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Let us assume that a sequence of random variables satisfies the requirements of the well-
known Chebyshev’s theorem of the law of large numbers. Then will such a sequence always
satisfy the strong law of large numbers? We show that the answer to this question is negative.

Keywords and phrases: Law of large numbers, Chebyshev theorem. strong law of large
numbers, Prokhorov theorem.

AMS subject classification: 60F05, 60F15.

1 Introduction

Let ξ1, ξ2, ..., ξn, ... be a sequence of real random variables defined on the probability space
(Ω, A, P ), with finite mathematical expectations Eξn < ∞, n = 1, 2, ...; denote by Sn =∑n

k=1 ξk, n = 1, 2, .... We say that the given sequence (ξk) of random variables satisfies the
Law of Large Numbers (LLN), if the sequence Sn−ESn

n converges in probability to zero as
n →∞, i.e. for every ε > 0

lim
n→∞

P [|Sn − ESn

n
| > ε] = 0.

A special form of the LLN was first proved by Jacob Bernoulli [1], which historically was
the first and simplest formulation of the LLN. It is also worth noting the work of S.D. Poisson,
who in 1837 proved a more general form of the LLN than that of J. Bernoulli. After Bernoulli
and Poisson many famous mathematicians also contributed to refinement of the LLN including
Chebyshev, Borel, Kolmogorov, Khinchin etc. Let us formulate some results, necessary for
further discussion. We begin with the well-known Chebyshev theorem and formulate it in a
more general form [2], p.62 (see also [3], p. 35).

Theorem 1.1. Let ξ1, ξ2, ..., ξn, ... be a sequence uncorrelated random variables and assume that

lim
n→∞

1
n2

n∑
k=1

Dξk = 0, (1.1)

where Dξk is the variance of ξk. Then the sequence ξ1, ξ2, ..., ξn, ... satisfies the LLN.
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Let ξ1, ξ2, ..., ξn, ... be again a sequence of real random variables with finite mathematical
expectations E|ξn| < ∞ and Sn =

∑n
k=1 ξk. As we can see, the law of large numbers means that

the sequence Sn−ESn
n converges to zero in probability. If this sequence converges to zero almost

surely (a.s.), then we say that the sequence (ξk) satisfies the Strong Law of Large Numbers
(SLLN).

Let us pose the following question. Let us assume that a sequence of random variables
satisfies the requirements of Chebyshev’s theorem. Then will such a sequence always satisfy the
SLLN? The answer to this question is negative, but it requires some effort to justify it. The
main purpose of this paper is to prove this fact.

The following theorem gives a criterion for the fulfillment of the SLLN for independent
centered Gaussian random variables [4].

Theorem 1.2 (Yu.V. Prokhorov, 1950). Let ξ1, ξ2, ..., ξn, ... be a sequence of independent
Gaussian centered random variables and

bn =
1

22n

2n+1∑
k=2n+1

Eξ2
k, n = 1, 2, ...

Then the sequence satisfies the SLLN if and only if for every ε > 0
∞∑

n=1

e−
ε

bn < ∞. (1.2)

Remark 1.3. If (bn) is a monotonically decreasing sequence, then condition (1.2) is equivalent
to the following condition

lim
n→∞

(bn lnn) = 0. (1.3)

Proof. Indeed, since the sequence (bn) of positive numbers is monotonically decreasing, it is
clear that (e−

ε
bn ) will also be monotonically decreasing. Then from the convergence of the

series
∑∞

n=1 e−
ε

bn it follows that
lim

n→∞
(ne−

ε
bn ) = 0.

This means that there exists a positive integer n0, such that for any n > n0 the following
relations hold:

ln (ne−
ε

bn ) = lnn− ε

bn
< 0 ⇒ bn lnn < ε ⇔ lim

n→∞
(bn lnn) = 0.

Now we will show the validity of the converse statement. Let us assume that n > 1 and denote
bn · lnn = an, i.e. bn = an

ln n . It is clear that

e−
ε

bn = e−
ε

an
ln n = (eln n)

− ε
an =

1

n
ε

an

.

Hence,
∞∑

n=1

e−
ε

bn =
∞∑

n=1

1

n
ε

an

< ∞,

which completes the proof of Remark 1.3.

Now we will formulate and prove our main result.
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2 Main result

Theorem 2.1. There is a sequence of independent Gaussian centered random variables that
satisfies the conditions of Theorem 1.1 and does not satisfy the SLLN.

Proof. Let ξ1, ξ2, ..., ξn, ... be a sequence of independent Gaussian centered random variables
and let the variance of ξk be xk, where xk is defined as follows

xk =

{
1, 1 ≤ k < 27,

k
ln ln k , k ≥ 27.

In addition, let us denote

bn =
1

22n

2n+1−1∑
k=2n

xk.

It is easy to see that the sequence ( k
ln ln k ) is increasing for k ≥ 27. Bearing in mind that M

and N are arbitrary natural numbers with 27 < M < N , we get the following estimates:

∫ N

M

M − 1
ln ln(M − 1)

dx <

N∑
k=M

k

ln ln k
≡ SN

M <

∫ N

M

N + 1
ln ln(N + 1)

dx. (2.1)

From where

(M − 1)(N −M)
ln ln(M − 1)

< SN
M <

(N + 1)(N −M)
ln ln(N + 1)

. (2.2)

If we substitute M = 28 and N = n, then the right-hand side of (2.2) gives us

1
n2

Sn
28 <

(n + 1)(n− 28)
ln ln(n + 1)n2

,

which obviously converges to zero. This means that condition (1.1) is satisfied.
If we use the left-hand side of (2.2) for the case M = 2n + 1 and N = 2n+1 we get

bn =
1

22n
· S2n+1

2n+1 >
1

22n

(2n + 1− 1)(2n+1 − 2n − 1)
ln ln(2n)

=

=
2n − 1

2n · ln ln(2n)
>

1
2 · ln(n ln 2)

=
1

2(lnn + ln ln 2)
.

Thus,

bn · lnn ≥ lnn

2(lnn + ln ln 2)
→ 1

2
> 0

and therefore condition (1.3) is not satisfied.
Now if we show that the sequence (bn) is decreasing, it turns out that condition (1.2) is not

satisfied, because as we have already shown, in this case condition (1.2) implies that condition
(1.3) is satisfied, but we have just shown that condition (1.3) is not satisfied.

To satisfy the inequality

bn > bn+1 ⇔
1

22n
· S2n+1

2n+1 >
1

22n+2
· S2n+2

2n+1+1,
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the following inequality must be satisfied:

S2n+2

2n+1+1

S2n+1

2n+1

< 4.

Let us find the asymptotic estimate S2n+1

2n+1. To do this, we will estimate from above and from
below expression (ln ln k) for k = 2n + 1, 2n + 2, ..., 2n+1. Let k = 2n + m, where 1 ≤ m ≤ 2n.
Then,

ln ln k = ln ln(2n · 2n + m

2n
) = ln(n ln 2 + ln p),

where 1 < p = 2n+m
2n ≤ 2. As p > 1, then ln p > 0 and we have

ln(n ln 2) < ln ln k < ln((n + 1) ln 2)

for any k = 2n + 1, 2n + 2, ..., 2n+1. Therefore,

1
ln((n + 1) ln 2)

2n+1∑
k=2n+1

k <

2n+1∑
k=2n+1

k

ln ln k
<

1
ln(n ln 2)

2n+1∑
k=2n+1

k.

That means

3 · 4n + 2n

ln((n + 1) ln 2) · 2
< S2n+1

2n+1 <
3 · 4n + 2n

ln(n ln 2) · 2
.

By this inequality

S2n+2

2n+1+1

S2n+1

2n+1

<
3 · 4n+1 + 2n+1

ln((n + 1) ln 2) · 2
· ln((n + 1) ln 2) · 2

3 · 4n + 2n
=

3 · 4n+1 + 2n+1

3 · 4n + 2n
< 4.

Thus, we have shown that the sequence (bn) decreases starting from some n, which completes
the proof of the theorem.
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