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L� groups are almost convex and have a
sub-cubic Dehn function

Murray Elder

Abstract We prove that if the Cayley graph of a �nitely generated group
enjoys the property L� then the group is almost convex and has a sub-cubic
isoperimetric function.
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1 De�nitions

In this article we show how a new metric property of groups called L� is related
to some older metric properties of groups. We prove that if a group has a �nite
generating set that enjoys L� then the group is almost convex with respect to
this generating set, and has a sub-cubic isoperimetric (or Dehn) function. My
thanks to Kim Ruane and Indira Chatterji for introducing me to L� , to Andrew
Rechnitzer for help with the �gures, and to an anonymous reviewer for helpful
suggestions.

Let (X; d) be a weakly geodesic metric space (in this paper take the Cayley
graph with the word-metric).

De�nition 1.1 � -path For any � � 0 and �nite sequence of points x1; : : : ; xn ,
we say (x1; : : : ; xn) is a �-path if

d(x1; x2) + : : :+ d(xn−1; xn) � d(x1; xn) + �:

De�nition 1.2 L� For any � � 0 the space X has property L� if for each
three distinct points x; y; z 2 X there exists a point t 2 X so that the paths
(x; t; y); (y; t; z) and (z; t; x) are all � -paths.

Examples of groups enjoying this property are word-hyperbolic groups, fun-
damental groups of various cusped hyperbolic 3-manifolds, groups that act on
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Figure 1: Z2 is L� for one generating set and not another

CAT(0) cube complexes and products of trees, and Coxeter groups [5]. The
property is related to the property of rapid decay and the Baum-Connes con-
jecture. The property is not invariant under change of �nite generating set.
For example, Chatterji and Ruane show that Z2 with the usual generating set
has L� , however the generating set ha; b; c j ab = ba = ci does not enjoy the
property, as illustrated in Figure 1.

De�ne the closed metric ball of radius n to be the set of points that lie within
distance n of the identity vertex in the Cayley graph.

De�nition 1.3 Almost convex A group G with �nite generating set G is
almost convex if there is a constant C � 0 so that for any two vertices that lie
distance n � 0 from the identity vertex and at most 2 apart from each other,
there is a path connecting them that lies inside the closed ball of radius n and
has length at most C .

Cannon [4] showed that if a group has this property then one has an algo-
rithm to construct any �nite portion of the Cayley graph. It also implies �nite
presentability. The property is dependent on choice of �nite generating set [10].

Suppose that G is a �nitely presented group, with inverse closed �nite gen-
erating set G and �nite set of relators R � G� . Let F (G) be the free group
generated by G . A word in G� represents the identity in G if and only if it is
freely equal to an expression of the form

�k
i=1girig

−1
i

where the gi 2 F (G) and ri 2 R [R−1 .
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De�nition 1.4 van Kampen diagram, Area Let � be a labeled, simply con-
nected planar 2-complex, such that each edge is oriented and labeled by and
element of G , and reading the labels on the boundary of each 2-cell gives and
element of R[R−1 . We say � is a van Kampen diagram for w if reading the
labels around the boundary of � gives w .

Each van Kampen diagram with k 2-cells for w gives a way of expressing w
as a product �k

i=1girig
−1
i . Conversely, each product �k

i=1girig
−1
i gives a van

Kampen diagram for w with at most k 2-cells. Thus van Kampen’s Lemma
states that w has a van Kampen diagram if and only if w represents the identity
element. De�ne the area A(w) of a word w 2 G� which represents the identity
to be the minimum k in any such expression for w , or equivalently the minimum
number of 2-cells in a van Kampen diagram for w .

In terms of the Cayley graph, if a word evaluates to the identity element it
corresponds to a closed path, and its area is the least number of relators needed
to �ll in this closed path. See [3] p.155 for more details on van Kampen’s
Lemma.

De�nition 1.5 Dehn function, Isoperimetric function The Dehn function for
hGjRi is de�ned to be D(n) = maxfA(w) : w has at most n letters, and w
evaluates to the identityg. An isoperimetric function for hGjRi is any function
which satis�es f(n) � D(n).

Two functions f; g are said to be equivalent if there are constants A;A0; B;B0;
C;C 0;D;D0; E;E0 so that f(n) � Ag(Bn+C)+Dn+E , and g(n) � A0f(B0n+
C 0) +D0n+ E0 . Up to this notion of equivalence, a Dehn function for a group
is invariant of the �nite presentation. If G has a sub-quadratic isoperimetric
function then it has a linear isoperimetric function [1, 9]. For more details about
isoperimetric functions and van Kampen diagrams, see for example [8, 7].

2 Results

Theorem 2.1 If the Cayley graph for a group has property L� for some � � 0
then it is almost convex with constant 3� + 2.

Proof Consider two vertices g; g0 that lie at distance n from the identity in
the Cayley graph, and distance at most 2 apart. We will call the identity vertex
z . Let w and w0 be geodesic paths of length n from z to g and g0 respectively.
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Figure 2: L� implies almost convex

If n � � then the path w−1w0 lies inside the closed ball of radius n, connects
g to g0 and has length 2n � 2� .

If n > � then let x be the point that lies distance exactly n− �
2 from z along

w , and y the point that lies distance n− �
2 from z along w0 . Note that x and

y need not be vertices (they may lie in the interior of edges). See Figure 2.

By property L� there exists a point t such that d(z; t) + d(t; x) � d(z; x) + � =
n− �

2 + � = n+ �
2 and d(z; t) + d(t; y) � d(z; y) + � = n− �

2 + � = n+ �
2 since

x and y lie on geodesics. It follows that the geodesic paths from x to t and t
to y lie in the closed ball of radius n.

Also, d(x; t)+d(t; y) � d(x; y)+ � � ( �2 + 2+ �
2)+ � = 2�+ 2, where ( �2 + 2+ �

2)
is the length of the path from x to y that goes via g and g0 .

So we can �nd a path of length �
2 + (2�+ 2) + �

2 = 3�+ 2 from g to g0 that lies
in the closed ball of radius n.

It can be shown that if a group is almost convex with constant C with respect to
some �nite generating set, then the set of all words that evaluate to the identity
and have length at most C + 2 form a �nite set of relators for a presentation
for the group, so the group is �nitely presented. See [8]. In this case, however,
we prove �nite presentability directly in the following result.

Theorem 2.2 If the Cayley graph for a group G with respect to some �nite
generating set G has property L� for some � � 0 then G is �nitely presented

and has an isoperimetric function equivalent to n
1

1−log3 2 .

Algebraic & Geometric Topology, Volume 4 (2004)



L� groups are almost convex and have a sub-cubic Dehn function 27

Figure 3: Subdividing a closed path into three shorter ones

Proof Assume that the �nite generating set G is inverse closed. We will
show that every word in G� that evaluates to the identity has a van Kampen
diagram consisting of 2-cells of perimeter (at most) 3� + 2. Then taking as a
set of relators the set of all words that represent the identity that have length
at most 3� + 2, it follows that G is �nitely presented. Moreover, we will show
that the area of a diagram with respect to this presentation is at most sub-cubic
in the length of the word.

Let w 2 G� be a word of length n that evaluates to the identity. We wish
to construct a van Kampen diagram for w from 2-cells of perimeter at most
3�+2. So if n � 3�+2 then it will be a relator, and if n > 3�+2 then proceed
as follows.

The word w represents a closed path in the Cayley graph, which starts and
ends at some vertex z . Choose two points x and y that lie at distance exactly
n
3 along the paths w and w−1 from z . So x; y and z are equally spaced around
w , that is, pairwise at most n

3 apart. Note that x and y need not be vertices
(they may lie in the interior of edges). See the left side of Figure 3.

Property L� says that there is a point t in the Cayley graph such that d(x; t)+
d(t; y) � d(x; y) + � = n

3 + � and similarly for x; z and y; z .

Thus we can �nd three closed paths containing x; y; t, y; z; t and x; z; t each of
perimeter at most n

3 + (n3 + �) = 2n3 + � . See the right side of Figure 3.

These three closed paths are each strictly shorter than the original closed path,
since n > 3� + 2 > 3� so � < n

3 so 2n
3 + � < n.

Note that if t in fact lies on the path w then these paths do not embed in
the Cayley graph. For the purpose of the argument we are not concerned with
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whether these shorter closed paths embed or immerse in the Cayley graph, we
merely want to construct a van Kampen diagram for w with 2-cells bounded
by closed paths of length at most 3�+2, and we allow that some of these 2-cells
could be non-embedded. So we will iterate this partitioning process until the
maximum perimeter of an internal closed path is not more than 3� + 2.

Find k so that (3
2 )k � n < (3

2)k+1 . After one iteration we have three closed
paths of length at most 2

3n + � . After a second iteration we get at most nine
closed paths of length at most 2

3(2
3n+ �) + � = (2

3 )2n+ 2
3� + � . After a third

iteration we get at most 33 closed paths of length at most 2
3(2

3 (2
3n+ �) + �) + �

= (2
3)3n+ (2

3)2� + 2
3� + � .

Iterating k times we will get at most 3k closed paths of perimeter at most

(2=3)kn+ (2=3)k−1� + : : :+ (2=3)� + �

< (2=3)k(3=2)k+1 +
k−1X
i=0

(2=3)i�

= 3=2 +
�

1− (2=3)k

1− 2=3

�
�

< 3=2 + 3�:

Thus after k iterations we will have partitioned the original closed path down
into closed paths of length less than 3�+2, so we will have succeeded in �nding
a van Kampen diagram for w using only words that evaluate to 1 and have
length less than 3� + 2.

Then we have established that G is �nitely presented by the presentation de-
scribed above.

Now (3
2)k � n so taking log3 of both sides gives k log3(3

2 ) � log3 n. Let
c = 1

log3(3=2) . Then k � c log3 n. So the number of relators in a van Kampen
diagram for w is at most 3k � 3c log3 n = (3log3 n)c = nc . It follows that the
isoperimetric function is sub-cubic since c = 1

log3(1:5) = ln 3
ln 1:5 which is approxi-

mately equal to 2:7. Alternatively, c = 1
log3(3=2) = 1

log3 3−log3 2 = 1
1−log3 2 .

Note that the number of iterations required is independent of � , so the isoperi-
metric bound is not improved by smaller � (such as 0).

3 Remarks

The 3-dimensional integral Heisenberg group has a cubic isoperimetric function
(see [6] p.165), so in the light of Theorem 2.2 cannot enjoy property L� for

Algebraic & Geometric Topology, Volume 4 (2004)



L� groups are almost convex and have a sub-cubic Dehn function 29

any � � 0.

An open question is whether there is a group with an isoperimetric function
greater than quadratic and less than the sub-cubic bound given in Theorem 2.2
that has L� . Brady and Bridson have a family of groups having isoperimetric
functions with exponent 2 log2

2p
q for all p � q [2], however a quick investigation

of these suggests that they would not enjoy L� .
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