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Conditions for Solvability of a Class of Fourth Order Partial
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In the paper we obtain sufficient conditions for regular solvability of elliptic type fourth
order partial operator-differential equations dependent on two variables and whose principal
part contains a normal operator. These conditions are expressed by the properties of the
coefficients of the operator-differential equation. At the same time the estimates of the
norms of intermediate derivatives in abstract Sobolev-type spaces are obtained through the
principal part of the operator-differential equation.
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1 Introduction

Let H be a separable Hilbert space, let C' be a positive —definite self-adjoint operator. Let
R?> = R x R, and let Lo (RQ;H ) be a Hilbert space of vector-functions f(z,y), determined

almost everywhere in R?, with the values in I, measurable and quadratically integrable, for
which

1
2
T ( /. ||f(33,y)||2d:vdy> < .

We introduce the linear set D (RQ;H4) of infinitely differentiable in H vector-functions
u(z,y), with the values Hy = D (C4) ((:c, Yy, = (C’4:c, C4y)), having compact supports in RZ.
In the linear set D (RQ; H 4) we determine the norm

4 . 2
T Hc4—<k+a>.
Hee kj:zo: 0z 0y || Ly (r2: 1)
0<k+j<4

We denote completion of the linear set D (R?*; H4) in the norm HUHWEL(RQ;H) by Wi (R? H).
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In the space H we consider the operator-differential equation

4

u O, oFtiy, 2
@+8—¢+Au—l— Z Ak,jW:f(x,y),(m,y)ER, (1)
k,j=20
0<k+j<4

where f(z,y), u(z,y) are vector-functions with the values in H, the operator coefficients satisfy
the following conditions:
1) A is a normal invertible operator whose spectrum is contained in the angular sector

ng{)\:|arq)\|§6,0§5<%}

2) The operators By ; = Ay ; A*+)=4 (k,j = 0,4,k + j < 4) are bounded in H.
Note that subject to condition 1) the operator A is representable in the form A = (JC,
where C' is a positive —definite self-adjoint operator in H, and C'is a unitary operator in H.

Definition 1.1. If for f (z,y) € Lo (RQ; H) there exists a vector-function u(z,y) € Wi (RQ; H),
satisfying equation (1) almost everywhere in R?, it will be said a regular solution of equation

(1).

Definition 1.2. If for any f(z,y) € L (R? H) there exists the regular solution u(z,y) of
equation (1) that has the estimation

||u||W24(R2;H) < const ||f||L2(R2;H) )
equation (1) will be said regularly solvable.

In this paper we find conditions on the coefficients of equation (1), in fulfilling of which
equation (1) is regularly solvable. Note that the second order elliptic type partial equation has
been studied in [1,2,3,5]. When A is a self-adjoint operator, conditions for regular solvability
for (1) have been obtained in [4, 6].

Denote ot ot
_ou U 4 4 (p2.
Pou—@—i-@*FAU,U(%?J)GW@(RvH)
4 .
akHu 4 9
k,7=0
0<k+j;<4
and
Pu = Pyu + Piu,u(x,y) € Wy (RQ;H).
We have

Theorem 1.3. Let conditions 1) be fulfilled. Then the operator Py isomorphically maps the
space W24 (RQ; H) onto Lo (RQ; H), and we have the estimations

i) 9w
Oxk oyl

< Clj (&) |1 Poull ;) (2)
L>(R2%;H)
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1 0<e<I
Coole) = Chqle) = Cyple) = " s 8
00(€) = Co(e) = Cuole) {¢mmg PP
E\T (4— K\ T
S - - =1,2,3;j =
Ok:,O <4> ( A > ,fO?"k‘ 7137] 0
NPT .
co,j<s>=(i> <4‘7> (1+t9%22)7, fork=0; j=1,2,3

.

k
I A 1\ 4 1
Ch,j = () (‘7> (L+tg°2e)2, fork#0,j #0,k#4,j £ 4, k+j=4

Cps = <4— (Zﬂ'))

4—(k+j)
4

k i J i 20 \3 .
<4> (4) (1+t925) ,for2<k+35<3

(7)

Proof. Let f (€,n) be the Fourier transform of the vector-function f (z,y) € Lo (R? H). Then

it is easy to see that the vector-function

u(z,y) = % /R () B+ AN f (e ) ) dedn

(8)

satisfies the equation Pyu = % + 24771 + A*u = f(z,y) almost everywhere in R?. Show that

u(z,y) € Wy (R* H). For that is saffices to prove inequality (5)-(7).
Let k=0, j = 0. Then by the Plancherel theorem we find:

~ 2
HA4UHL2(R2;H) = HA4U (Ea 77)HL2(R2;H)

2

= |4t (€ B+ntE+ a7 ()]

L2(R2;H)
< AYEE B+ AN | f e,
_(g,iglé)m (¢ ! ) H Hf(g n)‘m(R%H)
= sup 4B+ 0 B+ AN 1 @)l g
(&meER?

For any (¢,n) € R

HA4 (£4E—|—774E+A4)—1H ~ sup ‘)\4(544‘774-1-)\4)_1‘

A€o (A)
— sup ’u (&t +n* + ,u4ew)71)
> g >0
ol <e

< sup |pt ((54 + 774)2 + 8+ 2 (¢ +nt) pt cos45>_1

p>0
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For 0 <e < g, the number cos4e > 0, therefore from (10) we obtain
_ ~1
|4t (€' + ) B+ a) | <sup |t (0 +0")" 4 4%) | <1 (11)
©>0
For § < e < 7 using the Cauchy inequality, from (10) we obtain:
HA4 ((£4+774) E+A4)71H
_1
< sup |p* ((54 + 774)2 +u®+ (e + 774)2 + pt )cos45) ?
n>0
2 1
2
(12)

4 4 4 8 ; _—
<p <((£ +77)+N) 2005225> S\/§C082€

Taking into account inequalities (11) and (12) in (10), we obtain

”A4UHL2(R2 H) HA4 5’ HL2(R2 JH) < CO( ) ”f”LQ(RQ;H) = CO(E) HPOUHLQ(RQ;H)

Inequality (2) is proved in the same way for k =0, j = 0;k =4,j = 0.
We now assume that k£ =1,2,3; j = 0. Then

4— ka U B Ak ik n
HA k||, B HA ¢ u(fﬂ))‘ Lo(R2;H)
La(r2m)
:{M*%W&E+#E+Aﬂ f@)\(Qm
< ASRER (EAF 4 B+ AY)” ;
< oo are e ente s )| ien)],
= sup || 4R (@B B+ A 1S @)y (13)
(EmeRr?
Since for (£,n) € R
|atkek (@B 4 B+ a) 7 < sup [NEER (et x|
A€o (A)
1
< sup |ptFek ((54 + 774)2 +uB+2 (54 + ?74) it cos 45) ?
n>0
1
< aup HHIEL (€ 4ot +u)’ - (1)
T a0 EXF et \ (64 4 h)? B 4 2 (64 4t + it cos de)

Obviously
(€' + 0t + )’
(€ +n*)? + 18 +2(E* +n?) p® cosde
_ (@)t r2(¢t ) e
(€4 +n*)2 4+ p8 +2(&4 +n*) 8 cos de
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2 (&' +n?) p* (1 — cosde)

=14+
(€ +n1)2 4+ w8 + 2 (§4 + nt) uB cos 4e
4(&* + n*)pt sin? 2¢ sin? 2¢ 9
<1 =1+ —5— =1+1g*2
=7 2 (&4 +nt) pt(1 + cos 4e) + cos? 2¢ tigtee

Then allowing for (15) from (14) we obtain

14—k |¢|k
HAAfk{k (§4E+774E+A4)—1H < sup e (1—|—t9225)%

ps0 E ot 4t
On the other hand, we have (see [5] ):

— k
R

k 4—k
B Y Tl 7t (k>4<4—k>li
su su = Su = — -
u£§*+%+u4_m£§*+w T 4 4

(15)

(16)

(17)

Consequently, from inequalities (16) and (17) taking into account inequalities (13), we obtain

the validity of inequality (4).
Inequality (5) is proved in a similar way to inequality (3).
We now prove inequality (5). In this case

:W%N&E+#E+A54f@mw

oFtiy
Oxkdyi

o [¢raEm],

Lo(R%;H)
, ~1
< sup ‘gknj (£4E + 174E + A4) ‘ ) Hf (x?y)HLQ(R2§H) ’
(EmeER
But for (§,m7) € R and § > 0
’Ww@%+#E+MY%§sw‘ﬁﬁ@+#+vyw
A€o (A)

=

< sup
p>0

1
_ 2 2

< sup kg (& +n*+ut) ?

"0 § At pt (60?4 8 4 2 (64 + 0 cos 4e)

(1) (5 o) T

e+t + 1

fk’nj ((54 + 774)2 +u® 42 (64 + 774) u? cos 45)

k 41—k
< up JE1 I

(1 +tg%) <
u>o§4+774+ﬂ4( g°¢)

__k_
Ll M
&+t + g

4
Assuming § = (%) k' we obtain

E o1
§<k>4<3>4(1+ﬂf@§.
. 4 4
2(R2;H)

0*u
Ox4oyt

(18)
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Inequality (5) is proved . Prove inequality (6). Obviously,

(htq) 0"

gk, = AT

L2(R2;H)

|

Ly (R?;H)

< swp HA4—(i~c+j)§knj (E*E+n'E + A4)_1H : Hf(&n)HLQ

(Emer (R%H)
(ktd ; -1
= s AT EE (€ B A1 @)l (20)
’n E

On the other hand,
HA4—(k+j)£knj (§4E +0'E + A4)—1H

D=

< sup
>0

A= () ((54 )+ B+ 2 (0 + n*) p cos 45) B

‘M4—(k+j)§knj‘

< sup (1+ t9226)% (21)

w0 &1t +pt
Obviously, for (£y,7m0) € R?, (€0,7m0) # (0,0)and for g > 0

4—(k+j)

> U (k)

o
[ol” [0’

4(& +m5)

4 k+j

(6ol [0l =) 1 (4— (k +5)
& +m+ut T

Then

. €[F [l = () _ <4— (k+j)>4(§“) (k;)ii <j>i
emer EFntpt T\ k4] 1) \4

Consequently,

4—(k+j) O"*u
2 )
Thus, estimation (2) 1is proved. It follows from these estimations that

u(z,y) € Wi (RQ; H) On the other hand,

2
u

oyt

*u

2
g * HA4UHL2(R2;H) = HUH%’Vz‘l(RQ;H)

La(R%H)

2
(Po)wa(r2; ) < ‘ ’
LQ(RQ;H)

i.e. the operator Py : Wy (RQ;H) — Lo (RQ;H) is bounded. Then the theorem statement
follows from the Banach theorem on an inverse operator, since RePy = {0} and JmPy =
Ly(R% H).

The Theorem is proved. O

Lemma 1.4. Let conditions 1), 2) be fulfilled, then P = Py + P; is a bounded operator from
the space W24 (R2; H) i Lo (RQ; H)
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Proof. Obviously, by theorem 1 is suffices to prove the boundedness of the operator P; :
Wi (R% H) — Ly (R%: H).
By the definition, for u (z,y) € W (RQ; H)

1Pra? f: HA oty ||
U ) S kA AT
La(R5H) : T 0xk0yd || 1, r2r)
k,7=0
0<k+j<4
4 o2
) ak—Hu
< By | 2, HA4_(]€+])‘
Z H »J ’ 83:’“(93/] Lo(R2:H)
k,j=
0<k+j<4
4 2
) ak-i—]
> Bl e
kj—0 Lo(R2;H)
0<k+j<4
2 2
< max 1Bre,slI” 10 llwa 2
The lemma, is proved. O
We now prove the main theorem
Theorem 1.5. Let conditions 1), 2) and the inequality
4
q(e) = > Crj () - [ Bryll <1(0<e<1)
E+3=0
0<k+j<4

be fulfilled, where the numbers Cy, j(e) are determined from theorem 1 by inequalities (3)-(6).
Then equation (1) is regularly solvable.

Proof. We write equation (1) in the form: Pu = Pyu + Piu = f where f € Lo (R2;H),
u € Wi (R2; H) Then after substituting Pyu = w we obtain the equation w + P1P(;1w =f
in Loy (RZ; H) Since for any w € Lo (RQ; H) (Py: Wy (R2; H) — Lo (Rz; H) is an isomorphic
operator)

-1 4 8k+‘7'u,

HPIP() WHLZ(R2§H) - HPluHLz(RQ%H) - Z ‘Ak’jaxkayj Lo~ (R2:H
k’,j =0 217( H )
0<k+j5<4

S By e 20
< By, -HA ) 07U
’ Oxk Oy .
k,j=0 La(R%H)

0<k+j<4
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4
< > Crj (@) 1 Brll - 1 Poull oy
k,j=0
0<k+j5<4
4
= Z Ch,j(€) - || Br,ll - HWHLQ(RQ;H) =q(e) - Hw||L2(R2;H) :
k,j=0
0<k+j<4

Since g(¢) < 1, then w = (E + PlPO_l)_1 f while w = Py (B + PlPO_l)_1 f it follows that

||U”W24(R2;H) < const ”fHLQ(RQ;H) :

O]

In the special case from Theorem 1.3 we have.

Corollary 1.6. Let A be a self-adjoint operator and the conditions of theorem 2 be fulfilled for
e = 0. Then equation (1) is reqularly solvable.

This result has been obtained in [4].
The author thanks prof. S.S. Mirzoyev for discussing the obtained results.

References

(1]
2l
3]
(4]
[5]

(6]

S.S. Mirzoev. On one boundary-value problem for second order operator differential equations (Russian), Trud.
IMM, AN Azerb., VII(XVTI) (1998), 154-161

Kh.V. Yagubova. On conditions of solvability of second order partial operator-differential equations on the
whole plane, Vestnik Bakinskogo University, Ser. Phys. Math. Sci., 3 (1998), 94-101

S.S. Mirzoev, 1.J. Jafarov. On solvability of a boundary value problem for second order partial operator-
differential equations, Matem. zametki, 91, 3 (2012), 470-472

S.S. Mirzoyev, M.F. Ismailova. On solvability of fourth order partial operator differential equations in Hilbert
space (Russian), Vestnik BSU, 4 (2006), 5-11

1.J. Jafarov. On solubility of one class of partial operator-differential equations, Proceeding of IMM of NAS
of Azerbaijan, '1(2004), 136-146

Ismailova M.F. On the solvability of one class of fourth order elliptic type operator-differential equations,
Proceedings IMM of NAS of Azerbaijan, 23 (2005), 53-58



