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Milutin Obradovića, Nikola Tuneskib∗

aDepartment of Mathematics, Faculty of Civil Engineering, University of Belgrade,
Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia, Email: obrad@grf.bg.ac.rs;
bDepartment of Mathematics and Informatics, Faculty of Mechanical Engineering,

Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje,
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This paper is dedicated to the memory of our esteemed colleague, Derek K. Thomas, whose untimely passing

occurred during the course of this work. We honor his legacy and the lasting impact of his achievements in the

field of univalent functions.

For f ∈ S, the class univalent functions in the unit disk D and given by f(z) = z+
∑∞

n=2 anzn

for z ∈ D, we improve previous bounds for the second and third Hankel determinants in
case when either a2 = 0, or a3 = 0. We also improve an upper bound for the coefficient
difference |a4| − |a3| when f ∈ S.
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1 Introduction and preliminaries

As usual, let A be the class of functions f which are analytic in the open unit disc D = {z :
|z| < 1} of the form

f(z) = z + a2z
2 + a3z

3 + · · · , (1.1)

and let S be the subclass of A consisting of functions that are univalent in D.

In recent years a great deal of attention has been given to finding upper bounds for the
modulus of the second and third Hankel determinants H2(2) and H3(1), defined as follows
who’s elements are the coefficients of f ∈ S (see e.g. [10]).

For f ∈ S
H2(2) = a2a4 − a2

3 (1.2)

and
H3(1) = a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2). (1.3)
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Almost all results have concentrated on finding bounds for |H2(2)| and |H3(1)| for subclasses
of S, and only recently has a significant bound been found for the whole class S and for both,
|H2(2)| and |H3(1)| (see [7] and [8]). However finding exact sharp bounds remains an open
problem.

In their paper [9] the authors gave the next results concerning coefficients bound and Hankel
determinants |H2(2)| and |H3(1)|.

Theorem 1.1. Let f ∈ S and be given by (1.1) with a2 = 0. Then

(i) |a3| ≤ 1,

(ii) |a4| ≤
2
3

= 0.666 . . .,

(iii) |a5| ≤ 5
4 + 1√

15
= 1.508 . . .,

(iv) |H2(2)| ≤ 1,

(v) |H3(1)| ≤ 41
20

= 2.05.

We would like to point out that there is a mistake in the estimate of |a5| given in Theorem
2.1(iii) from [9]. The estimate given in the case (iii) in the theorem above is the correct one.

Similar results are given in [9] for the case when a3 = 0.

Theorem 1.2. Let f ∈ S and be given by (1.1), with a3 = 0. Then

(i) |a2| ≤ 1,

(ii) |a4| ≤
√

37 + 13
12

= 1.59023 . . .,

(iii) |a5| ≤
1
4

√
757
15

+ 1 = 2.77599 . . .,

(iv) |H2(2)| ≤ 1.75088 . . .,

(v) |H3(1)| ≤ 1.114596 . . ..

A long standing problem in the theory of univalent functions is to find sharp upper and
lower bounds for |an+1| − |an|, when f ∈ S. Since the Keobe function has coefficients an = n,
it is natural to conjecture that ||an+1| − |an|| ≤ 1. As early as 1933, this was shown to be false
even when n = 2, when Fekete and Szegö [2] obtained the sharp bounds

−1 ≤ |a3| − |a2| ≤
3
4

+ e−λ0(2e−λ0 − 1) = 1.029 . . . ,
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where λ0 is the unique value of λ in 0 < λ < 1, satisfying the equation 4λ = eλ.
Hayman [4] showed that if f ∈ S, then ||an+1| − |an|| ≤ C, where C is an absolute constant.
The exact value of C is unknown, the best estimate to date being C = 3.61 . . . (see Grinspan
[3]), which because of the sharp estimate above when n = 2, cannot be reduced to 1.

In [9] the authors treated the difference coefficients |a4|− |a3| for f ∈ S, which improves the
previous cited result of Grinspan when n = 3 as follows

Theorem 1.3. Let f ∈ S and be given by (1.1). Then

|a4| − |a3| ≤ 2.1033299 . . . .

For the proofs of the previously cited results, the authors mainly used the property of
Grunsky coefficients given in the book of N. A.Lebedev ([5]). In the proofs of the results in this
paper we also use the same tools but with different approach that brings improved estimates.

We proceed with the notations and results to be used.

Let f ∈ S and let

log
f(t)− f(z)

t− z
=

∞∑
p,q=0

ωp,qt
pzq,

where ωp,q are called Grunsky’s coefficients with property ωp,q = ωq,p. For those coefficients in
[1, 5] we can find the next Grunsky’s inequality:

∞∑
q=1

q

∣∣∣∣∣∣
∞∑

p=1

ωp,qxp

∣∣∣∣∣∣
2

≤
∞∑

p=1

|xp|2

p
, (1.4)

where xp are arbitrary complex numbers such that last series converges.

Further, it is well-known that if f ∈ S and has the form (1.1), then also

f2(z) =
√

f(z2) = z + c3 + c5z
5 + ...

belongs to the class S. Then for the function f2 we have the appropriate Grunsky’s coefficients
of the form ω

(2)
2p−1,2q−1 and the inequality (1.4) gets the form

∞∑
q=1

(2q − 1)

∣∣∣∣∣∣
∞∑

p=1

ω
(2)
2p−1,2q−1x2p−1

∣∣∣∣∣∣
2

≤
∞∑

p=1

|x2p−1|2

2p− 1
. (1.5)

As it has been shown in [5, p.57], if f is given by (1.1) then the coefficients a2, a3, a4, a5 are
expressed by Grunsky’s coefficients ω

(2)
2p−1,2q−1 of the function f2 given by (1.3) in the following

way (in the next text we omit upper index ”(2)” in ω
(2)
2p−1,2q−1):

a2 = 2ω11,

a3 = 2ω13 + 3ω2
11,

a4 = 2ω33 + 8ω11ω13 +
10
3

ω3
11

a5 = 2ω35 + 8ω11ω33 + 5ω2
13 + 18ω2

11ω13 +
7
3
ω4

11

0 = 3ω15 − 3ω11ω13 + ω3
11 − 3ω33

0 = ω17 − ω35 − ω11ω33 − ω2
13 +

1
3
ω4

11.

(1.6)
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We note that in [5] there exists a typing mistake for the coefficient a5. Namely, instead of the
therm 5ω2

13, there is 5ω2
15.

Also, from (1.5) for x2p−1 = 0, p = 3, 4, . . ., we have

|ω11x1 + ω31x3|2 + 3|ω13x1 + ω33x3|2 + |ω15x1 + ω35x3|2

+ |ω17x1 + ω37x3|2 ≤ |x1|2 +
|x3|2

3
.

(1.7)

From (1.7), having in mind that ω31 = ω13, for x1 = 1 and x3 = 0 we have the next inequalities

|ω11|2 ≤ 1,

|ω11|2 + 3|ω13|2 ≤ 1,

|ω11|2 + 3|ω13|2 + 5|ω15|2 ≤ 1,

|ω11|2 + 3|ω13|2 + 5|ω15|2 + 7|ω17|2 ≤ 1.

From the last inequalities we easily obtain

|ω11| ≤ 1,

|ω13| ≤
1√
3

√
1− |ω11|2,

|ω15| ≤
1√
5

√
1− |ω11|2 − 3|ω13|2,

|ω17| ≤
1√
7

√
1− |ω11|2 − 3|ω13|2 − 5|ω15|2.

(1.8)

We note that we get the first inequality from (1.8) also using the fact |a2| = |2ω11| ≤ 2 (see
(1.6)).

2 Main results

We start with improvement of some results given in Theorem 1.1.

Theorem 2.1. Let f ∈ S and be given by (1.1) with a2 = 0. Then

(i) |a5| ≤ 3
4 + 1√

7
= 1.12796 . . .,

(ii) |H3(1)| ≤ 1.026 . . ..

Proof.

(i) The classical inequality |a3 − a2
2| ≤ 1 for f in S when a2 = 0, gives |a3| ≤ 1, which from

(1.6) gives

|ω13| ≤
1
2
. (2.1)

Since ω11 = 0 (⇔ a2 = 0), from the relation for a5 in (1.6) and last relation in it, we

obtain
|a5| = |2ω35 + 5ω2

13| (2.2)
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and
ω35 = ω17 − ω2

13. (2.3)

Further, using the relations (2.2) and (2.3) we have

|a5| = |2ω17 + 3ω2
13|

≤ 2|ω17|+ 3|ω13|2

≤ 2√
7

√
1− 3|ω13|2 + 3|ω13|2

≤ 3
4

+
1√
7

= 1.12796 . . . ,

(2.4)

since by (1.6) (ω11 = 0),

|ω17| ≤
1√
7

√
1− 3|ω13|2 − 5|ω15|2 ≤

1√
7

√
1− 3|ω13|2 (2.5)

and |ω13| ≤ 1
2 by (2.1).

(ii) When ω11 = 0, the fifth relation in (1.6) gives ω33 = ω15, and using (2.3), from (1.3) we
have

|H3(1) = | − 8ω3
13 − 4ω2

33 + 2(2ω35 + 5ω2
13)ω13|

= | − 8ω3
13 − 4ω2

15 + 4ω13(ω17 − ω2
13) + 10ω3

13|
= | − 2ω3

13 − 4ω2
15 + 4ω13ω17|

≤ 2|ω13|3 + 4|ω15|2 + 4|ω13||ω17|

≤ 2|ω13|3 +
4
5
(1− 3|ω13|2) +

4√
7
|ω13|

√
1− 3|ω13|2

=: F1(|ω13|),

where
F1(y) = 2y3 +

4
5
(1− 3y2) +

4√
7
y
√

1− 3y2, 0 ≤ y ≤ 1
2
.

Here we used the relations (2.2) and (2.5). Now, using the first derivative test we conclude
that the function F1 attains its maximum for y0 = 0.286667 . . . with F1(y0) = 1.026 . . . .

Finally, we note that the results (i) and (iv) in Theorem 1.1 are the best possible as the
function f(z) = z

1−z2 shows.

We next prove a similar result, this time assuming that a3 = 0.

Theorem 2.2. Let f ∈ S and be given by (1.1), with a3 = 0. Then

(i) |a2| ≤ 1,

(ii) |a4| ≤ 1
4

√
21
5 + 5

8 = 1.1373 . . .,
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(iii) |a5| ≤ 1.674896577 . . .,

(iv) |H2(2)| ≤ 1.1373 . . .,

(v) |H3(1)| ≤ 0.6647958756 . . ..

Proof.

(i) We imitate the proof of Theorem 2.1(i) and from |a3−a2
2| ≤ 1, a3 = 0, we receive |a2

2| ≤ 1,
i.e., |a2| ≤ 1.

Further we will use that from (1.6) follows a3 = 2ω13 + 3ω2
11 = 0, and then

ω13 = −3
2
ω2

11

(
⇔ ω2

11 = −2
3
ω13

)
, (2.6)

and also, from |a2| = |2ω11| ≤ 1,

|ω11| ≤
1
2

and |ω13| ≤
3
8

(by (2.6).

(ii) By using (1.6) and (2.6), we obtain

|a4| =
∣∣∣∣2ω33 + 8ω11

(
−3

2
ω2

11

)
+

10
3

ω3
11

∣∣∣∣ =
∣∣∣∣2ω33 −

26
3

ω3
11

∣∣∣∣ . (2.7)

On the other hand, using the fifth relation in (1.6), and (2.6), we have

ω33 = ω15 − ω11ω13 +
1
3
ω3

11 = ω15 − ω11(−
3
2
ω2

11) +
1
3
ω3

11

= ω15 +
11
6

ω3
11.

(2.8)

Combining (2.7) and (2.8) we obtain

|a4| = |2ω15 − 5ω3
11| ≤ 2|ω15|+ 5|ω11|3

≤ 2√
5

√
1− |ω11|2 −

27
4
|ω11|4 + 5|ω11|3

=: F2(|ω11|),

(2.9)

where

F2(x) =
2√
5

√
1− x2 − 27

4
x4 + 5x3, 0 ≤ x ≤ 1

2
,

and where we used (1.8) and (2.6) to obtain

|ω15| ≤
1√
5

√
1− |ω11|2 −

27
4
|ω11|4. (2.10)

Finally, F2(x) is strictly increasing function on the interval [0, 1/2], attaining its maximal

value 1
4

√
21
5 + 5

8 = 1.1373 . . . for x = 1/2.
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(iii) From the last relation in (1.6), using (2.6) and (2.8), after simple calculation we receive

ω35 = ω17 − ω11ω15 −
15
4

ω4
11. (2.11)

Using the relations (1.6) and (2.11), we get

|a5| =
∣∣∣∣2ω17 + 6ω11ω15 −

25
4

ω4
11

∣∣∣∣
≤ 2|ω17|+ 6|ω11||ω15|+

25
4
|ω11|4

≤
(

2√
7

+
6√
5
|ω11|

) √
1− |ω11|2 −

27
4
|ω11|4 +

25
4
|ω11|4

=: F3(x),

(2.12)

where

F3(x) =
(

2√
7

+
6√
5
x

) √
1− x2 − 27

4
x4 +

25
4

x4, 0 ≤ x ≤ 1
2
,

and where we used the estimate given in (2.10), the estimate from (1.8), and

|ω17| ≤
1√
7

√
1− |ω11|2 − 3|ω13|2 − 5|ω15|2

≤ 1√
7

√
1− |ω11|2 − 3|ω13|2.

(2.13)

Now, the first derivative test shows that on the interval [0, 1/2], the function F3 has
maximal value 1.674896577. . . attained for x = 0.43957885 . . ..

(iv) Since a3 = 0 using (1.2) we have H2(2) = a2a4 and then from the relation (2.7) and
estimation (2.10), we obtain

|H2(2)| = |a2a4| = |2ω11(2ω15 − 5ω3
11)

≤ 4|ω11||ω15|+ 10|ω11|4

≤ 4√
5
|ω11|

√
1− |ω11|2 −

27
4
|ω11|4 + 10|ω11|4

=: F4(|ω11|),

where

F4(x) =
4√
5
x

√
1− x2 − 27

4
x4 + 10x4, 0 ≤ x ≤ 1

2
.

Again, the first derivative test shows that F4 is strictly increasing on the interval [0, 1/2]
with maximal value 1.1373. . . attained for x = 1/2.

(v) After applying a3 = 0 in the definition (1.3) we receive

H3(1) = −a2
4 − a5a

2
2. (2.14)
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Recall that in (2.9) and (2.12) we found a4 = 2ω15−5ω3
11 and a5 = 2ω17+6ω11ω15− 25

4 ω4
11,

respectively. From these facts and (2.14), after some calculations we obtain

H3(1) = −ω2
15 − 4ω3

11ω15 − 8ω2
11ω17. (2.15)

So, using (2.15) and estimates given in (2.10) and (2.13) we get

|H3(1)| = |ω15|2 + 4|ω11|3|ω15|+ 8|ω11|2|ω17|

≤ 1
5

(
1− |ω11|2 −

27
4
|ω11|4

)
+

(
4√
5
|ω11|3 +

8√
7
|ω11|2

) √
1− |ω11|2 −

27
4
|ω11|4

=: F5(|ω11|),

where

F5(x) =
1
5

(
1− x2 − 27

4
x4

)
+

(
4√
5
x3 +

8√
7
x2

) √
1− x2 − 27

4
x4,

0 ≤ x ≤ 1
2 . The first derivative test shows that the function F5(x) when 0 ≤ x ≤ 1/2, has

maximal value 0.6647958756. . . attained for x = 0.458573 . . ..

Theorem 2.3. Let f ∈ S and be given by (1.1).

(i) Then |a4| − |a3| ≤ 1.75185 . . ..

(ii) If f is an odd function, then |a5| − |a3| ≤ 2√
7

= 0.7559 . . . .

Proof.

(i) Using (1.6) and |ω11| ≤ 1, we have

|a4| − |a3| ≤ |a4| − |ω11||a3| ≤ |a4 − ω11a3| = 2
∣∣∣ω33 + 3ω11ω13 +

1
6
ω3

11

∣∣∣. (2.16)

From the fifth relation in (1.6) we obtain

ω33 = ω15 − ω11ω13 +
1
3
ω3

11, (2.17)

and using the relations (2.16) and (2.17), after some simple calculations we have

|a4| − |a3| ≤ |2ω15 + 4ω11ω13 + ω3
11|

≤ |ω15|+ 4|ω11||ω13|+ |ω11|3

≤ 2√
5

√
1− |ω11|2 − 3|ω13|2 + 4|ω11||ω13|+ |ω13|3

=: F6(|ω11|, |ω13|,

where
F6(x, y) =

2√
5

√
1− x2 − 3y2 + 4xy + x3,
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and 0 ≤ x ≤ 1, 0 ≤ y ≤ 1√
3

√
1− x2.

Now, we need to find maximum of the function F6(x, y) when

(x, y) ∈
{

(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1√
3

√
1− x2

}
:= D1.

We start the analysis in the interior of D1. From

∂F6(x, y)
∂x

= − 2x
√

5
√

1− x2 − 3y2
+ 3x2 + 4y

and
∂F6(x, y)

∂y
= 4x− 6y

√
5
√

1− x2 − 3y2
,

we receive that the stationary points (it existing) satisfy

3y
∂F6(x, y)

∂x
− x

∂F6(x, y)
∂y

= x2(9y − 4) + 12y2 = 0,

i.e., on D1,

x =
2
√

3y√
4− 9y

.

Finally, substituting 2
√

3y√
4−9y

for x in ∂F6(x,y)
∂x = 0, and numerically solving the correspond-

ing equation for y, we receive solution y01 = 0.2872 . . ., and further x01 = 2
√

3y01√
4−9y01

=
0.83634 . . .. It is easy to check that (x01, y01) ∈ D1 and that F6(x01, y01) = 1.75185 . . . .

On the edges of D1 we have:

- F6(0, y) = 2√
5

√
1− 3y2, with maximal value for y ≥ 0, 2√

5
= 0.8944 . . .;

- F6(x, 0) = 2√
5

√
1− x2 +x3, with maximal value for 0 ≤ x ≤ 1 equaling to 1.13666 . . .

for x = 0.9494 . . .;

- F6

(
x,
√

1−x2√
3

)
= 4√

3
x
√

1− x2 + x3, with maximal value for 0 ≤ x ≤ 1 equaling to
1.6496 . . . for x = 0.8628 . . ..

So, the function F6 attains its maximal value 1.75185 . . . in the interior point (x01, y01) of
its domain D1 and the conclusion of part (i) follows.

(ii) Since f is odd, a2 = 0, and then using |a3 − a2
2| ≤ 1, we have |a3| = |2ω13| ≤ 1, i.e.,

|ω13| ≤ 1
2 . Further, from (1.6), (2.3) and (2.4), we receive

|a5| = |2ω17 + 3ω2
13|.

Also, since a4 = 0, from (1.6) follows ω33 = 0 and ω15 = 0. So, since |a3| = |2ω13| ≤ 1,

|a5| − |a3| ≤ |a5| − 2|ω13||a3| = |2ω17 + 3ω2
13| − 4|ω13|2

≤ |(2ω17 + 3ω2
13)− 4ω2

13| = |2ω17 − ω2
13|

≤ 2|ω17|+ |ω13|2 ≤
2√
7

√
1− 3|ω13|2 + |ω13|2

≤ 2√
7
,

where |ω13| ≤ 1
2 .



34 Bulletin of TICMI

Remark 2.4. The estimate given in Theorem 2.3(ii) is an improvement of the result

|a5| − |a3| < 1

given in [6, p. 17].
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