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Kinematic Analysis of Pericyclic Transmission Mechanism
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The article presents a kinematic analysis of the pericyclic mechanism, where the gear is
internally engaged with fixed central wheel. Geometric features of the trajectory of the
mechanism allows use of this type of mechanisms in machines, which provide such kind of
technological processes where slight fluctuations of the driven link sometimes are necessary
at the extreme position of the system. Mechanisms of this type can be used in different tech-
nological machines such as metal cutting machines as well used in light industry, where the
processing of any tissue requires slight fluctuations of the executive body at the temporary
position.
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1 Introduction

Planetary gears with a satellite or with satellites, which allow an approximate quasi-stop of the
output link, are widely used in textile and light industry machines. Such allowances for minor
deviations during the dwell of the working body of the mechanism are due to the flexibility and
pliability of the materials processed and driven in this industry.

For example, in special sewing machines, there are mechanisms for transverse or longitudinal
vibrations of the needle when stitching the material. This behavior of the tool does not have
a damaging effect on the material being processed, in the process of puncturing the material
with a needle. In such cases, it is possible to use mechanisms with less kinematic complexity
and making it possible to develop as high speeds as possible for high-speed sewing and textile
machines.

2 Main part

In this paper, we consider a planetary gear with a planetary gear that is in internal engagement
with a stationary central wheel (Figure 1). Our task is to determine the speed and acceleration
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of the hole for the sewing thread of the driven link when the driving link O1O2 rotates with a
certain angular velocity and angular acceleration. The angular velocities of the carrier and the
moving link are related by the relation:

ω1 · |O1O2| = ω2 · |PO2|

whence the angular velocity of the link 2 will be:

ω2 =
|O1O2|
|PO2|

· ω1 =
r2 − r1

r2
· ω1

To determine the speeds of any point of the driven link, it is necessary to find the posi-
tion of the instantaneous center of speed of the gear with internal gearing. The mentioned,
instantaneous center of speed is the point P of contact between gear 2 and wheel of gear 1.

The crank O1O2 moves with an angular velocity ω1 and with an angular acceleration ε1

relative to the point O1. Based on this, the speed of the point O2 is determined by the formula:

VO2 = ω1 · |O1O2| = (r2 − r1) · ω1.

After that, we find the speed of point K by the following formula:

VKO2 = ω2 · |KO2| =
(r2 − r1) · α̇

r2
· (r2 + L) .

Full velocity of the point K, can be written as:
−→
V K =

−→
V O2 +

−→
V KO2 ;

Projections of the full velocity of the point K on the axes x and y will be written as:

VKx = VO2 · cos
(
90

◦
+ α

)
+ VKO2 · cos

(
90

◦
+ ϕ

)
= − (r2 − r1) · α̇ · sinα− (r2 − r1) · α̇

r2
· (r2 + L) · sin

(
1− r1

r2

)
α;

VKy = VO2 · sin
(
90

◦
+ α

)
+ VKO2 · sin

(
90

◦
+ ϕ

)
= (r2 − r1) · α̇ · cosα + (r2−r1)·α̇

r2
· (r2 + L) · cos

(
1− r1

r2

)
α;

Figure 1
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and hence we will have:

VK =
√

V 2
Kx + V 2

Ky.

At the same time, if the crank O1O2 rotates around the point O1 with a constant angular
velocity ω1 then the centripetal acceleration Wn

O2
will have the form

Wn
O2

= ω2
1 · (r2 − r1) = α̇2 · (r2 − r1) .

Centripetal acceleration of point K of the gear in relative motion can be determined as:

Wn
K = ω2

2 · (r2 + L) =
(r2 − r1)

2 · (r2 + L)
r2
2

· α̇2.

The vector of full acceleration of point K is found as the sum of vectors of translational and
relative acceleration

−→
WK =

−→
W

n

O2
+
−→
W

n

KO2
.

Figure 2

Figure 3
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At the same time the meanings of modules of here given accelerations are equal

WKx = −Wn
O2

· cosα−Wn
KO2

· cosϕ

= −α̇2 · (r2 − r1) · cosα− (r2 − r1)
2 · (r2 + L)
r2
2

· α̇2 · cos
(

1− r1

r2

)
α;

WKx = −Wn
O2

· sinα−Wn
KO2

· sinϕ

= −α̇2 · (r2 − r1) · sinα− (r2 − r1)
2 · (r2 + L)
r2
2

· α̇2 · sin
(

1− r1

r2

)
α.

The angle among them is:
WK =

√
W 2

Kx + W 2
Ky.

If the crank, in addition to the angular velocity, also has an angular acceleration, then to
determine the total acceleration of the point K, it is necessary to use the following analytical
dependence

ω2 · r2 = (r2 − r1) α̇;

ω2 =
(r2 − r1) α̇

r2
.

Differentiating this fraction with respect of time, we find the angular acceleration of the gear:

ε2 =
dω2

dt
=

(r2 − r1) α̈

r2
.

The tangential acceleration of the point O2, as the point of the crank O1O2, is directed towards
O1 and is equal in absolute value to:

Wn
O2

= α̇2 · (r2 − r1)

The module of rotation acceleration of the point O2 is perpendicular to the straight-line O1O2can
be calculated as:

W τ
O2

= α̈ · (r2 − r1) .

Figure 4
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If the point O2 is taken as the pole, then the total acceleration of the point K can be found by
the following equation: based on this we will have:

−→
WK =

−→
WO2 +

−→
W

n

KO2
+
−→
W

τ

KO2
.

The acceleration of the point K has already been found through the componentsWn
O2

andW τ
O2

.
The tangent acceleration of the point K relative to the point O2 is directed towards O2the
module of this acceleration is equal to ω2

2 · (r2 + L) . Substituting the value ω2, we will have:

Wn
KO2

= ω2
2 · (r2 + L) =

(r2 − r1)
2 · (r2 + L)
r2
2

· α̇2.

The rotational acceleration of the point K relative to the point O2 is directed perpendicular to
the straight-lineO2K and the algebraic value of this acceleration is:

W τ
KO2

= ε2 · (r2 + L) =
(r2 − r1) · (r2 + L) · α̈

r2
;

Projecting both sides of equality (1) onto the x and y axes

WKx = −Wn
O2O1

· cosα−W τ
O2O1

sinα−Wn
KO2

· cosϕ−W τ
KO2

· sinϕ;
WKy = −Wn

O2O1
· sinα + W τ

O2O1
cosα−Wn

KO2
· sinϕ + W τ

KO2
· cosϕ.

(1)

In an expanded form, these equations can be written as:

WKx = − (r2 − r1) · α̇2 · cosα− (r2 − r1) · α̈sinα

−(r2 − r1)
2 · (r2 + L)
r2
2

· α̇2 · cos
(

1− r1

r2

)
α− (r2 − r1) · (r2 + L) · α̈

r2
· sin

(
1− r1

r2

)
α;

WKy = − (r2 − r1) · α̇2 · sinα + (r2 − r1) · α̈cosα

−(r2 − r1)
2 · (r2 + L)
r2
2

· α̇2 · sin
(

1− r1

r2

)
α +

(r2 − r1) · (r2 + L) · α̈
r2

· cos
(

1− r1

r2

)
α.

The full acceleration value is calculated as follows:

WK =
√

W 2
Kx + W 2

Ky.

The distance from the point K to the instantaneous center of acceleration Q is calculated by
the following formula:

|KQ| = WK√
ω4

2 + ε2
2

.

To determine the angle between the acceleration WK and the segment KQ, we use the formula

tgθ =
ε

ω2

Regarding the given equations and using computer program “Wolfram” the numerical examples
have been calculated. Based on these examples, changing of the values of speed and acceleration
in time in the graphical form are shown below.

During calculations the angular acceleration ε was taken equal to 0.4 rad/sec; The angular
velocity ω = 0 when t = 0. The step during calculations have been taken equal to 0.05 and the
time was varied from 0 up to 50 sec.
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By summing these curves of velocities we obtain the following summarized plot.
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3 Summary

The article presents a kinematic solution of a planetary mechanism with a satellite, which is in
external engagement with a fixed central wheel. The geometric features of the mechanism path
allow the use of this mechanism in machines, providing technological processes for which minor
oscillations of the driven link are sometimes required at the stop stage. Mechanisms of this type
are used in different fields of industry, like mechanical engineering as well textile industry, where
in the treatment of a material, is required that the executive body can make slight fluctuations
relative to the temporary position.
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