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CONSERVATION LAWS FOR NON–GLOBAL LAGRANGIANS

by A. Borowiec∗, M. Ferraris, M. Francaviglia† and M. Palese‡

Abstract. In the Lagrangian framework for symmetries and conserva-
tion laws of field theories, we investigate globality properties of conserved
currents associated with non–global Lagrangians admitting global Euler–
Lagrange morphisms. Our approach is based on the recent geometric for-
mulation of the calculus of variations on finite order jets of fibered manifolds
in terms of variational sequences.

1. Introduction. In the Lagrangian framework for symmetries and con-
servation laws of field theories, we investigate globality properties of conserved
currents associated with non–global Lagrangians which admit global Euler–
Lagrange morphisms (see also [18]). Our approach is based on the geometric
formulation of the calculus of variations on finite order jets of fibered man-
ifolds in terms of variational sequences [16]. It was shown in [13] that the
Lie derivative operator with respect to fiber–preserving vector fields passes to
the quotient, thus yielding a new operator on the sheaves of the variational
sequence, which was called the variational Lie derivative. Making use of a rep-
resentation given in [22] for the quotient sheaves of the variational sequence as
concrete sheaves of forms, some abstract versions of Noether’s theorems have
been provided, which can be interpreted in terms of conserved currents for
Lagrangians and Euler–Lagrange morphisms.

Non–global Lagrangians are here defined as Čech cochains valued into the
sheaf of generalized Lagrangians. We relate globality properties to the topology
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of the relevant manifold in terms of the Čech cohomology of the manifold
with values in the sheaves of the variational sequence (see also [5]). To this
aim we provide a slightly modified version of some well known results due
to [3] (Theorems 3.1 and 3.2). We shall in particular investigate the case of
Čech cochains of Lagrangians admitting global Euler–Lagrange morphisms but
having non–trivial cohomology class. In this case globality properties still hold
true for the conserved quantities associated with the cochain of Lagrangians
itself. For analogous results obtained in a different framework we refer the
reader to the interesting paper by Aldrovandi [1].

In Section 2 we state the main notation and recall some basic facts about
sheaves of forms on finite order jets of fibered manifolds, together with some
standard results about Čech cohomology. In Subsection 2.3 we recall general
results concerning symmetries in variational sequences. Section 3 is concerned
with the main results of the paper. We prove the existence of global conserved
quantities associated with Lagrangian symmetries and generalized Lagrangian
symmetries of Čech cochains of Lagrangians.

2. Preliminaries and notation.
2.1. Sheaves of forms on jets of fibered manifolds. Let us consider a fibered

manifold π : Y → X, with dim X = n and dim Y = n + m. For r ≥ 0 we
are concerned with the r–jet space JrY of jet prolongations of sections of the
fibered manifold π; in particular, we set J0Y ≡ Y . We recall the natural
fiberings πr

s : JrY → JsY , r ≥ s, and πr : JrY → X; among these the
fiberings πr

r−1 are affine bundles.
Greek indices λ, µ, . . . run from 1 to n and they label basis coordinates,

while Latin indices i, j, . . . run from 1 to m and label fibre coordinates, unless
otherwise specified. We denote multi–indices of dimension n by boldface Greek
letters such as α = (α1, . . . , αn), with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of
notation, we denote with λ the multi–index such that αµ = 0, if µ 6= λ, αµ = 1,
if µ = λ. We also set |α| :=α1 + · · · + αn. The charts induced on JrY are
denoted by (xλ, yi

α), with 0 ≤ |α| ≤ r; in particular, we set yi
0 ≡ yi. They are

fibered charts, so that the choice of different letters (x for the basis and y for the
fibers) stresses different transformation laws: in fact, fibered transformation
laws of the kind x′ = x′(x) and y′ = y′(x, y). The local bases of vector fields
and 1–forms on JrY induced by the above coordinates are denoted by (∂λ, ∂α

i )
and (dλ, di

α), respectively.
The contact maps on jet spaces induce the natural complementary fibered

morphisms over the affine fiber bundle JrY → Jr−1Y

Dr : JrY ×
X

TX → TJr−1Y

ϑr : JrY ×
Jr−1Y

TJr−1Y → V Jr−1Y , r ≥ 1 ,
(1)



321

with coordinate expressions, for 0 ≤ |α| ≤ r − 1, given by

Dr = dλ⊗Dλ = dλ⊗(∂λ + yj
α+λ∂α

j ) ,

ϑr = ϑj
α⊗∂α

j = (dj
α − yj

α+λdλ)⊗∂α
j ,

(2)

and the natural fibered splitting [16]

JrY ×
Jr−1Y

T ∗Jr−1Y = (JrY ×
Jr−1Y

T ∗X)⊕ im ϑ∗r .(3)

The above splitting induces also a decomposition of the exterior differential
on Y in the horizontal and vertical differential , (πr+1

r )∗◦ d = dH + dV .
A projectable vector field on Y is defined to be a pair (Ξ, ξ), where the vector

field Ξ : Y → TY is a fibered morphism over the vector field ξ : X → TX.
By (jrΞ, ξ) we denote the jet prolongation of (Ξ, ξ), and by jrΞH and jrΞV ,
respectively, the horizontal and the vertical part of jrΞ with respect to the
splitting (3).

i. For r ≥ 0, we consider the standard sheaves
p

Λr of p–forms on JrY .

ii. For 0 ≤ s ≤ r, we consider the sheaves
p

H(r,s) and
p

Hr of horizontal forms,

i.e. of local fibered morphisms over πr
s and πr of the type α : JrY →

p
∧T ∗JsY

and β : JrY →
p
∧T ∗X, respectively.

iii. For 0 ≤ s < r, we consider the subsheaf
p

C(r,s) ⊂
p

H(r,s) of contact forms,

i.e. of sections α ∈
p

H(r,s) with values into
p
∧ im ϑ∗s−1. There is a distinguished

subsheaf
p

Cr ⊂
p

C(r+1,r) of local fibered morphisms α ∈
p

C(r+1,r) such that α =
p
∧ϑ∗r+1◦α̃, where α̃ is a section of the fibration Jr+1Y ×

JrY

p
∧V ∗JrY → Jr+1Y

which projects down onto JrY .
According to [22], the fibered splitting (3) naturally yields the sheaf split-

ting
p

H(r+1,r) =
⊕p

t=0

p−t

C (r+1,r) ∧
t
Hr+1, which restricts to the inclusion

p

Λr ⊂⊕p
t=0

p−t

C r∧
t
Hh

r+1, where
p

Hh
r+1 := h(

p

Λr) for 0 < p ≤ n and h is defined to be the

restriction to
p

Λr of the projection of the above splitting onto the non–trivial
summand with the highest value of t.

Let α ∈
1
Cr ∧

n
Hh

r+1. Then there is a unique pair of sheaf morphisms

Eα ∈
1
C(2r,0) ∧

n
Hh

2r+1 , Fα ∈
1
C(2r,r) ∧

n
Hh

2r+1 ,(4)

such that (π2r+1
r+1 )∗α = Eα−Fα, and Fα is locally of the form Fα = dHpα, with

pα ∈
1
C(2r−1,r−1) ∧

n−1
H 2r (see e.g. [22]).
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Recall (see [22]) that if β ∈
1
Cs ∧

1
C(s,0) ∧

n
Hs, then, there is a unique H̃β ∈

1
C(2s,s)⊗

1
C(2s,0)∧

n
H2s such that, for all Ξ : Y → V Y , Eβ̂ = C1

1 (j2sΞ⊗H̃β), where

β̂ := jsΞ β, denotes the inner product and C1
1 stands for tensor contraction.

Then there is a unique pair of sheaf morphisms

Hβ ∈
1
C(2s,s) ∧

1
C(2s,0) ∧

n
H2s , Gβ ∈

2
C(2s,s) ∧

n
H2s ,(5)

such that π2s
s

∗
β = Hβ − Gβ and Hβ = 1

2 A(H̃β), where A stands for an-
tisymmetrisation. Moreover, Gβ is locally of the type Gβ = dHqβ, where

qβ ∈
2
C2s−1 ∧

n−1
H 2s−1, hence [β] = [Hβ]. Coordinate expressions of the mor-

phisms Eα and Hβ can be found in [22]. The morphism H̃ is called the
Helmhotz–Sonin morphism associated with an Euler–Lagrange type morphism.
It is a global morphism the kernel of which expresses the Helmholtz condi-
tions for a given Euler–Lagrange type morphism to be locally variational, i.e.
η = EdV λ [22].

2.2. Čech cohomology. Suppose H is a (paracompact Hausdorff) topolog-
ical space. In the following we shall call graded sheaf over H any countable
family of sheaves F∗ :={F i}i∈Z over H. A resolution of a given sheaf S is an
exact sequence of sheaves of the form 0 → S → F∗.

Set Hq(H,S) := ker(Cq(S)H → Cq+1(S)H) / im(Cq−1(S)H → Cq(S)H), for
each q ∈ Z, with C−1(S)H := 0. Here Cq(S)H is the sheaf naturally induced by
the sheaf of discontinuous sections of S [9]. The Abelian group Hq(H,S) is
called the cohomology group of H of degree q with coefficients in the sheaf S.

We say H∗(H,S) :=⊕i∈ZH i(H,S) to be the cohomology of H with values
in S. It is clear that H0(H,S) = SH. We say S to be acyclic if Hq(H,S) = 0
for all q ∈ Z, q > 0.

We remark that a resolution 0 → S → F∗ naturally induces a cochain
complex 0 → SH → F∗

H via the global section functor. Hence, we can define
the derived groups Hq(F∗

H) := ker(Fq
H → Fq+1

H )/ im(Fq−1
H → Fq

H), for all q ∈ Z,
with F−1

H :=SH.
Let 0 → S → F∗ be a resolution of S. Then for each q ∈ Z there is a

natural morphism Hq(F∗
H) → Hq(H,S). If the sheaves of F∗ are acyclic then

the above morphism is an isomorphism (Abstract de Rham Theorem) [9].
We also recall that a cochain complex is a sequence of morphisms of Abelian

groups of the form 0 →
0
Λ →d0

1
Λ →d1

2
Λ →d2 . . . , such that dk+1◦dk = 0. This

last condition is equivalent to im dk ⊂ ker dk+1. A cochain complex is said to
be an exact sequence if im dk = ker dk+1.

Suppose now that S is a sheaf of Abelian groups over H. Let U :={Ui}i∈I ,
with I ⊂ Z, be a countable open covering of H. We set Cq(U,S) to be the set of
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q–cochains with coefficients in S. Let σ = (Ui0 , . . . , Uiq+1) ⊂ U be a q–simplex
and f ∈ Cq(U,S). The coboundary operator d : Cq(U,S) → Cq+1(U,S) is the
map defined by

df(σ) :=
q+1∑
i=0

(−1)ir
|σi|
|σ| f(σi) ,

where σj :=(Ui0 , . . . , Uij−1 , Uij+1 , . . . Uiq+1), for 0 ≤ j ≤ q+1, r is the restriction
mapping of S and |σj | denotes the lenght of σj (see [8]).

For all q ∈ Z the set Cq(U,S) can be endowed with an Abelian group struc-
ture in a natural way. It is rather easy to verify that d is a group morphism,
such that d2 = 0. Hence we have the cochain complex C0(U,S) → C1(U,S) →
C2(U,S) → . . .

Definition 2.1. We say the derived groups H∗(U,S) of the above cochain
complex to be the Čech cohomology of the covering U with coefficients in S.

The above cohomology is a combinatorial object and it depends on the
choice of a covering U. Let U :={Ui}i∈I , V :={Vj}j∈J , with I, J ⊂ Z, be two
countable coverings of H. Then we say that V is a refinement of U if there
exists a map f : J → I such that Vj ⊂ Uf(j). Then there is a group morphism
H∗(U,S) → H∗(V,S), so that we can define the Čech cohomology of H with
coefficients in S to be the direct limit H∗(H,S) := lim

U
H∗(U,S).

2.3. Cohomology of the variational sequence. We recall now the theory of
variational sequences on finite order jet spaces, as it was developed by Krupka
[16]. By an abuse of notation, we denote by d ker h the sheaf generated by the

presheaf d ker h. Set
∗
Θr := kerh + d ker h.

Definition 2.2. The quotient sequence

0 // IRY
// . . . //

En−1 n
Λr/

n
Θr

//
En

n+1
Λ r/

n+1
Θ r

//
En+1n+2

Λ r/
n+2
Θ r

//
En+2

. . . //d 0

is called the r–th order variational sequence associated with the fibered mani-
fold Y → X. It turns out that it is an exact resolution of the constant sheaf
IRY over Y [16].

Let us now consider the cochain complex

0 // IRY
// . . . //

En−1
(

n
Λr/

n
Θr)Y

//
En

//
En (

n+1
Λ r/

n+1
Θ r)Y

//
En+1

(
n+2
Λ r/

n+2
Θ r)Y

//
En+2

. . . //d 0
(6)

and denote by Hk
VS(Y ) its k–th cohomology group. The variational sequence

is a soft resolution of the constant sheaf IRY over Y , hence the cohomology of
the sheaf IR is naturally isomorphic to the cohomology of the cochain complex
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above. Also, the de Rham sequence gives rise to a cochain complex of global
sections, the cohomology of which is naturally isomorphic to the cohomology
of the sheaf IRY on Y , as an application of the Abstract de Rham Theo-
rem. Then, by a composition of isomorphisms, for all k ≥ 0 we get a natural
isomorphism Hk

VS(Y ) ' Hk
dRY [16].

The quotient sheaves in the variational sequence can be conveniently rep-
resented [22]. The sheaf morphism h yields the natural isomorphisms

Ik :
k
Λr/

k
Θr →

k
Hh

r+1 :=
k
Vr : [α] 7→ h(α) , k ≤ n ,

Ik : (
k
Λr/

k
Θr) → (

k−n
C r ∧

n
Hh

r+1)
/
h(d ker h) :=

k
Vr : [α] 7→ [h(α)] , k > n .

Let s ≤ r. Then we have the injective sheaf morphism (see [16]) χr
s :

(
k
Λs/

k
Θs) → (

k
Λr/

k
Θr) : [α] 7→ [πr

s
∗α], where [α] denotes the equivalence class of

a form α on JsY .

3. Čech cochains valued in the sheaves of the variational se-
quence. We are interested in the case in which the topology of Y is non–
trivial; in particular we shall be concerned with an application of Čech coho-
mology to the cases Hn+1

dR Y 6= 0 and Hn
dRY 6= 0.

The following results hold true (see e.g. [3], and [4] Chap. II).

Theorem 3.1. Let us consider the variational sequence (6) and let
Kr :=Ker En and H1(Y ,Kr) be the first Čech cohomology group of Y with
values in Kr. Then the long exact sequence obtained from the short exact
sequence

0 // Kr
//
n
Vr

//
En En(

n
Vr) // 0

gives rise to the exact sequence

0 // Γ(Y ,Kr) // Γ(Y ,
n
Vr) // Γ(Y , En(

n
Vr)) //δ

H1(Y ,Kr) // 0 .

Theorem 3.2. Let us consider the variational sequence (6) and let
T r :=Ker dH and H1(Y ,T r) be the first Čech cohomology group of Y with
values in T r. Then the long exact sequence obtained from the short exact
sequence

0 → T r →
n−1
V r

//
dH

dH(
n−1
V r) → 0

gives rise to the exact sequence

0 → Γ(Y ,T r) → Γ(Y ,
n−1
V r) → Γ(Y , dH(

n−1
V r)) //δ′

H1(Y ,T r) → 0 .
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Here and above we have used the standard notation denoting by Γ(Y , ·)
the corresponding modules of global sections.

Furthermore we have ([3], Lemma 4.1, Theorem 4.2, [16], [22]) for s ≤ r:

Hn+1
dR (Y ) ' Hn+1

V S (Y ) ' H1(Y ,Kr) ' H1(Y , χr∗
s Ks) ,

and

Hn
dR(Y ) ' Hn

V S(Y ) ' H1(Y ,T r) ' H1(Y , χr∗
s T s) .

Remark 3.3. As a straightforward application of the Abstract de Rham
Theorem, we have the following.

Let η ∈ (
n+1
V r)Y be a global section such that En+1(η) = 0. Suppose,

moreover, that Hn+1
dR Y 3 δη = 0. Then, there exists a global section λ ∈ (

n
Vr)Y

such that En(λ) = η (see e.g. [2]).

Analogously, let λ ∈ (
n
Vr)Y be a global section such that En(λ) = 0, i.e. λ

is variationally trivial. Suppose, moreover, that Hn
dRY 3 δ′λ = 0. Then, there

exists a global section β ∈ (
n−1
V r)Y such that En−1(β) = λ, where En−1 = dH

(see e.g. [16, 22]).

If the topology of Y is trivial, so that, in particular, Hn+1
dR Y = 0 and

Hn
dRY = 0 hold true, then each global Euler–Lagrange morphism η is globally

variational and each global variationally trivial Lagrangian λ is the horizontal
differential of a form β.

If the topology of Y is non–trivial, i.e. Hn+1
V S (Y ) ' H1(Y ,Kr) 6= 0, then

the inverse problem for a given global Euler–Lagrange morphism η can be
solved only locally, so that in general we can write η = En(λ) only locally
(provided, of course, that the corresponding cohomology class of η is non–
trivial). More precisely this means that around each point a Lagrangian λU is
defined only on an open subset U ⊂ Y , so that η|U = En(λU ). We are then
naturally faced with the following situation which is in fact often encountered
in physical applications: there exists a countable open covering {U i}i∈Z in
Y together with a family of local Lagrangians λi over each subset U i ⊂ Y
(which, a priori, do not glue together into a global Lagrangian λ). Let then
U :={U i}i∈I , with I ⊂ Z, be any countable open covering of Y and λ = {λi}i∈I

a 0–cochain of Lagrangians in Čech cohomology with values in the sheaf
n
Vr, i.e.

λ ∈ C0(U,
n
Vr). By an abuse of notation we shall denote by ηλ the 0–cochain

formed by the restrictions ηi = En(λi).

Remark 3.4. Let dλ = {λij} = (λi − λj)|Ui∩Uj . We stress that dλ = 0 if

and only if λ is globally defined on Y . Analogously, if η ∈ C0(U,
n+1
V r), then

dη = 0 if and only if η is global.
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Remark 3.5. Let λ ∈ C0(U,
n
Vr) and let ηλ := En(λ) ∈ C0(U,

n+1
V r) be as

above. Then dλ = 0 implies dηλ = 0, but the converse is not true, in general.
This is due to the IR–linearity of all the operations involved in the variational
sequence. Therefore dηλ = ηdλ = 0 implies only dλ ∈ C1(U,Kr).

We shall in fact be concerned with the case

dηλ = 0 , dλ 6= 0 .(7)

Definition 3.6. We shall call a Čech cochain λ of Lagrangians satisfying
condition (7) a non–global Lagrangian.

Definition 3.7. A non–global Lagrangian is said to be topologically non–
trivial if the cohomology class of ηλ in the first Čech cohomology group is
non–trivial, i.e. δηλ 6= 0.

It is clear that a non–global Lagrangian is defined modulo a refinement of
U. In particular, U can be chosen to be a good covering of Y (on a differentiable
manifold there exists always a good covering, see e.g. [8]), on which all (local)
de Rham cohomologies are trivial. Then Remark 3.3 can be reformulated as
follows.

Proposition 3.8. (A) Let λ ∈
n
Vr be a global variationally trivial La-

grangian. Then for any good cover U there exists a 0–cochain β ∈ C0(U,
n−1
V r)

such that λ = dHβ. Thus dβ ∈ C1(U,T r) defines a unique cohomology class
[dβ]Č := δ′λ ∈ H1(Y ,T r) ' Hn

dRY . If, moreover, this cohomology class

is trivial, then there exists a 0–cochain γ ∈ C0(U,
n−2
V r) such that dHdγ =

dβ with β′ = β − dHγ a global morphism and λ = dHβ′. (B) Let λ ∈
C0(U,

n
Vr) be a non–global Lagrangian. Then dλ defines a unique cohomol-

ogy class [dλ]Č := δηλ ∈ H1(Y ,Kr) ' Hn+1
dR Y . If, moreover, this cohomology

class is trivial then there exists a 0–cochain ν ∈ C0(U,
n−1
V r) such that

dλ = dHdν and d(λ− dHν) = 0 .

Thus λ′ = λ− dHν is a global Lagrangian and En(λ′) = En(λ).

Proof. It follows from the application of the Poincaré Lemma, the stan-
dard Čech cohomology arguments [9] and the Abstract de Rham Theorem (see

also [3]; in [17] was shown that, even more, β ∈ C0(U,
n−1
V r−1)).

Example 3.9. (Einstein theory) From the above Proposition it follows
that a topologically trivial non–global Lagrangian is always equivalent to a
global one. This is e.g. the case of the Hilbert–Einstein Lagrangian, which is
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a second order global Lagrangian in the bundle Y = Lor(X) of Lorentzian
metrics over X. The Hilbert–Einstein Lagrangian is equivalent to a sheaf of
non–global first order Einstein’s Lagrangians. In this case, the cohomology
class corresponding to the Euler–Lagrange morphism is trivial and this fact
does not depend on the topology of the space-time manifold (see also [12]).

Example 3.10. (Chern–Simons theory) Let P = P (X,G) be a principal
bundle over an odd dimensional manifold X with a structure group G (e.g.
any simple Lie group). To any connection one–form ω we can associate the
Chern-Simons form [10] from which by pull-back along any (local) section one
gets a (local) Lagrangian on X. Since the Chern-Simons form is not tensorial
the local Lagrangians are not gauge-invariant. In spite of this fact, the corre-
sponding Euler-Lagrange equations (i.e. the vanishing curvature equations for
ω) are invariant and global. Moreover, in this case, an invariant Lagrangian
does not exist at all. The existence of global Lagrangians relies on the choice
of a global section on P (see e.g. [6, 7] and references quoted therein).

3.1. Symmetries and conservation laws. Making use of the sheaf isomor-
phisms (7) and of the decomposition formulae (4) and (5), in [13] it was proved
that the Lie derivative operator with respect to the r-th order prolongation jrΞ
of a projectable vector field (Ξ, ξ) can be conveniently represented on the quo-
tient sheaves of the variational sequence in terms of an operator, the variational
Lie derivative LjrΞ, as follows:

if p = n and λ ∈
n
Vr, then

LjrΞλ = ΞV En(λ) + dH(jrΞV pdV λ + ξ λ) ;(8)

if p = n + 1 and η ∈
n+1
V r, then

LjrΞη = En(ΞV η) + H̃dη(j2r+1ΞV ) .(9)

Definition 3.11. Let (Ξ, ξ) be a projectable vector field on Y . Let λ ∈
n
Vr

be a Lagrangian and η ∈
n+1
V r an Euler–Lagrange morphism. Then Ξ is called

a symmetry of λ (respectively, a generalized or Bessel–Hagen symmetry, of η)
if Ljr+1Ξ λ = 0 (respectively, if Lj2r+1Ξ η = 0).

Let now η ∈
n+1
V r be an Euler–Lagrange morphism and let σ : X → Y be

a section. We recall that σ is said to be critical if η ◦ j2r+1σ = 0, i.e. if it is a
solution of the Euler–Lagrange equations (j2r+1σ)∗En(λ) = 0.

Let λ ∈
n
Vr be a Lagrangian and (Ξ, ξ) a symmetry of λ. Then, by Equation

(8), i.e. the first Noether’s theorem, we have

0 = ΞV En(λ) + dH(jrΞV pdV λ + ξ λ) .
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Suppose that the section σ : X → Y fulfils (j2r+1σ)∗(ΞV En(λ)) = 0, then
we have the conservation law d((j2rσ)∗(jrΞV pdV λ + ξ λ)) = 0.

The above implies that δ′(LjrΞλ) ≡ δ′(ΞV ηλ) ≡ 0.

Definition 3.12. Let λ ∈
n
Vr be a Lagrangian and Ξ a global symmetry

of λ. Then a sheaf morphism of the type ε(λ, Ξ) = (jrΞV pdV λ + ξ λ) ∈
n−1
V r

is said to be a canonical or Noether current .

Remark 3.13. Notice that if λ is globally defined, then for any global
symmetry Ξ of λ the morphism ε(λ, Ξ) can be globally defined too (see e.g.
[15]). If Hn+1

dR Y 6= 0, i.e. the topology of Y is not trivial, then given a
globally defined Euler–Lagrange morphism with non–trivial cohomology class,
we cannot find a corresponding globally defined Lagrangian via the inverse
problem, so that in this case the corresponding Noether conserved current ε is
not global.

Remark 3.14. Let η ∈
n+1
V r and let Ξ be a generalized symmetry of η.

Then, by Equation (9), we have 0 = En(ΞV η) + H̃dη(j2r+1ΞV ). Suppose
that η is locally variational, i.e. H̃dη = 0; then we have En(ΞV η) = 0. This
implies that ΞV η is variationally trivial. Therefore ΞV η is locally of the

type ΞV η = dHβ, where β ∈ C0(U,
n−1
V r+1) (in [14, 17] was shown that, even

more, β ∈ C0(U,
n−1
V r−1)).

Suppose that the section σ : X → Y fulfils (j2r+1σ)∗(ΞV η) = 0. Then
we have d((j2rσ)∗β) = 0 so that, as in the case of Lagrangians, if σ is critical,
then β is conserved along σ.

Definition 3.15. Let η ∈
n+1
V r be an Euler–Lagrange morphism and Ξ a

symmetry of η. Then a sheaf morphism of the type β fulfilling the conditions
of the above Remark is called a generalized conserved current .

Notice that, for locally variational Euler–Lagrange morphisms, i.e. η =
ηλ ≡ En(λ) or, equivalently H̃dη(j2r+1ΞV ) = 0. This implies Lj2rΞηλ =
En(ΞV ηλ) = En(LjrΞλ).

Remark 3.16. Since (jrσ)∗dHε = d((jrσ)∗ε) = 0 any solution σ defines
a corresponding cohomology class σ(ε) ≡ [(jrσ)∗ε]Č ∈ Hn−1

dR X. If all these
cohomology classes are trivial then the corresponding current is called triv-
ial (otherwise it is called topological). It is obvious that currents admitting
(global) superpotentials [11] are trivial in the above sense. Non–trivial currents
are more interesting and lead to topological charges (see e.g. [19]). Notice that
if Hn−1

dR X = 0 then topological charges do not appear.



329

Due to EnLjrΞ = Lj2r+1ΞEn, a symmetry of a Lagrangian λ is also a sym-
metry of its Euler–Lagrange morphism En(λ) but the converse is not true. If
(Ξ, ξ) is a generalized symmetry of λ the corresponding current is not longer
a canonical Noether conserved current for λ, in general.

Instead we can state the following (see [20, 21] for the local version).

Proposition 3.17. Let (Ξ, ξ) be a generalized symmetry for a (global)

Lagrangian λ ∈
n
Vr. Thus the canonical Noether current is not conserved in

general. If the cohomology class δ′(ΞV ηλ) ∈ Hn
dRY is trivial then there exists

a global conserved current associated with (Ξ, ξ).

Proof. When LjrΞλ = 0 then we are in the standard Noether case. If
LjrΞλ 6= 0 then LjrΞλ is variationally trivial with the trivial cohomology class
δ′(LjrΞλ) (Remark 3.13). Hence, there exits a global morphism (Proposition
3.8 (A)) β ≡ β(λ, Ξ) such that LjrΞλ = dHβ(λ, Ξ) and

ΞV ηλ = dH(ε(λ, Ξ)− β(λ, Ξ)) .(10)

Thus ε̃(λ, Ξ) := ε(λ, Ξ)− β(λ, Ξ) is global and conserved.

As a result it is then possible to get a realization of the corresponding
conservation law associated with this generalized symmetry, in terms of a (non–
canonical) conserved current which is global.

Definition 3.18. We call the above non–canonical conserved current an
improved Noether current.

Remark 3.19. We stress that if Hn
dRY = 0, the improved Noether cur-

rent ε̃(λ, Ξ) is always conserved and globally defined. If Hn
dRY 6= 0 this is

not true, in general. More precisely, for δ′(ΞV ηλ) 6= 0 we have β(λ, Ξ) ∈

C0(U,
n−1
V r) with non–trivial cohomolgy class [dβ(λ, Ξ)]Č = δ′(ΞV ηλ) and

therefore, ε̃(λ, Ξ) is conserved but not global. This is e.g. the case where topo-
logical charges can appear.

We are in a similar situation for a non–global Lagrangian λ ∈ C0(U,
n
Vr).

In this case both components of ε̃(λ, Ξ), the canonical and the improved one,
are non–global too. However, Equation (10) still holds true for ε̃(λ, Ξ) ∈

C0(U,
n−1
V r) with [dε̃(λ, Ξ)]Č = δ′(ΞV ηλ) and it provides us the following.

Proposition 3.20. Let (Ξ, ξ) be a global generalized symmetry for a non–

global Lagrangian λ ∈ C0(U,
n
Vr). Then the improved Noether current is con-

served and, in general, non–global. It is possible to improve it further to a
global conserved current provided that δ′(ΞV ηλ) = 0.
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Proof. Since [dε̃(λ, Ξ)]Č = 0 then, thanks to Proposition 3.8 (A), it can
be globalized.

Remark 3.21. If δ(ηλ) 6= 0, then δ′(ΞV ηλ) = 0 is not true, in general.
Therefore, in order to get a global conserved quantity for topologically non–
trivial Lagrangians some of our assumptions need to be relaxed. For example,
one could consider 0–cochains of symmetries instead of global projectable vec-
tor fields. This may cover some physically interesting cases, like translations or
angular momentum, e.g. . This will be the subject of our future investigations.

Acknowledgments. Thanks are due to I. Kolář, D. Krupka and R. Vitolo
for many valuable discussions.
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