma 3.8 below.

Structure of the stable maps in the closure of C
Next let us check that the degenerations of the elements in C really are com-
patible with the �bration. By the standard compactness theorem, these de-
generations consist of a �nite number of Floer �{trajectories ui: R� S1 ! V ,
i = ‘; : : : ; k that are laid end to end together with some bubbles vj: S2 ! V .
Here, the ui are labelled in order, so that

lims!1 ui = lims!−1 ui+1; ‘ < i < k:

Since the only critical points are either near M0 or on M1 there has to be at
least one trajectory going between these manifolds. Pick one of them and call
it u1 . (We will see that in fact there is only one such trajectory.) Because F
is slow, the ui converge to critical points of F at each end and so represent
some homology classes in V . In the proof of the next result it is convenient to
allow ourselves to decrease the component �(r) of F that is perpendicular to
the �ber at M1 . Since we assumed � < �r2 for small r , we can reduce � to
"r2 on r < �=2 for any " without introducing any nonconstant fast periodic
orbits.
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Lemma 3.7 Let (ui; vj) be a limit of elements of C as described above. If " is
su�ciently small, each bubble vj is contained in some �ber, and the ui; i 6= 1;
are Floer �{trajectories in M1 . Moreover, ‘ = 1 and the homology class
represented by u1 has the form A−B , for some B 2 H2(M) with 0 � !(B) <
!(A):

Proof Suppose that (u�; ��) is a sequence of elements of C that converges
weakly to a limit of the above type, where u�: C! V . Fix � and consider the
composite map

u� = � � u�: C! V ! S2:

Since J is a product near M0 this map is holomorphic over the inverse image of
the neighborhood U0 of 0 2 S2 . Hence, because it has degree 1, the projection
from the image of u� to the base is injective over U0 .

Let zj be the set of points in C at which jdu�(z)j ! 1. Then the restriction
of u� to compact pieces of C−[zj converges to a map whose projection to the
base is holomorphic and nonconstant over U0 . Thus this limit is the trajectory
u1 . Since its intersection with the �ber class is 1, it must represent some class
of the form A−B , with B 2 H2(M).

Now consider the bubbles. These are always J {holomorphic and so their pro-
jections to the base are holomorphic near M0 . Further, because the �bers are
J {holomorphic they intesect each �ber positively. Hence each bubble either is
entirely contained in a single �ber or represents a class kA+B with k > 0. But
in the latter case they must intersect each �ber of M �U0 which is impossible
because the projection from the image of u� to the base is injective over U0

and, as noted above, these points converge to the component u1 .

Finally, consider the Floer trajectories. Suppose there was a trajectory that
came before u1 and so had endpoint on M0 . The previous argument applies to
show that it is entirely contained in M0 and therefore satis�es the unperturbed
Cauchy{Riemann equation and should be considered as a bubble. In particular
there is only one Floer trajectory that meets both M0 and M1 namely u1 .
Hence the other Floer trajectories begin and end at points in M1 , and we
claim that for su�ciently small " they are completely contained in M1 .

To see this, note that if " were 0, then F would depend only on the �ber coor-
dinates in the neighborhood r < �=2 of M1 . Thus the Floer trajectories would
project to holomorphic trajectories in the base and positivity of intersections
with the �ber would imply as before that the trajectories are entirely contained
in M1 . Therefore, because we are only interested in trajectories lying in a
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�nite set of homology classes and with a �nite set of possible endpoints, stan-
dard compactness arguments imply that for su�ciently small " all trajectories
must be contained in the neighborhood M1 � fr < �=2g of M1 . Thus these
trajectories would project to nullhomologous Floer trajectories in S2 for the
function "r2 that begin and end at the point r = 0. But these do not exist
because the action functional could not increase strictly along such a trajectory.

It remains to prove the statement about the class A−B represented by u1 . Let
Bi; Bj be the classes represented by the other ui and the bubbles vj . Clearly
each !(Bj) > 0. Further each !(Bi) > 0 because a strictly increases along each
trajectory and p1 is a minimum of F : see Lemma 3.3. Similarly, !(A−B) > 0
since u1(0) lies at a maximum of F . Since !(B) is the sum of the !(Bi); !(Bj),
the result follows.

Transversality of intersections of bubbles with trajectories

First observe that by the previous lemma the only classes B 2 H2(M) that
occur as a component ui or vj of a limiting trajectory in the closure of C have
!(B) < !(A) = areaQ. Hence only a �nite number of classes can occur. As
already noted, standard theory tells us that we can regularize the moduli spaces
of vertical bubbles in V and make all their intersections transverse by choosing
generic normalized J on V . Thus all spaces of bubble trees (or cusp-curves)
can be assumed to be of the right dimension.

Similarly, as we noted in Lemma 3.6, spaces of nonmultiply covered Floer tra-
jectories in M1 as well as the moduli spaces CB;pk can be regularized by a time
independent J by [5]. Thus there is a subset Jreg of second category in the
space of all normalized almost complex structures on Q such that all spaces of
bubble trees and of simple trajectories are regular.

In order to make the \usual" theory of J {holomorphic curves work we must also
ensure that these moduli spaces intersect transversally. The basic arguments
that establish this for spheres are given in [18] and the case of Floer trajectories
is discussed in [5]. However, the standard proof that spaces of bubbles can
be assumed to intersect transversally uses the fact that if two distinct simple
bubbles imu and im v intersect at some point x = u(z) = v(w) then there is a
small annulus � around z whose image by u does not intersect im v : see [18]
Propositions 6.3.3 and 2.3.2. This holds because otherwise the two curves are
in�nitely tangent at x and so must coincide. This argument breaks down for
bubbles and Floer trajectories since they satisfy di�erent equations. Since this
detail seems to have been ignored in standard references such as [5], we deal
with it now.
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For simplicity, we will suppose that there is just one bubble and so will con-
sider the intersection of the space of unparametrized bubbles in class B with
the moduli space CB0 = CB0;p1 . It su�ces to consider the intersection of the
corresponding parametrized curves. Hence let X be the space of all maps

u: (S2; 0;1)! (Q;M0; p1)

in the class A−B0 , let Y be the space of all maps v: S2 ! Q representing the
class B , and consider the space U of all tuples

(u; v; �; z; J) 2 X � Y �R� S2 � J

satisfying the following conditions:

(i) u is a Floer �{trajectory with respect to J ;

(ii) the bubble v is J holomorphic.

We want to show that when J lies in a subset Jreg of second category in J
the space

f(u; v; z) : (u; v; �; z; J) 2 U ; u(z) = v(0)g

is a manifold of the correct dimension. This follows in the usual way from the
next lemma.

Lemma 3.8 The evaluation map

ev: U ! Q�Q : (u; v; �; z; J) 7! (u(z); v(0))

is transverse to the diagonal.

Proof If z = 0 then u is J {holomorphic near z and the argument of [18]
Propositions 6.3.3 works. The case z =1 is somewhat special since the moduli
space of u{trajectories does not have a tangent space at this point. However,
this does not matter since u(z) is �xed for all J because it is the endpoint of
the Floer trajectory. Instead we look at the space of v{bubbles and can appeal
to Theorem 6.1.1 of [18] that says that the map from the space of all pairs (v; J)
in U to Q given by evaluation

ev2: (v; J) 7! v(0)

is surjective.

When z 6= 0;1; we can identify the domain of u with C and by reparametriza-
tion �x z = 1. The domain of the linearization Du of the de�ning equation
for the Floer trajectory equation at u is then the space W 1;p(u�TQ) which is
de�ned to be the closure with respect to the (1; p){Sobolev norm of the space
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of compactly supported C1{sections of u�TQ that are tangent to the �ber
at z = 0: see [5] Section 5. Thus we may replace U by the space U 0 of tu-
ples (u; v; �; J). The tangent space of U 0 at (u; v; �; J) consists of elements
(�1; �2; r; Y ) with �1 2W 1;p(u�TQ), �2 2W 1;p(v�TQ) and such that

Du(�1) +
1
2
Y (u) � du � i = rgF ; (�)

Dv(�2) +
1
2
Y (v) � dv � i = 0 (��):

(Here gF is the appropriate term coming from the variation in �F .) Moreover
the derivative d(ev) of the evaluation map is given by

d(ev)(�1; �2; Y ) = (�1(1); �2(0)) 2 T(x;x)(Q�Q):

We know by Theorem 6.1.1 in [18] that the map (�2; Y ) ! �2(0) 2 TxQ is
surjective. Hence given a 2 TxQ there is (�a2 ; Y

a) that satisfy (**) with �a2 (0) =
a. Note that we cannot assume that the support of Y a is disjoint from the
image of u though we can make it in an arbitrarily small neighborhood of the
intersection point v(0). Thus the element � = 1

2Y
a�du�i may well be nonzero.

Clearly, it will su�ce to �nd (�1; Y ) so that

�1(1) = 0; L(�1; Y ) = −�; Y = 0 in the support of Y a

where
L(�1; Y ) = Du(�1) +

1
2
Y (u) � du � i:

The usual proof of transversality (as in [18] Proposition 3.4.1 or [5] Theorem
7.4) shows that the operator L is surjective if �1 ranges freely in W 1;p(u�TQ)
and Y is constrained to have support near any injective point of u. In partic-
ular, the condition that �1(0) be tangent to the �ber can be ful�lled by adding
a suitable vector tangent to the group of Möbius transformations of S2 that
�x 1 and 1. Since the image of v lies in a �ber distinct from M0 and u is
injective near there we can easily arrange that the support of Y is disjoint from
that of Y a . Thus the only problem is the question of how to deal with the
condition �1(1) = 0.

To do this, we must consider more closely the proof that L is surjective. The
argument goes as follows. Since

Du: W 1;p(u�TQ)! Lp(Ω0;1u�TQ)

is Fredholm, the image of L is closed and it su�ces to show that it is dense. If
not, there is � in the dual space Lq((Ω0;1u�TQ)�) that vanishes on imL. In
the standard case this implies that � is a weak solution of the adjoint equation
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D�u� = 0 since it vanishes on all the elements Du�1 . Hence, by elliptic regularity,
it is a strong solution of this equation. It also must vanish in some open set
because it pairs to zero with all the elements L(0; Y ). Hence � = 0 as required.

In our case �1 is not an arbitrary element of W 1;p(u�TQ) but rather is in the
image of the map

W 1;p(u�TQ⊗ E)
�!W 1;p(u�TQ)

where E is a holomorphic bundle over S2 with Chern class −1 and � tensors
the sections of u�TQ ⊗ E by a holomorphic section s of the dual bundle E�

that vanishes at 1. Since s is holomorphic there is a commutative diagram

W 1;p(u�TQ⊗ E)
DEu! Lp(Ω0;1u�TQ⊗E)

⊗s # ⊗s #
W 1;p(u�TQ) Du! Lp(Ω0;1u�TQ):

It follows that the image �E = ��(�) = � ⊗ s of � in Lq((Ω0;1u�TQ⊗ E)�) is
a weak solution of the adjoint equation (DE

u )��E = 0. The standard argument
applies to show that �E = �⊗ s is zero. Hence the Lq{section � also vanishes.

3.3 The case of general M

To construct the virtual moduli cycle as in [12] for curves in some manifold
(V; !) one looks at the con�guration space B of all pointed stable maps in
some class A that are nearly holomorphic. Roughly speaking, B is an orbifold
that supports a orbibundle L whose �ber Lu at the map u: � ! V is the
Sobolev space of Lk;p{smooth sections of the bundle Ω0;1(�; u�(TV )) of (0; 1){
forms on the nodal Riemann surface �. For each J , the delbar operator @J
de�nes a section of L whose zero set is the set MJ of J {holomorphic stable
maps. If the derivative

Du: Lk+1;p(�; u�(TV ))! Lu

of this map is surjective for all (�; u) 2 MJ , this zero set is an orbifold of
the right dimension and its fundamental cycle can be used to de�ne Gromov{
Witten invariants. Although MJ is always compact with respect to the weak
topology of B , it might well be that for all J 0 near J this derivative is badly
behaved, so that MJ 0 has components of too large dimension. What one does
to remedy the situation is de�ne, over some orbifold neighborhood W of MJ

in B , a �nite-dimensional subspace R of the set of sections of L such that the
map

Du � �u: Lk+1;p(�; u�(TV ))�R! Lu
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is surjective for all (�; u) in some smaller neighborhood WR of MJ , where �u
denotes evaluation at u. This implies that for a generic small element � 2 R
the set of solutions of the perturbed Cauchy{Riemann equation

@J(u) + �u(�) = 0

has the right dimension and supports a fundamental cycle. This is often called
the virtual moduli cycle or regularized moduli space M� .

This is the briefest outline of Liu{Tian’s method. Many more details can be
found in [12, 13, 15]. The main point is the construction of R. The idea is to
�nd a suitable perturbation space Ri over each subset Ui of an open cover of
MJ and then to patch these together.

In our situation we start with an action of S1 by reparametrization on the space
of J -holomorphic Floer trajectories in V = M between two points p and q and
want to construct the regularization M� so that it also supports an S1{action.
To do this one must �rst extend the original action to the neighborhood W .
This extension will not simply be an action of S1 : if a trajectory splits into
two, or more generally k , pieces there will be an S1 action on each part, and
one has to make everything equivariant with respect to this. In particular, one
must choose the initial covering fUig so that each set Ui is invariant under this
generalized action.

It is shown in [13] that these methods allow one to carry through the arguments
in Section 3.1. Hence Proposition 2.8 holds for general M .

Once we have this powerful method there is no need to cling to all the special
conditions that we put on F that adapted it to the �bration on M � S2 . For
the argument to make sense, we need F to be constant and equal to its absolute
maximum (resp. minimum) in a neighborhood of one �ber and to assume its
absolute minimum (resp. maximum) at some point that plays the role of p1 .
The other important condition is that F be slow. Thus F is admissible in that
it belongs to the set H0ad(M � S2) de�ned in Section 1. Using the methods of
Liu{Tian to regularize the closure of the trajectory space C in V = M �S2 for
these more general functions F , we obtain the following result.

Proposition 3.9 Given any closed symplectic manifold (M;!) and any quasi-
cylinder (Q = M�D;Ω) the capacity c0HZ satis�es the area-capacity inequality

c0HZ(Q;Ω) � area (Q;Ω):

Proposition 1.6 clearly follows.
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