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1 Introduction

Surgery techniques are essential tools for understanding the topology of mani-
folds. For smooth manifolds the rational blowdown surgery, introduced by Fin-
tushel and Stern, is particularly useful because one can calculate how the Don-
aldson and Seiberg-Witten invariants change when the surgery is performed [6].
For instance, Fintushel and Stern [6] used it to calculate the Donaldson and
Seiberg-Witten invariants of simply connected elliptic surfaces and to construct
an interesting family of simply connected smooth 4-manifolds Y (n) not homo-
topy equivalent to any complex surface. This surgery can also be performed
in the symplectic category [12], and thereby helps demonstrate the vastness of
the set of symplectic 4-manifolds. In particular, the aforementioned Y (n), as
well as an infinite family of exotic K3 surfaces [7] (4-manifolds that are home-
omorphic but not diffeomorphic to a degree 4 complex hypersurface in CP 3 ),
all admit symplectic structures [12].

The rational blowdown surgery amounts to removing a neighborhood of a linear
chain of embedded spheres whose boundary is the lens space L(n2, n−1), n ≥ 2
and replacing it with a rational ball (manifold with the same rational homology
as a ball), also with boundary L(n2, n− 1). This has the effect of reducing the
dimension of the second homology of M at the expense of possibly complicating
the fundamental group. The surgery gets its name from the well-known process
of blowing down a −1 sphere (the case n = 1) in which one replaces a tubular
neighborhood of a sphere of self-intersection −1 by a 4-ball.

In fact, there are other lens spaces that bound rational balls: L(n2, nm −
1), n,m ≥ 1 and relatively prime [3]. Therefore one can define a broader
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b1 b2 b3 bk−1 bk

Figure 1: Plumbing diagram for Cn,m.

class of rational blowdowns, so called generalized rational blowdowns. Park [10]
extended Fintushel and Stern’s calculations, showing how a generalized rational
blowdown affects the Donaldson and Seiberg-Witten invariants of a smooth 4-
manifold. Here we show that even the generalized rational blowdown can be
performed in the symplectic category.

Specifically, given any pair of relatively prime integers y, x, x 6= 0, the fraction
y
x has a negative continued fraction expansion

b1 −

 1
b2 − 1

···− 1
bk

 =
y

x
(1)

which is unique if one assumes that bj ≥ 2 for all j ≥ 2. The shorthand for
this continued fraction expansion is [b1, b2, . . . , bk].

Definition 1.1 For any relatively prime n ≥ 2,m ≥ 1, let Cn,m be a closed
tubular neighborhood of the union of spheres {Sj}j=1,...k in the plumbing of
disk bundles represented by the diagram in Figure 1, where the bj satisfy
[b1, b2, . . . , bk] = n2

nm−1 and bj ≥ 2 for all j .

The spheres in Cn,m have the following intersection pattern:
Sj · Sj+1 = 1 for j = 1, . . . k − 1,
Sj · Sj = −bj and
Si · Sj = 0 otherwise.

(2)

The fact that Sj ·Sj = −bj ≤ −2 for each j implies that the intersection form of
Cn,m is negative definite. The boundary of Cn,m is the lens space L(n2, nm−1)
which bounds a rational homology ball Bn,m [3, 10].

Definition 1.2 If there is an embedding ψ : Cn,m →M , then the generalized
rational blowdown of M along the spheres ψ(∪ki=1Si) is

M̃ := (M − ψ(∪ki=1Si)) ∪φ Bn,m (3)

where φ is an orientation preserving diffeomorphism of a collar neighborhood
of the boundary L(n2, nm− 1).
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Theorem 1.3 Suppose M̃ = (M − ψ(∪ki=1Si)) ∪φ Bn,m is the generalized
rational blowdown of a smooth 4-manifold M along spheres ψ(∪ki=1Si). If
M admits a symplectic structure for which the spheres are symplectic, then
the diffeomorphism φ can be chosen so that M̃ admits a symplectic structure
induced from the symplectic structures on M and Bn,m .

The essence of the proof, as for the case m = 1, is in our choice of symplectic
models for the spaces Cn,m and Bn,m . By a version of the symplectic neigh-
borhood theorem any neighborhood of symplectic spheres that is diffeomorphic
to Cn,m has a neighborhood symplectomorphic to a toric model space. (A
symplectic manifold is toric if it is equipped with an effective Hamiltonian Tn

action.)

The new ingredient in this paper is a set of symplectic representatives for the
rational balls Bn,m for all m ≥ 1. These representatives are toric near the
boundary and can be chosen to “fit” a collar neighborhood of the boundary of
Cn,m . We present the Bn,m as the total space of a singular Lagrangian fibration
with two types of singular fibers: a one parameter family of circle fibers and
one isolated nodal fiber – a sphere with one positive self-intersection. In the
language of Hamiltonian integrable systems the singularity of the nodal fiber
is a focus-focus singularity. Our nodal fiber is the Lagrangian analog of the
singular fibers that appear in Lefschetz fibrations of symplectic 4-manifolds.

Acknowledgments The author thanks Eugene Lerman for suggesting helpful
references, in particular the work of Nguyen Tien Zung, and thanks Nguyen
Tien Zung in turn for mentioning Vu Ngoc San’s work. The author also thanks
an anonymous referee who pointed out a minor error.

The author is grateful for the support of an NSF post-doctoral fellowship,
DMS9627749.

2 Background

Our objective is to control the symplectic structure of collar neighborhoods of
the boundaries of the spaces involved in our surgery: Cn,m and Bn,m . We do
this by presenting them as the total spaces of singular Lagrangian fibrations.
The space Cn,m itself and a collar neighborhood of the boundary of Bn,m admit
singular Lagrangian fibrations equivalent to the fibration defined by the moment
map for a Hamiltonian torus action. An important feature of these fibrations
is that, at least near the boundary, the base classifies the neighborhood up to
fiberwise symplectomorphism (cf. [2, 13]).
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Definition 2.1 A Lagrangian fibration π : (M2n, ω)→ Bn is a locally trivial
fibration such that ω|π−1(b) = 0 for each b ∈ B (i.e. such that each fiber is a
Lagrangian submanifold).

The Arnold-Liouville theorem guarantees that if the fibers of a Lagrangian fibra-
tion are closed (compact, without boundary) and connected then they must be
n-tori with neighborhoods equipped with canonical coordinates: action-angle
coordinates. The local action coordinates supply the base B with an integral
affine structure, i.e. an atlas Φj : Uj → Rn with the maps ΦjΦ−1

k |Uj∩Uk ∈
GL(n,Z).

It is easy to see that in dimension 4 (with n = 2) the fibers must be tori:
the Lagrangian condition implies the existence of an isomorphism between the
normal and tangent bundles defined via the symplectic form; then, since the
normal bundle of a fiber must be trivial, we have that Euler characteristic of
the tangent bundle is 0. Because the fiber of a locally trivial fibration of an
oriented manifold is orientable, the fiber must be a torus.

We now expand our definition of a Lagrangian fibration to include singular
fibers: one parameter families of circle fibers, isolated points and isolated nodal
fibers (spheres with one positive transverse intersection). These singular fibra-
tions are examples of Lagrangian fibrations with topologically stable and non-
degenerate singularities such as arise in integrable systems [13]. In the spirit
of holomorphic fibrations and smooth Lefschetz fibrations, and for simplicity of
exposition, we often suppress the word singular. We assume throughout that
fibers are connected and that the generic fibers are closed manifolds.

Near the circle and point fibers the fibration is equivalent to one coming from
the moment map for a torus action. Therefore, the integral affine structure on
the image of the regular fibers, B0 ⊂ B , extends to each connected component
of the image of the circle fibers. These components meet at the vertices of B ,
the images of the point fibers. The images of nodal fibers are isolated interior
points of B .

To understand the base B in each of our examples, we view B (or part of it) as
a subset of R2 . We always assume that R2 is equipped with the integral affine
structure coming from the standard lattice generated by the vectors (1, 0) and
(0, 1). It is important to note that there are two different classes of lines in
this integral affine space: rational and irrational (as determined by the slope
of the line). Indeed, a vector v directed along a line of rational slope has an
affine length α ∈ R+ defined by v = αu for a primitive integral vector u, while
a vector directed along a line of irrational slope does not have a well-defined
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length. By an integral polygon in R2 we mean one whose edges define vectors of
the form αu where α ∈ R+ and u is a primitive integral vector, or alternatively,
one whose edges all have well-defined affine lengths.

We now review a few facts that facilitate reading the topology of a Lagrangian
fibered symplectic 4-manifold π : (M,ω) → U from the base U when U coin-
cides with a moment map image. The reader interested in more detail on the
topology of a toric symplectic manifold should consult [1]. Throughout our dis-
cussion, neighborhood refers to a tubular neighborhood, (p1, p2) are Euclidean
coordinates on R2 and (q1, q2) are circular coordinates on T 2 .

(1) A simply connected open domain U ⊂ R2 defines the open symplectic
manifold (U × T 2, dp ∧ dq).

(2) An open neighborhood U of a point in the boundary of a closed half-plane
in R2 defines the smooth manifold S1 ×D3 that is symplectomorphic to
a neighborhood of {(z1, z2) | 0 < |z1| < α, |z2| = 0} ⊂ (C2, 1

2idz ∧ dz) for
some α ∈ R+ . The symplectic structure dp∧ dq defined on the preimage
of int U extends to the circles that live over the points in ∂U ∩ U . If
the half space is bounded by the line {(p1, p2) | p2 = m

n p1} ⊂ R2 then the
circle fibers are quotients T 2/(q1, q2) ∼ (q1 −mt, q2 + nt), t ∈ R of the
tori living over points in U with p2 = m

n p1 .

(3) A neighborhood U of a vertex in a convex integral polygon defines a
symplectic 4-ball if and only if the primitive integral vectors u, v that
define the directions of the adjacent edges satisfy |u × v| = 1. (Here ×
is the cross product in R3 restricted to R2 , thus yielding a scaler.) The
preimage of the vertex is a point. If |u × v| = n ≥ 2 then U defines a
neighborhood of an orbifold singularity.

(4) A neighborhood U of an edge E in a convex polygon defines a neighbor-
hood of a sphere. Specifically, consider an edge αw , with α ∈ R+ and w
a primitive integral vector. Suppose u, v are the primitive integral vectors
based at the endpoints of E that define (up to scaling) the left and right
adjacent edges. Then the sphere has area α and self-intersection u× v .
See Figure 2.

(5) If U ⊂ R2 defines a toric symplectic manifold, then for any A ∈ GL(2,Z)
and b ∈ R2 , A(U) + b defines the same symplectic manifold (with a
different torus action if A is not the identity).
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Figure 2: Neighborhood of a sphere of self-intersection −2 and area 3
2 .

3 Symplectic models

In this section we provide symplectic models for the cone on a lens space,
neighborhoods of certain linear chains of spheres, the neighborhood of a nodal
fiber, and rational balls. We give the descriptions in terms of diagrams in R2

that correspond to images of moment maps when a global torus action can be
defined.

The examples we present here are the building blocks for our constructions and
are essential for the proof of Theorem 1.3.

3.1 Toric models

Example 3.1 Cone on a lens space L(n,m).

Consider the following subset of R2 :

Vn,m = {p1 ≥ 0} ∩ {p2 ≥
m

n
p1} ∩ {p2 > 0} (4)

and the (singular) Lagrangian fibered symplectic manifold π : (M,ω) → Vn,m
it defines. Figure 3 shows Vn2,nm−1 , the case we are interested in.

To see that M is a cone on a lens space, recall that L(n,m) can be decomposed
as the union of two solid tori glued together via a map φ of their boundaries
such that φ∗µ2 = −mµ1 + nλ1 where µi, λi are meridinal and longitudinal
cycles on the solid torus boundaries.

For any t > 0, consider the 3-manifold in M that is the preimage of {p2 = t}∩
Vn,m ; decompose it as the union of preimages P1∪P2 where P1 is the preimage
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nm− 1

n2

Vn2,nm−1

Figure 3: Cone on the lens space L(n2, nm− 1).

of {p1 ≤ ct, p2 = t} ∩ Vn,m and P2 is the preimage of {p1 ≥ ct, p2 = t} ∩ Vn,m
for some 0 < c < n

m . Then P1, P2 are a solid tori with meridians whose tangent
vectors are ∂

∂q1
and −m ∂

∂q1
+n ∂

∂q2
respectively, thereby showing the 3-manifold

is L(n,m). Letting t vary we get L(n,m)× (0,∞).

There was nothing special about the choice of {p2 = t} ∩ Vn,m to define the
lens space; we could have used any arc smoothly embedded in Vn,m with one
endpoint on each of the edges of Vn,m . However, by choosing an arc γ transverse
to the vector field p1

∂
∂p1

+p2
∂
∂p2

we get an induced contact structure (completely
non-integrable 2-plane field, cf. [5]) on the lens space. This contact structure
is defined as the kernel of the 1-form ιXω|π−1(γ) where X is the unique vector
field on M which is given by p1

∂
∂p1

+ p2
∂
∂p2

in the local coordinates (p, q)
on π−1(int Vn,m). The contact structure is independent of the choice of the
transverse arc γ .

Example 3.2 Negative definite chains of spheres.

Here we define a neighborhood of a chain of spheres by a neighborhood of the
piecewise linear boundary of a domain in R2 . See Figure 4 for an example.

Let {xj}kj=0 be a set of points in R2 and {uj}k+1
j=0 a set of primitive integral

vectors such that

• αjuj = xj − xj−1 with αj ∈ R+ for each 1 ≤ j ≤ k ,

• uj × uj+1 = 1 for each 0 ≤ j ≤ k , and

• uj+1 × uj−1 = Sj · Sj for each 1 ≤ j ≤ k .

Let X be the convex hull of the points {xj}kj=0 and all points x such that
x0 − x = αu0 or x− xk = αuk+1 for some α > 0.
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X

Figure 4: Neighborhood of spheres.

Then X defines a Lagrangian fibered symplectic manifold (M,ω) → X such
that each finite edge, defined by the vector xj − xj−1 for some j , is the image
of a sphere Sj . The area of each sphere Sj ⊂ M is αj and for each 1 ≤ j ≤
k− 1, Sj intersects Sj+1 once positively and transversely. The convexity of V
corresponds to the negative definiteness of the intersection form of M .

Let W be any closed neighborhood in X of the finite edges defined by the xj .
Then W defines a singular Lagrangian fibration of a closed toric neighborhood
of spheres S1, . . . Sk in M . (We interpret the points in ∂W ∩ int X as the
images of tori, not circles.)

A variation of the symplectic neighborhood theorem states that the germ of the
neighborhood of a linear chain of spheres is determined up to symplectomor-
phism by the areas of the spheres and the intersection form. (An explanation of
how Moser’s method would be applied in this case is provided in [9].) Therefore,
given any symplectic manifold (M,ω) containing a smoothly embedded copy
of Cn,m as a neighborhood of symplectic spheres, we can choose an X = Xn,m

and a Wn,m ⊂ Xn,m small enough that Wn,m defines a Lagrangian fibered
symplectic manifold that symplectically embeds in and is diffeomorphic to the
embedded copy of Cn,m . Therefore, we simply assume that Cn,m is symplec-
tically embedded in M and Lagrangian fibers over Wn,m . We also assume,
without loss of generality, that the boundary of Cn,m has an induced contact
structure equivalent to the one described in Example 3.1 when the lens space
is L(n2, nm− 1).

Algebraic & Geometric Topology, Volume 1 (2001)
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3.2 Neighborhood of a nodal fiber

Nodal fibers appear as singular fibers in numerous integrable systems including
the spherical pendulum (cf. [4, 14]). As noted by Zung [14], a simple model for
a Lagrangian fibered neighborhood of a nodal fiber is a self-plumbing of the zero
section of (T ∗S2, ω = Re dz1∧dz2). Indeed, glue a neighborhood of (0, 0) ⊂ C2

to a neighborhood of (∞, 0) by the symplectomorphism (z1, z2)→ (z−1
2 , z1z

2
2).

Projecting to R2 = C by the map z1z2 gives the desired Lagrangian fibration.

Lemma 3.3 The germ of a symplectic neighborhood of a Lagrangian nodal
fiber is unique up to symplectomorphism.

Proof The lemma follows from the Lagrangian neighborhood theorem by
pulling the symplectic structure of a nodal fiber neighborhood back to a neigh-
borhood of the zero section of T ∗S2 via an immersion.

Let π : (N,ω) → B be a Lagrangian fibered neighborhood of a nodal fiber
with B a disk and b0 ∈ B the image of the nodal fiber. The Arnold-Liouville
theorem implies that B − b0 is equipped with an integral affine structure. In
particular, T (B − b0) has a flat connection. The topological monodromy

A =
(

1 1
0 1

)
(5)

of the torus fibration over B − b0 and the Lagrangian structure of the fibra-
tion forces the same monodromy in the induced flat connection on T (B − b0).
Therefore no embedding of B into R2 preserves the (integral) affine structure.
However, we can find a map that is an isomorphism almost everywhere.

Indeed, B − b0 must be isomorphic to a neighborhood of the puncture in a
punctured plane with integral affine structure and monodromy A. Specifically,
let X be the universal cover of R2 − 0 with the affine structure lifted from R2

and polar coordinates (r, θ), −∞ < θ < ∞. With p = (p1, p2) the Euclidean
coordinates on R2 , we can also identify points in X by (p, n) where n =

[
θ

2π

]
.

Let Vn ⊂ X , n ≥ 1 be defined by 0 < θ < 2nπ + π
2 . Define the sectors

Sn, S0 ⊂ Vn by 2nπ < θ < 2nπ + π
2 and 0 < θ < π

4 respectively. Now glue
the sector Sn to the sector S0 via the map that, with respect to the labeling
(p, n), sends the point (p, n) to (Ap, 0). Call the resulting manifold Pn .

Lemma 3.4 Each Pn defines a Lagrangian fibration π : (Mn, ωn)→ Pn that
is unique up to fiberwise symplectomorphism.
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Proof We can construct a Lagrangian torus fibration with base Pn as follows:
equip Vn × T 2 with coordinates (p, q, n) and symplectic form dp ∧ dq where
q = (q1, q2) are coordinates on the torus. Now glue Sn × T 2 to S0 × T 2 via
the symplectomorphism that sends (p, q, n) to (Ap,A−T q, 0). The resulting
manifold is Mn ; forgetting the torus coordinates q gives the desired fibration
over Pn . This Lagrangian fibration is uniquely defined by the base because Pn
has the homotopy type of a 1-dimensional manifold ([4]).

This lemma is clearly still true if we replace Pn with a neighborhood Un of
the puncture in Pn . Furthermore, two such neighborhoods Un , U ′n define a
symplectically equivalent Lagrangian fibrations if and only if they are integral
affine isomorphic. Note that in terms of the coordinates used in the proof of
Lemma 3.4 the vector field ∂

∂q2
on Vn × T 2 descends to a well defined vector

field on Mn which for simplicity we also call ∂
∂q2

.

Lemma 3.5 Let π : (N,ω)→ B be a singular Lagrangian fibration with one
singular fiber, a nodal fiber with image b0 ∈ B where B is a disk. The punc-
tured disk B − b0 is affine isomorphic to a neighborhood of the puncture in P1

and N − π−1(b0) symplectically embeds in M1 as the preimage of some U1 .
The vanishing cycle of the nodal fiber is the cycle represented by an integral
curve of the vector field ∂

∂q2
on M1 .

Proof One can see that n = 1 in one of two ways: Duistermaat [4] calculated
explicit action coordinates in a neighborhood of a nodal fiber – on the com-
plement of the fibration over a ray based at b0 . In other words, he found the
aforementioned isomorphism. Alternatively, if the boundary of B is chosen to
be transverse to rays emanating from b0 then the boundary of N is equipped
with a contact structure induced from the symplectic structure on N . Because
this contact structure is fillable, it must be tight (cf. [5]), but this can happen
only if n = 1; otherwise the structure would be overtwisted [8].

The vanishing cycle is in the class of the eigenvector of the monodromy ma-
trix for the torus bundle fibering over B − b0 . Appealing to the model M1

constructed in the proof of Lemma 3.4, we see this is the eigenvector of A−T ,
namely ∂

∂q2
.

In P1 , with coordinates chosen as above, we call the line in the base defined
by the vector (1, 0) the eigenline. It is the only well defined line that passes
through the puncture.
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Two neighborhoods (N0, ω0), (N1, ω1) of nodal fibers that are Lagrangian fibra-
tions over the same base B need not be fiberwise symplectomorphic. Indeed,
there is a Taylor series invariant of the Lagrangian fibration – an element of
R[[X,Y ]]0 , the algebra of formal power series in two variables with vanishing
constant term – that classifies such a neighborhood up to fiberwise symplecto-
morphism [11]. However, we are only interested in classifying the neighborhood
up symplectomorphism.

Lemma 3.6 Two neighborhoods (N0, ω0), (N1, ω1) of nodal fibers that are
singular Lagrangian fibrations over the same base B are symplectomorphic.

Proof Let S0,S1 ∈ R[[X,Y ]]0 be the Taylor series that classify the germs of
the neighborhoods of the singular fibers in N0,N1 . Following San [11], we can
use two functions S0, S1 ∈ C∞(R2) whose Taylor series are S0,S1 to construct
model Lagrangian fibered symplectic neighborhoods equivalent to N0,N1 . We
can choose S0, S1 to be equal outside of a small neighborhood V of the origin
and then choose a smooth family of functions St that vanish at the identity,
connect S0 and S1 , and are equal to S0 and S1 outside of V . Using these
functions we can construct a 1-parameter family of Lagrangian fibered neigh-
borhoods (Nt, ωt). It is then easy to define a 1-parameter family of diffeo-
morphisms ϕt : N0 → Nt such that ϕ0 is the identity and ϕ∗tωt = ω0 on the
complement of a smaller neighborhood of the nodal fiber. Because the induced
symplectic forms ϕ∗tωt are all cohomologous a Moser argument completes the
proof.

3.3 Symplectic rational balls

To prove Theorem 1.3 we need symplectic models for the rational balls Bn,m
whose boundaries are the lens spaces L(n2, nm − 1). We do this by defining
Lagrangian fibrations π : (Bn,m, ωn,m)→ Un,m with two types of singular fibers:
a one parameter family of circle fibers and one nodal fiber.

First note that in our construction of a model neighborhood of a nodal fiber we
can make a different choice of coordinates, with respect to which the eigenline
is in the (n,m) direction in R2 and the vanishing cycle is in the class of an
integral curve of −m ∂

∂q1
+n ∂

∂q2
. (Here m and n are relatively prime integers.)

Now let An,m be a space diffeomorphic to a closed half-plane in R2 and such
that:

Algebraic & Geometric Topology, Volume 1 (2001)
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nm− 1

n2

n

m

pt

Un,m

An,m

Figure 5: Rational ball with boundary L(n2, nm− 1).

• there is a distinguished point pt ∈ int An,m such that An,m − pt is
equipped with an affine integral structure and the monodromy around

pt is
(

1 1
0 1

)
;

• the eigenline through pt intersects the boundary in a point p0 ; and

• An,m minus the line segment Lt connecting p0 and pt is affine isomorphic
to the following domain in R2 :

{(p1, p2) | p1 ≥ 0, p2 ≥
nm− 1
n2

, p2 > 0} (6)

minus the line segment connecting the points (0, 0) and (tn, tm) for some
t > 0.

Let Un,m ⊂ An,m be a closed neighborhood of Lt (which necessarily contains a
connected segment of ∂An,m). In Figure 5 we show the image of Un,m − Lt ⊂
An,m − Lt in R2 under the aforementioned isomorphism.

Lemma 3.7 Un,m is the base of a (singular) Lagrangian fibration of the ra-
tional ball Bn,m .

Remark In this description we understand that the preimage of points in
∂Un,m ∩ int An,m are tori so that Un,m defines a manifold with boundary. The
image of the boundary is the closure of ∂Un,m ∩ int An,m in An,m .

Proof Because it is homotopic to a 1-manifold, Un,m − pt defines a unique
Lagrangian fibration π : M0 → Un,m − pt with π−1(b) a circle for each b ∈
∂Un,m ∩ ∂An,m (cf. [2, 13]).
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An open neighborhood of pt ⊂ Un,m is the base of a singular Lagrangian fibra-
tion of a neighborhood of a nodal fiber as in Section 3.2. Therefore we can glue
a neighborhood of a nodal fiber into M0 with a fiber-preserving symplectomor-
phism to get a symplectic manifold M fibering over Un,m .

To see that M is a rational ball it suffices to note that it is homotopy equivalent
to the preimage of an embedded arc connecting the boundary of Un,m and pt .
This preimage is homeomorphic to the the space obtained from T 2 × [0, 1] by
collapsing all (1, 0) curves on T 2×{0} (to get the circle fiber over the boundary
point) and a (−m,n) curve on T 2×{1} (to get the nodal fiber). Because n 6= 0,
we see H1(M,R) = H2(M,R) = 0 and π1(M) = Zn .

Finally, M = Bn,m because its boundary is the lens space L(n2, nm−1) as can
be seen by comparing Figures 3 and 5: a collar neighborhood of the boundary
of M projects to a subset of Un,m which is clearly isomorphic to a one sided
neighborhood of an arc connecting the two boundary components of Vn2,nm−1 .
(See Example 3.1.)

Proposition 3.8 For a given Un,m , the rational ball Bn,m that fibers over it
is unique up to symplectomorphism independent of the choice of pt .

For the proof of this we need Zung’s classification of integrable Hamiltonian
systems with non-degenerate singularities, phrased in terms of Lagrangian fi-
brations [13]:

Definition 3.9 Two singular Lagrangian fibrations ρi : (Mi, ωi) → Bi , i =
1, 2, are roughly symplectically equivalent if there is an open cover {Uα} of
B1 , a homeomorphism ρ : B1 → B2 , and fiber preserving symplectomorphisms
Φα : ρ−1

1 (Uα) → ρ−1
2 (φ(Uα)) such that on ρ−1

1 (Uα ∩ Uβ) the map Φ−1
α ◦ Φβ

induces the identity map on the fundamental group of the strata of each fiber
and the identity map on the first integral homology of each fiber.

Here the fibers are stratified as unions of orbits when one views ρ−1
1 (Uα) as an

integrable Hamiltonian system by composing ρ1 with a map F : Uα → Rn .

Theorem 3.10 [13] Two singular Lagrangian fibrations that are roughly sym-
plectically equivalent are fiberwise symplectomorphic if and only if they have
the same Lagrangian class with respect to a common reference system.

The Lagrangian class of π : (M,ω) → B is an element of H1(B,Z/R) where
Z is the sheaf of local closed 1-forms α on M such that ιXα = ιXdα for any
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vector X such that π∗X = 0 and R is the sheaf of symplectic fiber-preserving
S1 actions. Identifying a reference Lagrangian fibration is necessary when there
is no roughly symplectically equivalent fibration that has a section.

Proof of Proposition 3.8 Cover the base Un,m with a collar neighborhood
Vb of the boundary and a disk neighborhood Vpt of pt . Then Vb determines
a unique Lagrangian fibered manifold [2] and by an isotopy such as in the
proof of Lemma 3.6 we can assume that Vpt determines a unique Lagrangian
fibered manifold. Choosing φ to be the identity map, the conditions of Defi-
nition 3.9 are met because the affine structure on the base determines, up to
isomorphism, the sublattice of H1(F,Z) generated by the cycles of a regular
fiber F that collapse as the fiber moves to the boundary and to the nodal fiber.
Finally, because H1(Un,m,Z/R) = 0, Theorem 3.10 implies the fibrations are
symplectically equivalent [13].

If we vary the position of pt (by varying our choice of t) we get a family of
symplectic forms on the rational ball, all of which are equal near the bound-
ary. Again, the vanishing of the rational cohomology of Bn,m allows a Moser
argument to confirm that the symplectic structures are isotopic.

The essential element for our proof of Theorem 1.3 is the fact that a collar
neighborhood of the boundary of Bn,m is well defined up to fiberwise symplec-
tomorphism by its base Vb .

4 The symplectic surgery

With the symplectic models for Bn,m and Cn,m at hand, the proof of Theo-
rem 1.3 amounts to observing that we can choose Bn,m and Cn,m so that collar
neighborhoods of their boundaries symplectically embed into L(n2, nm− 1) ×
(0,∞), fibering over Vn2,nm−1 in such a way that their images in Vn2,nm−1

coincide.

Proof of Theorem 1.3 As explained at the end of Example 3.2, given a sym-
plectic 4-manifold (M,ω) and an embedding ψ : Cn,m → M such that each
sphere ψ(Si) is a symplectic submanifold we can assume the embedding ψ is
symplectic and gives a Lagrangian fibration π : (ψ(Cn,m), ω)→Wn,m ⊂ R2 .

Following Example 3.2 we can choose u0 = (0,−1) and u1 = (1, 0), so the
vector uk+1 defines a line in R2 with slope nm−1

n2 . Now ψ(Cn,m − ∪ki=1Sk)
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fibers over W ′n,m = Wn,m − ∪ki=1uk , so W ′n,m defines a collar neighborhood of
the boundary of ψ(Cn,m). But W ′n,m can also be viewed as a subset of An,m
so long as the distinguished point (tn, tm) is chosen with t sufficiently small.
(See Section 3.3 and Figure 5.) As a subset of An,m we see that W ′n,m defines
a collar neighborhood of the boundary of a rational ball Bn,m . Since these
two collar neighborhoods fiber over the same simply connected base they are
symplectomorphic. Therefore, we can find a symplectomorphism φ that equips
the generalized rational blowdown, M̃ = (M − ψ(∪ki=1Si)) ∪φ Bn,m , with a
symplectic structure coming from those on M and Bn,m .

As for the rational blowdown with m = 1, the volume of the generalized ratio-
nal blowdown M̃ is independent of any choice of rational ball that fits. The
argument is exactly the same as in [12]. It would be interesting to know whether
a rational blowdown, generalized or not, is unique up to symplectomorphism.

In the above proof we did not mention what is typically a crucial issue when
trying to prove a surgery can be done symplectically: symplectic convexity
of the neighborhood on which the gluing takes place. A symplectic manifold
(M,ω) with nonempty boundary is symplectically convex if there is an expand-
ing vector field X defined near and transverse to the boundary. To say that X
is expanding means X points outward and LXω = ω . The expanding vector
field X defines a contact structure on the boundary, the 2-plane field defined
as the kernel of the 1-form ιXω restricted to the boundary.

If A and B are symplectic 2n-manifolds with contactomorphic symplectically
convex boundaries and A ⊂ (M,ω) where M is 2n-dimensional, then (M −
int A) ∪ B admits a symplectic structure induced from those of M and B
(See [5] for more about symplectic convexity, contact structures and symplectic
surgeries.)

Thanks to the model spaces, we get symplectic convexity and contactomorphic
boundaries for free as follows. Using the same notation as in the proof of Theo-
rem 1.3, we can choose an arbitrarily small Lagrangian fibered neighborhood of
spheres Cn,m fibering over a Wn,m such that the boundary of W ′n,m is transverse
to the vector field p1

∂
∂p1

+ p2
∂
∂p2

(when viewed as a subset of Vn2,nm−1 ). This
vector field lifts an expanding vector field on the preimage of W ′n,m , thereby
demonstrating the symplectic convexity of Cn,m . Since we construct Bn,m so
that a collar neighborhood of its boundary is symplectomorphic to that of Cn,m ,
the contact equivalence of the boundaries and the symplectic convexity of Bn,m
are immediate.
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