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SUPERFIXED POSITIONS IN THE GEOMETRY OF

GOURSAT FLAGS

by Piotr Mormul

Abstract. In the local classification of Goursat flags, far from being com-
plete, there appear numerical invariants (moduli). First examples of them
were given in 1997 ( [12], [7] ). For the first of them, c, appearing in flag’s
member D9 of corank 9, we give a geometric interpretation of one of its non-
zero values. In fact, after standard normalizations, the value c0 = 0.740625
is geometrically discerned from all other values including 0 – it is more
singular than the others (also more singular than the value 0). It has
far-reaching consequences for the local classification of 4–step Goursat pro-
longations, say D13, of such germs D9: when c 6= c0, classification is the
simplest possible one within that fixed value of c, while for c = c0 a new
module appears, closely related to the position of D13 at the reference
point p. Repeating in other terms: all possible positions of D9 at p (corre-
sponding to all values of the invariant c, plus the vertical position c =∞)
are fixed in the sense of [6], while the position corresponding to c0 is also
‘doubly’ fixed due to the – then singular – behaviour of D9.

1. Geometric classes, prolongations, and interesting distances.

Goursat flags are certain special nested sequences, say F , of variable length
r (2 ≤ r ≤ n− 2) of subbundles in the tangent bundle TM to a smooth (C∞)
or analytic (Cω) n-dimensional manifold M : Dr ⊂ Dr−1 ⊂ · · · ⊂ D1 ⊂ D0 =
TM . Namely, one demands, for l = r, r − 1, . . . , 1, that (a) cork Dl = l, and
(b) the Lie square of Dl be Dl−1. Every member of F save D1 is called Goursat
distribution.
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For the local classification problem (and also for a much rougher char-
acterization of Goursat germs – basic geometry recalled below), only length r is
important: there exists a local reduction, due to E.Cartan, to rank–2 Goursat
distributions on (r + 2)-dimensional manifolds. A turning point has been the
work [5] putting forward a multi-parameter family of local writings (so-called
KR pseudo-normal forms) for Goursat distributions, recalled in Thm. 1 below.
Those forms are so important because they feature parameters only, and no
functional moduli so common for general distribution germs. This can be per-
ceived as a trade off: KR pseudo-normal forms at the price of highly restricting
conditions defining Goursat objects. But the cornucopia of those forms, not
only simplest among them, germs at 0 ∈ Rn(x1, x2, . . . , xr+2; xr+3, . . . , xn)
of

(C) dx2 − x3dx1 = dx3 − x4dx1 = · · · = dxr+1 − xr+2dx1 = 0 ,

believed by von Weber – the inventor of the Goursat condition – to have locally
described all flags of length r (cf. Thm. VI in [13]).
Acknowledgments. The author is thankful to Joseph Grifone for stimulating
discussions before and during author’s visit to Univ. Toulouse III in January
2001.

1.1. Geometric classes and their codes. As a matter of fact, Kumpera
and Ruiz discovered singularities hidden in flags and not showing up in the
family of generic models (C). The first version of a coordinate-free definition
of them was given in [1], p. 455. In [6] first order singularities of Goursat flags
were defined in a canonical way, using systematically the associated subflag of
Cauchy characteristic subdistributions. (In general, to a distribution D there
is associated the sheaf L(D) of local Cauchy characteristic modules of v. f.’s
which, for any member of a Goursat flag, is a regular codimension–2 subdis-
tribution of that member.) Namely, excepting D1 and D2, Dk is in the basic
singular position at a point p when it coincides with the Cauchy characteris-
tics, L(Dk−2), of Dk−2 at that point: Dk(p) = L(Dk−2)(p). D3, D4, . . . , Dr

can be in basic singular positions independently of one another giving rise to
2r−2 rough invariant KR classes of flag’s germs. By analyzing singularities
of higher orders, Montgomery and Zhitomirskii define finer geometric classes
of germs of Goursat flags.1 Since their collaboration in 1999, they have been
labelling those classes by words GG. . . of length r over the alphabet {G, S,T},
with: letters S at places where basic singular positions hold at p, letters T
meaning possible tangent positions of flag’s members, and G – generic posi-
tions (cf. Sec. 1.3 of [11] for a detailed description). The only restrictions in

1 Higher order singularities of flags are implicitly present already in [4] – see Rem. 1
below; in [6] they are explicitly called tangent.
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the labels are: – there are two G’s in the beginning, – a T never goes directly
after a G.
The classes are, obviously, pairwise disjoint and invariant under the action of
the local diffeomorphisms between manifolds of the same dimension n ≥ r +2;
the class GG. . .G with r letters G is, for fixed n, the fattest single orbit with
the chained system (C) as a model.

Remark 1. The geometric classes have, basically, been created already in
[4]. Jean considered a kinematic model of a car drawing a given number N
of attached passive trailers, representing a rank–2 Goursat distribution, say
D, on the configuration space ΣN = R2 × (S1)N+1. He precisely described a
stratification of ΣN by different ‘regions’ defined in terms of his critical angles
a1 = π

2 , aj+1 = arctan(sin(aj)), j = 1, 2, 3, . . . , and proved that the germs of
D at points of any fixed stratum have the same small growth vector. Jean’s
strata are nothing but the geometric classes of the germs of D at different
points of ΣN . They can be encoded — this is done in [2], Chap. 6 — with
the words of length N − 1 over { 1, 2, 3 } s. t. a 1 never goes directly after a
2. The respective geometric class is obtained from the stratum word via the
translation 1→ T, 2→ G, 3→ S and adding two extra G’s on the left of the
code.

Often, instead of ‘belongs to a class C’, we will say ‘has the basic geometry
C’. In this terminology, Jean’s pioneering contribution can be described as
finding, in the trigonometric presentation (or disguise) using strings of trailers,
the natural stratification of Goursat germs by their different basic geometries.

The essence of the Kumpera-Ruiz construction, for the germs in a geometric
class C (the concept, naturally, absent in [5]), is as follows. When C starts

with s letters G, one puts
s+1
Y = p1 + x3∂2 + · · ·+ xs+2∂s+1. When s < r, the

(s + 1)-th letter in C is S. More generally, if the m-th letter in C is S, and
m
Y

is already defined, then

(1)
m+1
Y = xm+2

m
Y + ∂m+1 .

But there can also be T’s or G’s after an S. If the m-th letter in C is not an
S, and

m
Y is already defined, then

(2)
m+1
Y =

m
Y +

(
cm+2 + xm+2

)
∂m+1 .

The gist of KR pseudo-normal forms is that cm+2 is not absolutely free but
• equal to 0 when the m-th letter in C is T,
• not equal to 0 when the m-th letter is G going directly after a string

ST. . .T (or after a short string S).
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Remark. In the sequel we will write shortly Xm+2 = cm+2 + xm+2.
In this language the result of [5] reads

Theorem 1 ([5]). Any Goursat germ D of corank r on a manifold of
dimension n, sitting in a geometric class C, can be put (in certain local coor-

dinates) in a form D =
( r+1

Y , ∂r+2; ∂r+3, . . . , ∂n

)
understood as the germ at

0 ∈ Rn, with certain constants in the field
r+1
Y corresponding to the letters G

past the first S in the code of C.

One easily recognizes (C) in this theorem – for C = GG . . .G with r letters G.
The codimensions of Jean strata are easily computable: they are equal to

the number of letters S and T in the relevant encoding words. Singularities of
codimension 1 are simple; they have been classified, for all lengths r, in [10].
On manifolds of fixed dimension, the germs in each geometric class Gk−1SGr−k,
3 ≤ k ≤ r, are all mutually equivalent. (The subscript means in this context,
also in the sequel, the number of repetitions of a letter in the code.) Certain,
but not all, singularities of codimension 2 are simple, too ( [11] ). The present
paper investigates one series of singularities of codimension 3.

1.2. Certain flags’ members more involved than others.
In [6], Chap. 3 there is a systematization proposed concerning all theoretically
possible manners of local prolongations of flags: from a given length r to length
r+1. That systematization puts in proper places existing classification results
for G. germs, such as [5], [3], [2], [7], [8], [9], [12], [11].
The authors have separated five distinctly different cases, Possibilities I – V,
by considering a longer flag D1 ⊃ D2 ⊃ · · · ⊃ Dr ⊃ Dr+1 and analyzing the
properties of local symmetries φ of the shorter flag of Dr, around a point
p preserved by φ. All such φ induce a subgroup Γ ⊂ PGl(2) consisting
of projectivities of S1 = P

(
Dr(p)/L(Dr)(p)

)
, always having one fixed point

K = L(Dr−1)(p)/L(Dr)(p), sometimes having also a second fixed point L, and
sometimes being just {id}. (Note that this contribution was already recalled
in [9]; see also Sect. 1.6 in [11].)

Example 1. It follows from [10] (cf. Rem. 4 there) that prolonging any
germ having basic geometry Gk−1SGr−k, 3 ≤ k < r, is always Possibility I.
Prolonging a germ in the class Gr−1S is Poss. II, with the second fixed point L
given by the tangent position of Dr+1(p) wrt the locus of 1st order singularity.

The hard core of the classification problem resides in predicting how Pos-
sibilities I through V can interweave when prolongations are done one after
another. In [8] interesting distances were defined that enrich existing patterns
of successions of Possibilities. To exemplify, referring always to [8], the germs
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in the class G3ST2G prolong by Poss. II to the ones having the code extended
by: S (fixed point K), G0 (fixed point L), G∗ (the complement S1 \ {K, L }).
Then, at the next step, as shown in [12], p. 165, G3ST2GG∗ prolongs by Poss. V
to all pairwise non-equivalent positions of D9(·). While G3ST2GG0 prolongs by
Poss. III to: S (point K), G0 (point L), G+, G− (the two connected components
of S1 \ {K, L }). All the above information can be put in a single line as

G3ST2G
II−→

{
G3ST2GG∗ V−→ G3ST2GG∗G
G3ST2GG0 III−→

2

What at the next step? G3ST2GG∗G prolongs by Poss. I just to S and G, and
even a stronger statement, plus two other akin to it, hold:

G3ST2G3
I−→ G3ST2G4

I−→ G3ST2G5
I−→ G3ST2G6 .

But there is no continuation of this pattern! In fact, the subfamily

(3) G3ST2GG0G0G3 ⊂ G3ST2G6

prolongs by Poss. III to S, G0, G+, G−.
After that the prolongations of the entire geometric classes G3ST2Gj , j =
7, 8, 9 are by Poss. I, but then there awaits one last surprise: the germs in the
subfamily G3ST2GG0G0G3G0G3 prolong again by Poss. III to: new S, G0, G+,
and G−. Eventually the regular pattern ‘G3ST2Gj prolongs by Poss. I’ returns
forever – for j ≥ 11.

Things being so, certain positions in the codes above are somehow partic-
ular: those i steps after, i = 1, 2, 6, 10 (or: at the distance i from) the block
G3ST2G that starts the code. These are instances of interesting distances in-
troduced in [8]. What is the underlying principle? For j = 2 (two T’s in a row
in the codes) and k such that k + 2 = # of G’s in the beginning of the code,
Thm. 4.1 in [8] says that i is interesting iff

(4) i− 1− 4k, i, i + 1 /∈
(
4, 5 + 4k

)
Z+ ,

the semigroup of all nonnegative integer combinations of 4 and 5 + 4k (cf.
Def. 4.2 in [8]). For k = 0 only i = 2 fulfils (4), for k = 1 — only already
mentioned i = 1, 2, 6, 10; for k = 2 — only i = 1, 2, 5, 6, 10, 14, 18, etc.

All this is a necessary background before formulating Thm. 2 in the next
chapter. We will only deal with k = 1, and it will turn out that the interesting
distance i = 6 conceals a remarkable singular geometrical phenomenon.

2 This last letter G after G∗ means anything (any position) but the new S at the end.
Analogous shorthand encoding convention will be applied when continuing the codes after
G0, G+, G−, too.
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2. Infinitesimal symmetries of Goursat flags and Main Theorem.

By an automorphism of a distribution D on M we mean any diffeomor-
phism g : M←↩ sending D to itself: g∗D = D. By infinitesimal automorphism
(or: infinitesimal symmetry, in the sequel we write i. a. for short) of D we mean
any vector field Y on M – of the same class of smoothness as M – whose flow,
at least for times small in absolute value, preserves D. In other words, such
that [Y, X] ∈ D for all vector fields X with values in D.
We denote by I(D) the set of all i. a.’s of D. By definition, the symmetry
dimension SDp(D) of D at p is the linear dimension of I(D) at p.

Example 2. The splitting of the geometric class G3ST2G2 used in Chap. 1
and caused by the apparition of a second fixed point L not definable in the
G, S,T language,

G3ST2G2 = G3ST2GG∗ ∪ G3ST2GG0 ,

stems from the behaviour of the symmetry dimension of the corank–8 G. germs.

Namely, if it is, say, D8 at p ∈Mn, then, by Thm. 1, D8 =
(
∂n, . . . , ∂11; ∂10,

9
Y

)
,

with

(5)
9
Y =

8
Y + (b + x10)∂9 , where

8
Y =

7
Y + (a + x9)∂8 with

(6) a 6= 0

and
7
Y = x6

4
Y + ∂5 + x7∂6 + x8∂7,

4
Y = ∂1 + x3∂2 + x4∂3 + x5∂4. How to

interpret the parameter b ? It is the second, in general non-zero, constant
in this family D8 of KR pseudo-normal forms. Precisely such situations are
discussed in [8]. By the formulas (31) and (33) there, SDp(D8) = n − 4 iff
b = 0. The positions of D8(p) yielding this (smaller than typical) SD give
those second fixed points L in the prolongation by Poss. II of G3ST2G, and
such germs D8 sit in the singularity set G3ST2GG0 (see Sec. 1.2).
Whereas SDp(D8) = n− 3 iff

(7) b 6= 0 .3

Assuming (7), i. e., avoiding the singular position L, is the very environment,
encoded in Chap. 1 as G3ST2GG∗, that gives rise to the module of [12] in the
next prolongation step. Recalling, for D8 ∈ G3ST2GG∗ — a germ at p ∈ M ,
and D9 – its prolongation, all possible positions of D9(p) are frozen in the
sense of [6]: all points on the circle P

(
D8(p)/L(D8)(p)

)
are fixed because of

Possibility V governing this prolongation.

3 Cf. also Sec. 5.3 in [11] where similar computations were done for codimension–2
germs, not codimension–3 like here
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2.1. Main Theorem.

Theorem 2 (Main Theorem). For every Goursat germ D8 ∈ G3ST2GG∗

at p ∈ M of dimension n ≥ 15, there exists precisely one ( ‘ superfixed’)
position N ⊂ TpM possible to be assumed by D9 at p, N 6= L(D7)(p), such
that

(8) SDp(D13) =
{

n− 5 , when D9(p) = N ,
n− 4 , when D9(p) 6= N

for every local prolongation D13 of D8 sitting in G3ST2GG∗G5.
In fact, when D9 around p is given in a KR pseudo-normal form prolonging
the visualisation (5) for D8,

(9)
10
Y =

9
Y + (c + x11)∂10 ,

then that superfixed N is defined by

(10) c = c(a, b) = 0.740625 b2a−1

(cf. (6), (7)) and so corresponds to a non-zero value of the last constant c. In
particular, when (after an appropriate rescaling of the KR coordinates) a and
b are normalized to 1, then N is given by c0 = 0.740625 = 237

320 .

A proof will be given in Chapter 3.

2.2. Recursive formulas for the infinitesimal symmetries. Let us
start with any KR pseudo-normal form for the flag of D13 around p in Thm. 2

that extends (9). We mean following (9) by
j+1

Y =
j

Y + Xj+2∂j+1, j =
10, . . . , 13. The passive variables x16, . . . , xn are not visible. We will under-
stand this D13 as a finite object in the vicinity of 0 ∈ Rn, not as the germ at
0, and will compute the i. a.’s of it near 0, especially those whose flows move 0
(they are important for the symmetry dimension at 0).
Every KR pseudo-normal form is a sequence of relatively simple extensions
of a contact structure in Darboux local form ω = dx2 − x3dx1 = 0 on R3.
It was observed by S. Lie that the infinitesimal automorphisms of ω = 0 are
generated by all C∞ (or analytic, depending on the chosen category) functions
f(x1, x2, x3). Those generating functions are called contact Hamiltonians. It
turns out that the i. a.’s of KR pseudo-normal forms are sequences of relatively
simple prolongations of the automorphisms of the Darboux structure, and in-
herit the fact of being locally 1–1 parametrized by C∞ or Cω functions f in
three variables. We set apart the first three components of an i. a. Yf ,

(11) Yf = A∂1 + B∂2 + C∂3 +
15∑
l=4

F l∂l +
n∑

l=16

F l∂l ,
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as well as the last (passive, not depending on f , making – when n > 15 – the
infinity of such v. f.’s associated to every one function f) group of components
sitting in L(D13). So A, B, C depend only on x1, x2, x3, and the vector field
A∂1 +B∂2 +C∂3 is an i. a. of dx2−x3dx1 = 0. Hence the classical expressions

(12) A = −f3 , B = f − x3f3 , C = f1 + x3f2 .

The formulas issuing, in the case of the present D13, from [8] are as follows,

using the shorthand notation
4
Y = y and

14
Y = Y .

(13) F 4 = yC − x4yA , F 5 = yF 4 − x5yA .

Now, since x6 comes in in the distinguished way (1), F 6 stands apart,

(14) F 6 = x6
(
yA− Y F 5

)
.

Later certain regular pattern reappears,

(15) F 7 = Y F 6 − x7 Y F 5 , F 8 = Y F 7 − x8 Y F 5 ,

and, using the introduced brief notation for shifted variables,

(16) F l = Y F l−1 −X l Y F 5 for l = 9, 10, . . . , 15.

Example 3. As a first illustration, we use both formulas in (13) to express
F 5 by A and C (hence by f ultimately),

F 5 = yF 4 − x5yA = y(yC − x4yA)− x5yA = y2C − 2x5yA− x4y2A .

Secondly, we supply certain (not eventually simplified) formula for F 12 |0,
where the sign |0 means, here and in the sequel, the evaluation at 0.
Via (16), F 12 gets expressed by Y , F 11 and F 5, then by Y , F 10 and F 5, and
so on. Remembering that upon evaluating at 0 many terms vanish, F 12 |0 =
(17)
Y 6

(
x6(yA− YF 5)

)
− 15X9Y 4F 5 − 20X10Y 3F 5 − 15X11Y 2F 5 − 6X12YF 5 |0 .

2.3. Multiplicities and abstract weights. In view of expressions like
(17), in order to obtain tractable formulas for F 12 |0 and the like, one should
know how many consecutive derivations of x6, x5, x4, . . . wrt Y yield a non-
zero output. That question was settled, in more general context, in [8],
Def. 6.1. Minimal such numbers were there called the multiplicities, µ(·), of
x6, x5, x4, . . . So we just substitute j = 2 and k = 1 to that definition, hence
put

µ(x5) = 1, µ(x4) = 5, µ(x3) = 9, µ(x2) = 13, µ(x1) = 4,
µ(x6) = 3, µ(x7) = 2, µ(x8) = 1, µ(X9) = 0.

In fact, in [8] we went further, declaring (Def. 6.2) that the versors ∂l (here
l = 1, . . . , 9) have orders ν(∂l) = µ(xl). Then further still (Def. 6.3), artificially
extending the above definitions to µ(X l) = ν(∂l) = 9− l for l = 10, 11, . . . , 15
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in order to have the entire vector field Y homogeneous of order 1. That is to
say,
(18)
ν(∂l)−

(∑
multipl. of xj or Xj being factors in lth component of Y

)
= 1

for l = 1, 2, . . . , 14. Why is it useful? Look at any of A, B, C or any of F l,
4 ≤ l ≤ 15. It is a polynomial in x3, x4, . . . , xl with coefficients – integer
combinations of certain partials of f . Those coefficients are to be treated
as purely formal expressions (that for certain simple f ’s can even identically
vanish), and only an abstract weight is to be associated with them! As in [8],
Def. 7.1, to any monomial xIXJfK we attach its abstract weight

(19) w(xIXJfK) =
∑
k∈K

ν(∂k)−
∑
j∈J

µ(Xj)−
∑
i∈I

µ(xi)

(multiindices vary: I between 3 and 8, J between 9 and 15, K between 1 and
3). Then the derivative Y

(
xIXJfK

)
is a polynomial with all terms of abstract

weight 1 + w(xIXJfK), because the two quantities (18) and (19) just add.
The vector field y is also homogeneous of order ν(y) = ν(Y ) + µ(x6) = 4.

In consequence (cf. Obs. 7.2 in [8]) all polynomials A, B, C, F 4, . . . , F 15 are
homogeneous of abstract weights 9, 0, 4, 8, 12, 10, 11, 12, . . . , 19, respectively.

Observation 1. (i) To the value at 0 of any of A, B, C, F l, l = 4, . . . , 8,
there can contribute only those partials of f with abstract weight equal to that
of the component function in question.

(ii) To the values at 0 of F l, l = 9, . . . , 15, there can contribute only those
partials of f with abstract weight not greater than w(F l).

Proof. The terms contributing at 0 are free of factors x3, . . . , x8. Hence
they are among the free terms in (i), and in (ii) – among the terms with only
X9, . . . , X l as factors. These shifted variables have non-positive multiplicities
that are subtracted in (19).

Guided by Obs. 1, we ask, therefore, what partials of f have weights not
exceeding 19 = w(F 15). The answer, when the orders ν(∂1), ν(∂2), ν(∂3) are
known, is almost immediate,

weight: 0 4 8 9 12 13 14 15 16 17 18 19
partials f f1 f11 f3 f111 f2 f1111 f12 f33

of f : f13 f113

Example 4. The line of computation interrupted in (17) has the following
continuation:

(20) F 12 |0 = − 35(X9)2f1111 − 15X12f13 |0 .
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This answer illustrates Obs. 1, (ii). To the evaluation at 0 of F 12 – a polynomial
of weight 16 – there only contribute the partials: f1111 of weight 16 and f13 of
weight 13 (the latter, because X12, of multiplicity −3, stands by it).

3. Proof of Theorem 2.

It follows immediately from (12) and (13) that A |0 = − f3 |0, B |0 =
f |0, C |0 = f1 |0, F 4 |0 = f11 |0, F 5 |0 = f111 |0. On the other hand,
F 6 |0 = 0 because, by (14), F 6 ∈ (x6), the ideal generated by the function x6.
Substituting the expression for F 6 to (15),

(21) F 7 = x7
(
yA− Y F 5

)
+ x6 Y

(
yA− Y F 5

)
− x7 Y F 5 ∈ (x6, x7) ,

while substituting the middle expression in (21) to (15),

F 8 = x8
(
yA− Y F 5

)
+ 2x7Y

(
yA− Y F 5

)
+ x6 Y 2

(
yA− Y F 5

)
+

− 2x8 Y F 5 − x7 Y 2F 5 ∈ (x6, x7, x8) .

Therefore, F 7 |0 = F 8 |0 = 0 (the necessary preservation of the stratum
G3ST2).
In the present stuation, F 9 |0 and F 10 |0 have already been computed in [8]:

(22) F 9 |0 = − a(4f2 + 13f13) |0 , F 10 |0 = − b(5f2 + 16f13) |0 .

Passing to F 11 |0, its weight is 15 and the table shows that there is no partial
of this weight. Thus, by Obs. 1, this quantity is a combination of partials of
weights < 15, hence ≤ 13. At this point it is instrumental to introduce a
uniform notation. We define

p1 = − f3 |0 , p2 = f |0 , p3 = f1 |0, p4 = f11 |0 , p5 = f111 |0,

p6 = − a(4f2 + 13f13) |0 , p7 = − b(5f2 + 16f13) |0 .

Under (6) and (7), f2 |0 and f13 |0 are expressable by p6 and p7, and

(23) F 11 |0 = a combination of p1, p2, . . . , p7 .

Now, putting p8 = − 35a2f1111 |0, (20) assumes the form

(24) F 12 |0 = p8 +
(
a combination of p6, p7

)
.

In F 13 |0, being of abstract weight 17, some terms are pure powers of X9 |0 = a
times partials at 0 of weight 17, while the remaining have coefficients – com-
binations of partials at 0 of weights ≤ 16, hence are themselves combinations
of p1, p2, . . . , p8. After a prolonged computation,

(25) F 13 |0 = p9 +
(
a combination of p1, p2, . . . , p8

)
,

where p9 = − a2
(
952f12 + 1547f113

)
|0.
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As for F 14, its weight is 18 = w(f33), so that that new partial f33 may show up
in the polynomial F 14(f) in coefficients next to powers of X9, while f12 and
f113 from the previous step – in coefficients standing by X10 times powers of X9

(because w(f12)−µ(X10) = 17−(−1) = 18). At first sight it seems reasonable,
as previously, to focus on the new partial alone, putting all lower weights to the
queue terms. But presently the horizon of action is different: there is no partial
of weight 19 (see the table). In consequence, we will need to know the precise
interplay among f12 |0, f113 |0, f33 |0 in the analysis of the last important
component F 15, and that would be meaningless when forgetting about f12 |0
and f113 |0 in F 14 |0. So we are looking for the three coefficients with which
these three partials appear in F 14 |0. After rather lengthy computations,

(26) F 14 |0 = p10 +
(
a combination of p1, p2, . . . , p8

)
,

where p10 = − a
(
6272 af33 + 3906 bf12 + 6300 bf113

)
|0.

As for the last important component F 15 |0, the outcome of similar com-
putations (made twice, separated by a long period of time) reads

F 15 |0 =− 28644 abf33 − (7284ac + 4410b2)f12 − (11694ac + 7056b2)f113 |0
+

(
a combination of p1, p2, . . . , p8

)
.(27)

This time one can only ask whether

(28) q11 = − 28644 abf33 − (7284ac + 4410b2)f12 − (11694ac + 7056b2)f113 |0

is a parameter independent of p9 and p10. Remembering the definitions of p9

and p10, it is iff∣∣∣∣∣∣
0 952 a2 1547 a2

6272 a2 3906 ab 6300 ab
28644 ab 7284 ac + 4410 b2 11694 ac + 7056 b2

∣∣∣∣∣∣ 6= 0 .

Expanding this determinant, it vanishes precisely for c = c(a, b) defined by
(10). For all other values of c (including the value 0) it is non-zero.

Now we can sum up our long computations. By the (short) computation
of the first eight components and formulas (22) – (27), for c 6= c(a, b), upon
putting p11

def= q11, the component A(f)∂1 + B(f)∂2 + C(f)∂3 +
∑15

l=4 F l(f)∂l

of Yf |0 equals
∑11

j=1 pjej , where pj are free real parameters and ej are
linearly independent vectors. So, when a generating function f varies freely
in its allowed class of smoothness, these components span the 11– dimensional
subspace

(
e1, e2, . . . , e11

)
⊂

(
∂1, . . . , ∂15

)
. And of course the remainder∑n

l=16 F l∂l |0 ∈ L(D13)(0) has no relation to the former summand – it can be
an arbitrary vector in

(
∂16, . . . , ∂n

)
independently of f . This justifies that

except for the case (10), SD0(D13) = 11 + n− 15 = n− 4.
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What does happen in the case (10) ? Then q11 given by (28) is not a
parameter independent of p9 and p10, but to the contrary – is a fixed linear
combination of p9 and p10. In that case, (27) boils down to

(29) F 15 |0 = a combination of p1, p2, . . . , p10 .

There appears neither p11 nor e11 in the previous dimension count, while e1, . . . ,
e10 get slightly perturbed, but still independent. In the outcome, in that case
(10), SD0(D13) = 10 + n− 15 = n− 5. Theorem 2 is proved. �

4. Consequences for the local classification.

Corollary 1. (i) When c 6= c(a, b) (that is, D9(p) 6= N , the superfixed
position), the germs in the class G3ST2GG∗G4 prolong by Possibility I (cf.
Sec. 1.2). Or, in the KR language: c15 can be annihilated.
(ii) When c = c(a, b) (D9 in the superfixed position at p), the constant c15

in the description of D13 is important. In fact, the prolongation from D12 to
D13 is either according to Possibility IV or V.

Proof. Part (i): in view of the machinery developed in Chap. 3, for such
c there are Hamiltonians f s. t.

(30) A, B, C, F 4, . . . , F 14 vanish at 0, and F 15 |0 6= 0 .

Moreover, these conditions clearly imply f2 |0 = f13 |0 = 0 and hence
F 15(0, . . . , 0, x15) = F 15 |0 ∀ x15 by Prop. 4 in [10]. Then, by the tech-
nique of [11], Chap. 9, the last constant c15 can be driven to 0 keeping the KR
description of the preceding part of the flag.
Part (ii): For c = c(a, b) one is in the situation – see (29) – opposite to
(30). That is, the vanishing of p1, . . . , p10 implying F 15 |0 = 0 whatever the
reference value of c15. Therefore, that constant cannot be changed, keeping the
description of the preceding part of the flag, by flag’s symmetries embeddable
in flows. This means that the germs prolong either by Poss. IV or V (the
relevant orbits are discrete: either |c15| or c15 is an invariant).

Added in proof. After the submission of the text we better understood a single
mechanism responsible for the superfixed position from Thm. 2 and for an infi-
nite series of other such positions, always in codimension 3. Directly generaliz-
ing from k = 1, for any k ≥ 1 fixed, in the geometric class GG. . .GSTTGG∗G
with k + 2 ≥ 3 letters G in the beginning, there resides a module of the local
classification. It issues from Possibility V; accordingly – under automorphisms
of Dk+7 that keep a point p – all positions of Dk+8(p) are fixed. One of them is
superfixed, implying a singular behaviour (smaller symmetry dimension at p)
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of the 4k steps’ prolongation D5k+8 of Dk+8. We obtain this result by care-
fully analizing the abstract weights as recalled in Sec. 2.3, and the gaps in the
semigroup

(
4, 5 + 4k

)
Z+ (cf. (4); for k = 1 we have had the table preceding

Ex. 4 and the semigroup
(
4, 9

)
Z+).

Normalizing the positions of Dk+6 and Dk+7 at p as in the text for k =
1, that superfixed value sf(k) can be computed algorithmically. The value
sf(1) = 237

320 was obtained by hand. The remaining quantities sf(k), k ≥ 2 are
not yet found; they need the use of a computer (the computation is straight-
forward if very long already for k = 2).
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