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We construct a convergent recurrence scheme for a solution of the Neumann boundary value
problem for the Laplace equation. By a special approach, using the potential method we
construct a uniquely solvable boundary integral equation containing a selfadjoint compact
operator. The single layer potential constructed by the solution of the integral equation gives
a particular solution of the Neumann problem if the corresponding necessary condition is
satisfied. First, we construct a sequence of successive approximations which converges to
the solution of the boundary integral equation in appropriate Bessel-potential spaces of
functions defined on the boundary. Afterwards, using these approximations as densities of
the single layer potential, we formulate another iteration which converges to a particular
solution of the Neumann boundary value problem in the appropriate Sobolev-Slobodetskii
spaces of functions defined in the three-dimensional domain under consideration. A general
solution of the Neumann boundary value problem is obtained then by adding an arbitrary
constant.
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1 Introduction

As it is well known, by the single layer potential the Neumann boundary value problem for
a bounded three-dimensional domain Ω ⊂ R3 can be reduced to the Fredholm type boundary
integral equation on S = ∂Ω, which is solvable if the corresponding necessary condition for the
Neumann datum is satisfied. The null space of the integral operator is not trivial and therefore
the integral equation is not uniquely solvable. Solutions of the Neumann problem is defined
modulo a constant summand (see, e.g., [7], [8], [14] and the references therein).

We modify the boundary integral equation in such a way that the null space of the modified
operator is trivial and, consequently, it is invertible in appropriate function spaces. Moreover,
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if the corresponding necessary condition is satisfied, then the solution of the modified equation
is also a solution to the original integral equation generated by the single layer potential.

The modified operator is a compact selfadjoint injective operator. First, we construct a con-
vergent iteration scheme for a solution of the modified integral equation assuming that the above
mentioned necessary condition is satisfied. Afterwards, we use the obtained approximations as
densities of the single layer potential and construct another explicit iteration which converges
to a particular solution of the Neumann boundary value problem in the appropriate Sobolev-
Slobodetskii spaces of functions defined in Ω. By adding an arbitrary constant to the particular
solution one can obtain a general solution to the Neumann problem under consideration.

By evident modifications, the approach treated here can be extended to the interior Neu-
mann type boundary value problems for formally self-adjoint differential equations of mathe-
matical physics and mechanics, in particular, for the boundary value problem of the elasticity
theory when the stress vector is prescribed on the boundary S = ∂Ω.

2 Formulation of the problem and reduction to boundary integral equation

Let Ω = Ω+ ⊂ R3 be a bounded three-dimensional domain with connected boundary S = ∂Ω
and let Ω− = R3 \ Ω be the unbounded complement of the domain Ω. Throughout the paper
we assume that the boundary S is a Lipschitz surface if not otherwise stated and n stands for
the outward directed unite normal vector to S.

By L2, W r
2 , and Hs

2 with r ≥ 0 and s ∈ R, we denote the standard Lebesgue space, Sobolev–
Slobodetskii space, and Bessel potential space of real-valued functions, respectively. Recall that
Hr

2 = W r
2 for r ≥ 0. In what follows, we will drop the subscript 2 and use the notation W r = W r

2

and Hs = Hs
2 . By

〈
f , g

〉
S

we denote the duality pairing on H−r(S)×Hr(S) that extends the
standard L2(S) inner product,

〈
f , g

〉
S

=
∫
S

f(x) g(x) dS = (f , g)L2(S) for g, h ∈ L2(S). (2.1)

We omit the subscript S in the dualiy pairing when no ambiguity can arise.
The symbols { · }+ and { · }− denote the standard one-sided traces of functions on the surface

S = ∂Ω± from Ω+ and Ω− respectively.
Let us consider the Neumann boundary value problem: Find a function u ∈ H1(Ω) satisfying

the Laplace equation in Ω and the Neumann boundary condition on S,

∆u = 0 in Ω, (2.2){ ∂u

∂n

}+
= f on S, (2.3)

where ∂
∂n denotes the normal derivative and f ∈ H−

1
2 (S).

Let us look for a solution of the Neumann problem (2.2)-(2.3) in the form of single layer
potential (cf. [5], [7, Ch. 11], [14, Ch. 8])

u(x) = V (ψ)(x) =
∫
S

Γ(x− y)ψ(y) dSy, x ∈ Ω, (2.4)
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with the unknown density ψ ∈ H−
1
2 (S) and the fundamental solution

Γ(x− y) = − 1
4π

1
|x− y|

.

Using the properties of the single layer potential, the boundary condition (2.3) leads to the
boundary integral equation (see Appendix A)(

− 1
2
I +K∗

)
ψ = f on S, (2.5)

where
K∗ψ =

∫
S

[ ∂

∂n(x)
Γ(x− y)

]
ψ(y) dSy, x ∈ S. (2.6)

Introduce the boundary integral operators generated by the direct values on S of the single and
double layer potentials:

Hψ(x) =
∫
S

Γ(x− y)ψ(y) dSy, x ∈ S, (2.7)

Kψ(x) =
∫
S

[ ∂

∂n(y)
Γ(x− y)

]
ψ(y) dSy, x ∈ S. (2.8)

Mapping properties of these operators are collected in Appendix 5. Evidently, K∗ and K are
mutually adjoint singular integral operators, while H is a self-adjoint operator with weakly
singular kernel function. Note that, there holds the relation (see, e.g., [12])

HK∗ = KH. (2.9)

Throughout the paper, the adjoint of an operator A we denote by A∗.
From relation (2.9) we have (

HK∗
)∗ = KH = HK∗, (2.10)

and consequently HK∗ is a self-adjoint operator.
Since the operator

H : H−
1
2 (S) → H

1
2 (S)

is an isomorphism (see Appendix A), equation (2.5) is equivalent to the following equation

H
(
− 1

2
I +K∗

)
ψ = H f on S. (2.11)

The homogeneous equation (
− 1

2
I +K∗

)
ψ = 0

has only one linearly independent solution ψ0 ∈ H−
1
2 (S) and we have (see Appendix A)

V (ψ0)(x) = const = c0 6= 0, x ∈ Ω.

We can choose ψ0 such that

V (ψ0)(x) = 1 for x ∈ Ω, implying H(ψ0)(x) = 1 for x ∈ S. (2.12)
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Equation (2.5) is solvable iff (see, e.g., [27, Theorem 3.3])〈
f, 1

〉
:=

∫
S

f(y) dS = 0. (2.13)

Remark 2.1. Note that if S is a Lipschitz surface, then

ψ0 ∈ H1(S).

If S is a sufficiently smooth surface, then the function ψ0 is smoother, e.g., if S ∈ C∞, then
ψ0 ∈ C∞(S).

If (2.13) is satisfied, then〈
f, 1

〉
=

〈
H−1H f, 1

〉
=

〈
H f, H−1 1

〉
= 0

and (2.11) is solvable if and only if 〈
H f, H−1 1

〉
= 0, (2.14)

which is equivalent to (2.13). Further, let us introduce the operator N ,

N ψ(x) := H
(
− 1

2
I +K∗

)
ψ(x), x ∈ S.

Using (2.10) and Theorem 5.1 one can show that the operator N is self-adjoint and has the
following mapping properties:

N : H−
1
2 (S) → H

1
2 (S), N : H0(S) → H1(S).

If we substitute the single layer potential u = V (ψ) with ψ ∈ H−
1
2 (S) in the Green formula∫

Ω

∆u u dx = −
∫
Ω

|∇u|2 dx+
∫
S

{ ∂nu }+ {u }+dS (2.15)

and use that H is a self-adjoint operator, we find∫
Ω

|∇V (ψ)|2 dx =
∫
S

(
− 1

2
I +K∗

)
ψ Hψ dS =

〈
N ψ, ψ

〉
≥ 0, ∀ψ ∈ H−

1
2 (S).

Consequently, N is a nonnegative operator. Moreover, if〈
N ψ, ψ

〉
= 0, then ψ ∈ ker

(
− 1

2
I +K∗

)
, (2.16)

that is,
ψ(x) = c ψ0(x), c = const. (2.17)

Rewrite equation (2.11) as
Nψ = Hf on S, (2.18)

and instead of (2.18) let us consider the modified equation

Nψ +
〈
H 1, ψ

〉
H 1 = H f on S (2.19)
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with
H 1(x) =

∫
S

Γ(x− y) dSy, x ∈ S.

Now, let us introduce the operator M generated by the left-hand side expression in (2.19),

Mψ := Nψ +
〈
H 1, ψ

〉
H 1 = Nψ +

〈
1, Hψ

〉
H 1. (2.20)

It is evident that M has the following mapping properties:

M : H−
1
2 (S) → H

1
2 (S), M : H0(S) → H1(S). (2.21)

Moreover, M is a symmetric operator,

〈Mψ, χ 〉 = 〈N ψ, χ 〉+ 〈H 1, ψ 〉〈H 1, χ 〉
= 〈ψ, N χ 〉+ 〈ψ, 〈H 1, χ 〉H 1〉
= 〈ψ, N χ + 〈H 1, χ 〉H 1 〉 = 〈ψ,Mχ 〉. (2.22)

From the relation

〈Mψ, ψ〉 = 〈Nψ, ψ〉+ 〈H 1, ψ〉〈H 1, ψ〉 = 〈Nψ, ψ〉+ 〈H 1, ψ〉2, ψ ∈ H−
1
2 (S),

it follows that M is a positive operator: 〈Mψ, ψ〉 > 0 for ψ 6= 0. Indeed, assume that
〈Mψ, ψ〉 = 0 for ψ 6= 0. Then 〈H 1, ψ〉2 = 0 and 〈Nψ, ψ〉 = 0. From the later equality, in view
of (2.16) and (2.17) we have ψ = c0 ψ0 with c0 6= 0. In view of (2.12)〈

H 1, ψ
〉2 =

〈
1, Hψ

〉2 =
〈
1, c0Hψ0

〉2 = c20
〈
1, Hψ0

〉2 = c20
〈
1, 1

〉2 = c20 |S|2 > 0,

where |S| is the area of the surface S. This contradiction shows that M is a positive operator.

Remark 2.2. Note that if condition (2.14) is fulfilled and ψ ∈ H−
1
2 (S) solves the equation

Mψ ≡ N ψ + 〈H1, ψ〉H1 = Hf, (2.23)

then the ψ will be also a solution of equations (2.18) and (2.5). Indeed, let ψ be a solution to
equation (2.23) under the condition 〈H f, H−11〉 = 〈f, 1〉 = 0. Let us show that then ψ meets
the condition

〈H 1, ψ〉 = 0.

Applying the operator H−1 to equation (2.23) we get

H−1Mψ =
(
− 1

2
I +K∗

)
ψ + 〈H 1, ψ〉 · 1 = f. (2.24)

Keeping in mind that
〈{

∂
∂nV (ψ)

}+
, 1

〉
=

〈(
− 1

2I + K∗
)
ψ , 1

〉
= 0 and 〈H 1, ψ〉 is constant,

from (2.24) we find

〈〈H 1, ψ〉 , 1〉 = 〈H 1, ψ〉 〈1 , 1〉 = 〈H 1, ψ 〉|S| = 〈f, 1〉 = 0.

This proves that ψ solves both equations (2.18) and (2.5).
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Remark 2.3. Let us show that if S is a Lipschitz surface then the operator

P ≡ −1
2
I +K∗ + 〈H 1, · 〉 : H−

1
2 (S) → H−

1
2 (S) (2.25)

is an isomorphism, implying that the equation

P ψ ≡
(
− 1

2
I +K∗

)
ψ + 〈H 1, ψ 〉 = f

is uniquely solvable in the space H−
1
2 (S) for arbitrary f ∈ H−

1
2 (S).

Note that the operator defined by the relation

〈H 1, ψ 〉 = 〈 1, Hψ 〉 =
∫
S

( ∫
S

Γ(x− y)ψ(y) dSy
)
dSx

is a compact perturbation of the operator(
− 1

2
I +K∗

)
: H−

1
2 (S) → H−

1
2 (S),

which is a Fredholm operator with zero index (see Theorem 5.1(iii) in Appendix A).
Therefore, it remains to show that the null-space of the operator P is trivial, kerP = {0}.
Let ψ ∈ H−

1
2 (S) be a solution to the homogeneous equation Pψ = 0. Then the single layer

potential u0 = V (ψ) ∈ H1(Ω) solves the following nonlocal boundary value problem

∆u = 0 in Ω,{∂u
∂n

}+
+

〈
1, {u}+

〉
= 0 on S.

Using Green’s formula we get∫
Ω

|∇u0(x)|2 dx =
∫
S

{∂u0

∂n

}+
{u0}+ dS

= −
〈

1, {u0}+
〉 ∫
S

{u0}+ dS = −
〈

1, {u0}+
〉2
.

Therefore, ∇u0(x) = 0 in Ω and
〈

1, {u0}+
〉

= 0, that is,

u0(x) = const = C0 in Ω

and 〈
1, {u0}+

〉
=

〈
1, C0

〉
=

∫
S

C0 dS = C0 |S| = 0.

Thus, C0 = 0 and u0(x) = V (ψ0)(x) = 0 in Ω, implying Hψ0 = 0 on S. Consequently, ψ0 = 0
on S, that is, the homogeneous equation Pψ = 0 has only the trivial solution and the operator
(2.25) is invertible.
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Remark 2.4. Using Theorem 5.1(iii) we can easily show that if S is a Lipschitz surface, then
the operator

P : L2(S) → L2(S) (2.26)

is an isomorphism.

Now, we prove the following assertion.

Theorem 2.5. The operator M is coercive, i.e., there is a positive constant δ such that〈
Mψ, ψ

〉
≥ δ ‖ψ‖2

H− 1
2 (S)

, ∀ψ ∈ H−
1
2 (S). (2.27)

Proof. By contradiction, assume that (2.27) is not true. Then for every natural number k ∈ N
there exists a function ψk ∈ H−1/2(S) satisfying the inequality〈

Mψk, ψk
〉
≤ 1
k
‖ψk‖2

H− 1
2 (S)

, k = 1, 2, 3, ...,

that is, 〈
N ψk, ψk

〉
+

〈
1, Hψk

〉2 ≤ 1
k
‖ψk‖2

H− 1
2 (S)

. (2.28)

Without loss of generality we can assume that

‖ψk‖
H− 1

2 (S)
= 1.

Then inequality(2.28) takes the form〈
N ψk, ψk

〉
+

〈
1, Hψk

〉2 ≤ 1
k
, k = 1, 2, 3, ... (2.29)

Let us construct the single layer potentials with densities ψk,

uk = V (ψk) ∈ H1(Ω), k = 1, 2, 3, ... (2.30)

and rewrite (2.29) as follows〈
H

(
− 1

2
I +K∗

)
ψk, ψk

〉
+

〈
1, Hψk

〉2
=

=
〈{∂V (ψk)

∂n

}+
,
{
V (ψk)

}+
〉

+
〈
1,

{
V (ψk)

}+
〉2
≤ 1
k
,

that is, 〈{∂uk
∂n

}+
,
{
uk

}+
〉

+
〈
1,

{
uk

}+
〉2
≤ 1
k
. (2.31)

From Green’s formula we have (see (2.15))〈{∂uk
∂n

}+
,
{
uk

}+
〉

=
∫
Ω

|∇uk|2 dx. (2.32)

Therefore, due to (2.31) and (2.32)∫
Ω

|∇uk|2 dx→ 0, that is , ∇uk → 0, as k →∞ in the sense of L2(Ω) (2.33)
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and 〈
1,

{
uk

}+〉2 =
〈
1, Hψk

〉2 → 0, as k →∞. (2.34)

Let us introduce the notation

vk(x) = V (ψk)(x)− ck = uk(x)− ck,

where
ck =

1
|Ω|

∫
Ω

V (ψk)(x) dx =
1
|Ω|

∫
Ω

uk(x) dx. (2.35)

It is evident that vk ∈ H1(Ω) and

∇vk(x) = ∇uk(x) = ∇V (ψk)(x). (2.36)

By the Poincar inequality we have

‖vk‖L2(Ω) = ‖uk − ck‖L2(Ω) = ‖V (ψk)− ck‖L2(Ω) ≤
≤ c∗ ‖∇uk‖L2(Ω) = c∗ ‖∇vk‖L2(Ω) = c∗ ‖∇V (ψk)‖L2(Ω),

where c∗ = const > 0 does not depend on k. Further, using (2.33) and (2.36) we conclude

‖vk‖L2(Ω) = ‖uk − ck‖L2(Ω) = ‖V (ψk)− ck‖L2(Ω) → 0, as k →∞.

Thus
‖vk‖H1(Ω) = ‖uk − ck‖H1(Ω) = ‖V (ψk)− ck‖H1(Ω) → 0, as k →∞.

Let us show that

‖{vk}+‖
H

1
2 (∂Ω)

= ‖{uk}+ − ck‖
H

1
2 (∂Ω)

= ‖Hψk − ck‖
H

1
2 (∂Ω)

→ 0, (2.37)∥∥∥{∂vk
∂n

}+∥∥∥
H− 1

2 (∂Ω)
=

∥∥∥{∂uk
∂n

}+∥∥∥
H− 1

2 (∂Ω)
=

∥∥∥(
− 1

2
I +K∗

)
ψk

∥∥∥
H− 1

2 (∂Ω)
→ 0. (2.38)

Indeed, relation (2.37) follows from the trace theorem, ‖{u}+‖
H

1
2 (S)

≤ c ‖u‖H1(Ω) with c inde-

pendent of u, whereas (2.38) is a consequence of definition of the generalized trace
{∂V (ψk)

∂n

}+ ∈
H−

1
2 (S) on S of the normal derivative of the harmonic single layer potential V (ψk), which is

defined by the relation (see, e.g., [14])〈{∂V (ψk)
∂n

}+
, ϕ

〉
S

=
∫
Ω

∇V (ψk) · ∇E(ϕ) dx, ∀ϕ ∈ H
1
2 (S), (2.39)

where E(ϕ) is a bounded ”extension” of ϕ into Ω, that is, E : H−
1
2 (S) → H1(Ω) is a retraction

operator with the trace operator as the corretraction operator belonging to E ([26, Section
1.2.4]): E(ϕ) ∈ H1(Ω) and ‖Eϕ‖H1(Ω) ≤ C‖ϕ‖

H
1
2 (S)

. Here the central dot denotes the dot-

product in R3. Further, since{∂V (ψk)
∂n

}+
=

{∂uk
∂n

}+
=

{∂vk
∂n

}+
,
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from (2.39) we have∥∥∥{∂vk
∂n

}+∥∥∥
H− 1

2 (S)
=

∥∥∥{∂uk
∂n

}+∥∥∥
H− 1

2 (S)
=

∥∥∥(
− 1

2
I +K∗

)
ψk

∥∥∥
H− 1

2 (S)

≤ C∗ ‖∇V (ψk)‖L2(Ω) = C∗ ‖∇vk‖L2(Ω) ≤ C∗1 ‖vk‖H1(Ω) → 0, as k →∞.

Thus (2.38) holds true.
For the harmonic function vk(x) = uk(x)− ck = V (ψk)(x)− ck, where uk is the single layer

potential (2.30) and ck is given by (2.35), let us introduce the notation

fk :=
{∂vk
∂n

}+
+

〈
1,

{
vk

}+
〉

=
{∂uk
∂n

}+
+

〈
1,

{
uk

}+ − ck

〉
=

{∂V (ψk)
∂n

}+
+

〈
1, Hψk − ck

〉
(2.40)

=
(
− 1

2
I +K∗

)
ψk +

〈
1, Hψk

〉
−

〈
1, ck

〉
.

Since
〈1, ck〉 =

∫
S

ck dS = |S| ck,

we can rewrite (2.40) as (
− 1

2
I +K∗

)
ψk +

〈
1, Hψk

〉
− |S| ck = fk. (2.41)

Due to relations (2.34), (2.37), and (2.38), we have

bk :=
〈
1, Hψk

〉
→ 0, as k →∞, (2.42)

‖fk‖
H− 1

2 (S)
→ 0, as k →∞, (2.43)∥∥∥(

− 1
2
I +K∗

)
ψk

∥∥∥
H− 1

2 (S)
→ 0, as k →∞. (2.44)

Remark that the norm of the constant bk in space H−
1
2 (S) is equivalent to the following

expression ([25], [19]):

‖bk‖2

H− 1
2 (S)

∼ 〈H bk, bk〉 =
∫
S

(H bk) bk dS =
∫
S

∫
S

Γ(x− y) bk bk dSx dSy

= b2k

∫
S

∫
S

Γ(x− y) dSx dSy → 0, as k →∞. (2.45)

Therefore from (2.41) in view of (2.42) - (2.45) we have

ck |S| =
(
− 1

2
I +K∗

)
ψk +

〈
1, Hψk

〉
− fk,

that is,

‖ ck |S| ‖
H− 1

2 (S)
≤

∥∥∥(
− 1

2
I +K∗

)
ψk

∥∥∥
H− 1

2 (S)
+ ‖bk‖

H− 1
2 (S)

+ ‖fk‖
H− 1

2 (S)
→ 0, as k →∞.
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Using the equivalence

‖ ck |S| ‖2

H− 1
2 (S)

∼
〈
H ck |S|, ck |S|

〉
= c2k |S|2

∫
S

∫
S

Γ(x− y) dSx dSy

and the strict inequality
∫
S

∫
S

Γ(x− y) dSx dSy ≥ δ > 0, we eventually conclude

ck → 0, as k →∞.

Now, rewrite (2.41) in the following form(
− 1

2
I +K∗

)
ψk +

〈
1, Hψk

〉
= fk + |S| ck,

that is,
P ψk = fk + |S| ck.

Using invertibility of the operator (2.25) we deduce

ψk = P−1 (fk + |S| ck), (2.46)

where
P−1 : H−

1
2 (S) → H−

1
2 (S)

is a bounded operator. Therefore, from (2.46) we finally conclude

‖ψk‖
H− 1

2 (S)
≤ C∗ ‖ fk + |S| ck ‖

H− 1
2 (S)

→ 0 as k →∞.

This contradicts the condition ‖ψ‖
H− 1

2 (S)
= 1. Thus the operator M is coercive and inequality

(2.27) holds true.

The coercivity property (2.27) and relation (2.22) along with the embedding theorems for
the Bessel potential spaces lead to the following assertion.

Corollary 2.6. The operator
M : H−

1
2 (S) → H

1
2 (S)

is invertible.
Consequently, the equation

Mψ = H f on S (2.47)

possesses a unique solution ψ ∈ H−
1
2 (S) for arbitrary f ∈ H−

1
2 (S).

Remark 2.7. From the results obtained above it follows that if ψ ∈ H−
1
2 (S) is a solution

to the uniquely solvable integral equation (2.47) and the orthogonality condition
〈
f, 1

〉
= 0 is

fulfilled, then u = V (ψ) ∈ H1(Ω) is a particular solution of the Neumann problem (2.2)-(2.3).
The general solution to the Neumann problem, which is defined modulo a constant summand,
is given then by the formula

v(x) = V (ψ)(x) + C,

where C is an arbitrary constant.

Remark 2.8. From Remark 2.4 and invertibility of operators (2.26) and (5.1) it follows that
that the operator

M : L2(S) → H1(S) (2.48)

is invertible (cf., [17, Proposition 2.1]).
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3 Iteration scheme for the boundary integral equation

Here we construct a convergent iteration for a unique solution ψ of equation (2.47) assuming
that 〈f, 1〉 = 〈H f, H−1 1〉 = 0. Based on this approximation we will construct another iteration,
which converges to a particular solution of the Neumann problem u = V (ψ) ∈ H1(Ω). The
appropriate function spaces will be specified below.

3.1 Auxiliary material

It is well known that the Bessel potential spaces H−
1
2 (S) is a separable Hilbert space with an

inner product of a special type defined with the help of the orthogonal projection operator (see,
e.g., [14, Ch. 3]). For our analysis, introduction of another inner product, which generates an
equivalent norm, is more appropriate.

Let us define a bilinear functional in the space H−
1
2 (S)×H−

1
2 (S) (cf. [25])

((f, g)) =
〈
Mf, g

〉
S
, f, g ∈ H−

1
2 (S). (3.1)

Lemma 3.1. The bilinear functional (3.1) defines an inner product in the space H−
1
2 (S), that

is, the following conditions hold for arbitrary h, g, f ∈ H−
1
2 (S):

((h, ag + bf)) = a ((h, g)) + b ((h, f)) for arbitrary a, b ∈ R,
((h, g)) =

〈
Mh, g

〉
S

=
〈
h,Mg

〉
S

=
〈
Mg, h

〉
S

= ((g, h)),

((h, h)) ≥ 0 and ((h, h)) = 0 implies h = 0.

Moreover, there are positive constants δ1 and δ2, such that for arbitrary h ∈ H−
1
2 (S) the

following inequality holds

δ2 ‖h‖2

H− 1
2 (S)

> ((h, h)) =
〈
Mh, h

〉
S

> δ1 ‖h‖2

H− 1
2 (S)

. (3.2)

Proof. It directly follows from relations (2.20), (2.22), Theorem 2.5 and Theorem 5.1.

Evidently, the inner product (3.1) generates an equivalent norm in the space H−
1
2 (S), due

to inequality (3.2). Therefore, in what follows, we can consider the totality of functions from
the space H−

1
2 (S) as a separable Hilbert space with the inner product defined by (3.1), which

defines the norm (cf. [2, Proposition 5.1], [14, Chapter 3], [25])

||h||2∗ = ((h, h)) =
〈
Mh, h

〉
S

for arbitrary h ∈ H−
1
2 (S).

Denote this separable Hilbert space by H− 1
2 (S). There holds the following assertion.

Lemma 3.2. (i) The operator

M : H− 1
2 (S) → H− 1

2 (S) (3.3)

is a compact symmetric positive definite operator.
(ii) There exists a countable decreasing sequence {λk}∞k=1 of positive eigenvalues of the operator
(3.3) (by taking into account multiplicities of the eigenvalues)

λ1 > λ2 > λ3 > · · · > λk > · · · (3.4)
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converging to zero and an orthonormal basis in the Hilbert space H− 1
2 (S) of the corresponding

eigenfunctions
{
ϕk

}∞
k=1

with Mϕk(x) = λkϕk(x) on S.

(iii) For an arbitrary function h ∈ H− 1
2 (S) the following series are convergent in the sense of

the norm of the Hilbert space H− 1
2 (S):

Mh(x) =
∞∑
k=1

λk bk ϕk(x), h(x) =
∞∑
k=1

bk ϕk(x) with bk = ((h, ϕk)).

Moreover,

||Mh||2∗ =
∞∑
k=1

λ2
kb

2
k, ||h||2∗ =

∞∑
k=1

b2k .

Proof. It follows from the relations

((Mh, g)) =
〈
M2h, g

〉
S

=
〈
Mh,Mg

〉
S

= ((h,Mg)),

((Mh, h)) =
〈
Mh,Mh

〉
S

= ||Mh||2L2(S) > 0 for h 6= 0,

along with definition (3.1), mapping property (2.21), compact embedding theorems for the
Bessel potential spaces, the well-known Hilbert-Schmidt theorem for separable Hilbert spaces
and Parseval’s identity (see, e.g., [7, Chapter VIII], [9, Chapter 6], [24, Part V, Chapter 38],
[26]).

Remark 3.3. The elements of the orthonormal basis of eigenfunctions {ϕk}∞k=1 of the operator
(3.3) satisfy the equation Mϕk = λkϕk and due to Theorem 5.1(iii) the following inclusions are
valid

ϕk ∈ H
1
2 (S) ⊂ L2(S), k = 1, 2, 3, ...

Observe that Theorem 5.1(iii) yields the following possible maximal smoothness

ϕk ∈ H1(S) ⊂ L2(S), k = 1, 2, 3, ...

Consequently, the orthonormality property of the system {ϕk(x)}∞k=1 with respect to the inner
product (3.1) can be written in the classical integral form

((ϕk, ϕj)) =
〈
Mϕk, ϕj

〉
= λk

〈
ϕk, ϕj〉 = λk

(
ϕk, ϕj

)
L2(S)

= 0, k 6= j, k, j = 1, 2, 3, ...

||ϕk||2∗ = ((ϕk, ϕk)) = 〈Mϕk, ϕk〉 = λk ||ϕk||2L2(S) = 1, k = 1, 2, 3, ...

Hence, the system {ϕk}∞k=1 is orthogonal with respect to the L2(S) inner product sense as well
and the sequence of eigenfunctions {ωk(x)}∞k=1 with

ωk(x) =
ϕk(x)

||ϕk||L2(S)
=

√
λk ϕk(x), k = 1, 2, 3, ... (3.5)

is an orthonormal basis in the Hilbert space L2(S).
Therefore, any function g ∈ L2(S) is representable in the form

g(x) =
∞∑
k=1

ck ωk(x) with ck = (g, ωk)L2(S) =
√
λk(g, ϕk)L2(S), (3.6)
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and in view of Parseval’s identity we have

||g||2L2(S) =
∞∑
k=1

c2k =
∞∑
k=1

λk(g, ϕk)2L2(S).

Taking into account relation (3.5), from (3.6) we get

g(x) =
∞∑
k=1

λk(g, ϕk)L2(S) ϕk(x) =
∞∑
k=1

((g, ϕk))ϕk(x).

3.2 Iteration scheme in the space H− 1
2 (S)

Consider the boundary integral equation

Mψ = Hf on S, (3.7)

where S is an arbitrary Lipschitz surface and f ∈ H−
1
2 (S). In view of Corollary 2.6 this equation

is uniquely solvable and the solution ψ belongs to the space H−
1
2 (S).

Let us consider the following iteration

ψ(n)(x) = ψ(n−1)(x) + τ
(
Hf(x)−Mψ(n−1)(x)

)
, n = 1, 2, 3, . . . , (3.8)

where ψ(0) ∈ H
1
2 (S) is an arbitrary function and the parameter τ satisfies the inequality

0 < τ λ1 < 2 (3.9)

with λ1 being the greatest eigenvalue of the operator (3.3) (see (3.4)). A rough estimate of the
first eigenvalue λ1 for an arbitrary Lipschitz surface is given in Appendix B (see (6.10)).

Theorem 3.4. Let S be a Lipschitz surface, let ψ ∈ H−
1
2 (S) be a unique solution of equation

(3.7) with f ∈ H−
1
2 (S), and let ψ(0) ∈ H

1
2 (S) be an arbitrary function. Then the sequence

{ψ(n)}∞n=0 defined by (3.8) converges to ψ in the sense of the space H−
1
2 (S).

Proof. Observe that ψ(n) ∈ H
1
2 (S) ⊂ L2(S) ⊂ H−

1
2 (S) for all n = 0, 1, 2, 3, ... Define the

following sequence of functions

ζ(n) = ψ(n) − ψ ∈ H−
1
2 (S), n = 0, 1, 2, 3, . . . , (3.10)

where ψ is a unique solution of equation (3.7).
In what follows, our goal is to show that the sequence ζ(n) tends to zero in the space H− 1

2 (S),

lim
n→∞

||ζ(n)||2∗ = lim
n→∞

((ζ(n), ζ(n))) = 0. (3.11)

In turn, (3.11) implies that the sequence ζ(n) tends to zero in the space H−
1
2 (S) by virtue of

the norms equivalence relation (3.2) and, consequently, ψ(n) tends to ψ in the sense of the space
H−

1
2 (S) due to (3.10).
We proceed as follows. Substitute ψ(n) = ζ(n) + ψ and ψ(n−1) = ζ(n−1) + ψ into (3.8) to

obtain
ζ(n) = ζ(n−1) − τMζ(n−1), n = 1, 2, 3, . . . (3.12)
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In accordance with Lemma 3.2, we have the following expansions for the functions ζ(n)(x)
and Mζ(n) with respect to the orthonormal basis of eigenfunctions {ϕk}∞1 in the space H− 1

2 (S):

ζ(n)(x) =
∞∑
k=1

a
(n)
k ϕk(x), n = 0, 1, 2, 3, ... (3.13)

Mζ(n)(x) =
∞∑
k=1

λk a
(n)
k ϕk(x), n = 0, 1, 2, 3, ...

where
a

(n)
k = ((ζ(n), ϕk)).

From (3.12) we have

((ζ(n), ϕk)) = ((ζ(n−1), ϕk))− τ((Mζ(n−1), ϕk)),

which implies the following recurrence relation between the corresponding Fourier coefficients

a
(n)
k = (1− τ λk) a

(n−1)
k for n, k = 1, 2, 3, . . . (3.14)

From (3.14) we deduce

a
(n)
k = (1− τ λk)n a

(0)
k for n, k = 1, 2, 3, . . . , (3.15)

where the numbers a(0)
k are the Fourier coefficients in the expansion of the fixed initial function

ζ(0) = ψ(0) − ψ ∈ H−
1
2 (S),

ζ(0) =
∞∑
k=1

a
(0)
k ϕk(x), ||ζ(0)||2∗ =

∞∑
k=1

[
a

(0)
k

]2
, a

(0)
k = ((ζ(0), ϕk)), k = 1, 2, 3, . . .

Therefore, (3.13) can be rewritten as

ζ(n)(x) =
∞∑
k=1

(1− τ λk)na
(0)
k ϕk(x).

By Lemma 3.2(iii) along with (3.15) we have

||ζ(n)||2∗ =
∞∑
k=1

[
a

(n)
k

]2 =
∞∑
k=1

(1− τ λk)2n[a
(0)
k

]2
. (3.16)

Using the decreasing property of the sequence of eigenvalues λk, see (3.4), from (3.9) it follows
that

0 < τ λk 6 τ λ1 < 2 for k = 1, 2, 3, ...

Consequently,

− 1 < 1− τ λk < 1, (1− τ λk)2n < 1 for k = 1, 2, 3, ... (3.17)

lim
k→∞

(1− τλk)2n = 1.
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Therefore, the series (3.16) is majorized by the convergent series
∑∞

k=1[a
(0)
k

]2 and for an arbi-
trarily small number ε > 0 there is a positive integer N1(ε), such that

∞∑
k=N1(ε)

[
a

(n)
k

]2
6

∞∑
k=N1(ε)

[a(0)
k

]2
<
ε

2
for n = 1, 2, 3, ... (3.18)

Evidently, N1(ε) does not depend on n, it depends only on ε.
Further, let us estimate the finite sum

N1(ε)−1∑
k=1

[
a

(n)
k

]2 =
N1(ε)−1∑
k=1

(1− τ λk)2n[a
(0)
k

]2
.

In view of relations (3.17) and positivity of the eigenvalues λk, we have the strict inequality

q := max
16k6N1(ε)−1

|1− τ λk| < 1.

Therefore, for an arbitrarily small number ε > 0 we can choose a positive integer N2(ε), such
that

N1(ε)−1∑
k=1

[
a

(n)
k

]2 =
N1(ε)−1∑
k=1

(1− τ λk)2n[a
(0)
k

]2
6 q2n

N1(ε)−1∑
k=1

[a(0)
k

]2

6 q2n
∞∑
k=1

[a(0)
k

]2 = q2n‖ζ(0)‖2
∗ <

ε

2
for n > N2(ε), (3.19)

where N2(ε) depends only on ε. Now, combining inequalities (3.18) and (3.19), from (3.16) we
finally conclude

||ζ(n)(x)||2∗ < ε for n > N2(ε),

which shows that (3.11) holds. This completes the proof.

3.3 Iteration scheme in the space L2(S)

Now, let S be again a Lipschitz surface and f ∈ H0(S) = L2(S). Invertibility of the operator
(2.48) implies that the integral equation

Mψ = Hf on S (3.20)

possesses a unique solution ψ ∈ L2(S). In view of the mapping property (2.48), it is evident
that the operator

M : L2(S) → L2(S) (3.21)

is a compact, positive, and symmetric operator with respect to the standard inner product in
the space L2(S) defined by (2.1). Therefore, we have the following counterparts of Lemma 3.2
and Theorem 3.4.

Lemma 3.5. (i) There exist a countable decreasing sequence of positive eigenvalues of the
operator (3.21) (by taking into account multiplicities of the eigenvalues)

λ1 > λ2 > λ3 > · · · > λk > · · · (3.22)
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converging to zero and an orthonormal basis in L2(S) of the corresponding eigenfunctions{
ωk

}∞
k=1

with Mωk(x) = λkωk(x) on S.
(ii) For an arbitrary function g ∈ L2(S) the following series are convergent in the space L2(S):

g(x) =
∞∑
k=1

dk ωk(x) with dk = (g, ωk)L2(S),

Mg(x) =
∞∑
k=1

λk dk ωk(x).

Moreover,

||g||2L2(S) =
∞∑
k=1

d2
k, ||Hg||2L2(S) =

∞∑
k=1

λ2
kd

2
k.

Proof. The claims of the lemma follow from the relations

(Mh, g) = (h,Mg) for g, h ∈ L2(S),
(Mh, h) > 0 for h 6= 0,

along with the mapping property (2.48), compact embedding theorems for the Bessel potential
spaces, the well-known Hilbert-Schmidt theorem for separable Hilbert spaces and Parseval’s
identity (see, e.g., [7, Chapter VIII], [9, Chapter 6], [24, Part V, Chapter 38], [26]).

Theorem 3.6. Let S be a Lipschitz surface, f ∈ L2(S), and let ψ ∈ L2(S) be a unique solution
of the integral equation (3.20). Then the recurrence sequence {ψ(n)}∞n=0 defined by the relation

ψ(n)(x) = ψ(n−1)(x) + τ
(
Hf(x)−Mψ(n−1)(x)

)
, n = 1, 2, 3, . . . ,

where ψ(0) ∈ H1(S) is an arbitrary function and the parameter τ satisfies the inequality

0 < τ λ1 < 2

with λ1 being the greatest eigenvalue of the operator (3.21) (see (3.22)), converges to the unique
solution ψ of equation (3.20) in the sense of the space L2(S).

Proof. The proof can be performed with the help of exactly the same arguments applied in the
proof of Theorem 3.4. One needs only to replace the basis of the eigenfunctions {ϕk(x)}∞k=1 by
the orthonormal basis of eigenfunctions {ωk(x)}∞k=1.

Remark 3.7. If S ∈ Cm,αand f ∈ Ck+1,β(S), where m is a positive integer, k is a nonnegative
integer, k 6 m− 1, and 0 < β < α 6 1, then the unique solution of equation (3.20) belongs to
the space Ck,β(S) (see, e.g., [13, Ch. 5] and [22, Ch. 1, §6] for more general cases). Evidently,
in this case, all the eigenfunctions of the operators (3.3) and (3.21) belong to the space Cm,β(S).

4 Iteration scheme for solutions to the Neumann BVP

Using the results obtained in the previous section here we construct the successive approximation
scheme for the Neumann boundary value problem (2.2)-(2.3).
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Theorem 4.1. Let S be a Lipschitz surface, let f ∈ H−
1
2 (S) satisfy the orthogonality condition

(2.13), and let ψ ∈ H−
1
2 (S) be a unique solution to the integral equation Mψ = Hf on S. Then

u = V (ψ) ∈ H1(Ω) is a particular solution to the interior Neumann boundary value problem
(2.2)-(2.3) and the sequence of functions {u(n)}∞n=1 given by the single layer potentials

u(n)(x) = V (ψ(n))(x), x ∈ Ω, n = 1, 2, 3, . . . , (4.1)

converges to the particular solution u = V (ψ) in the sense of the space H1(Ω). Here ψ(n) is
defined by the recurrence relation

ψ(n)(x) = ψ(n−1)(x) + τ (Hf −Mψ(n−1)(x)), n = 1, 2, 3, . . . , (4.2)

where ψ(0) ∈ H
1
2 (S) is an arbitrary function and the real parameter τ satisfies the inequality

0 < τ λ1 < 2 with λ1 being the greatest eigenvalue of the operator (3.3).

Proof. By Theorem 3.4 the sequence {ψ(n)}∞n=1 tends to the solution ψ of the equation Mψ =
Hf on S in the sense of the space H−

1
2 (S). Due to Remark 2.2 then ψ is a particular solution

of equation (2.5) and V (ψ) is a particular solution of the Neumann boundary value problem
(2.2)-(2.3). In view of Theorem 5.1(i) there is a positive constant C such that

||u− u(n)||H1(Ω) = ||V (ψ − ψ(n))||H1(Ω) 6 C ||ψ − ψ(n)||
H− 1

2 (S)
→ 0, as n→∞,

which completes the proof.

Remark 4.2. Note that the function u(n) given by (4.1) can be rewritten as follows

u(n)(x) = τ V (Hf)(x) + V (ψ(n−1) − τMψ(n−1))(x), x ∈ Ω, n = 1, 2, 3, . . .

which makes a good basis for creating an efficient numerical algorithms.

Remark 4.3. Let S be a Lipschitz surface and f ∈ H0(S) = L2(S) satisfies the orthogonality
condition (2.13). Due to Theorem 5.1(iii) and Remark 2.8 it follows that the equationMψ = Hf
possesses a unique solution ψ ∈ H0(S) = L2(S). It is known that the single layer potential V (ψ)
with ψ ∈ L2(S) has the nontangential limiting boundary value {V (ψ)}+

nt on S, which belongs to
H1(S), and, moreover, V (ψ) and ∂

∂xj
V (ψ), j = 1, 2, 3, have square integrable maximal functions.

Consequently, the single layer potential operator

V : L2(S) → H
3
2 (Ω)

is bounded (for details see [2, Theorem 5.3, Theorem 5.4], [6, p.796 and Theorem 3.7], [11,
Theorem 4.2, Theorem 3.1], [17, Proposition 3.1], [27, Corollary 3.5]).

Now, let u(n) and let ψ(n) be defined by relations (4.1) and (4.2). Then by Theorem 3.6 the
sequence {ψ(n)}∞n=1 tends to the function ψ in the sense of the space L2(S). Therefore, there is
a positive constant C1, such that

||u− u(n)||
H

3
2 (Ω)

= ||V (ψ − ψ(n))||
H

3
2 (Ω)

6 C1 ||ψ − ψ(n)||L2(S) → 0, as n→∞.
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5 Appendix A: properties of the single layer potential and boundary integral
operators

Here we collect the known properties of the single layer potential operator V and the boundary
integral operators H, ±1

2 I + K∗, and ±1
2 I + K, defined by relations (2.4) and (2.6)-(2.8) (for

details see, e.g., [1], [2], [3], [4], [5], [8], [11], [14], [15], [16], [17], [25], [27]).

Theorem 5.1. Let S = ∂Ω be a Lipschitz boundary.
(i) The following single layer potential operator is continuous

V : H−
1
2 (S) → H1(Ω).

(ii) If ψ ∈ H−
1
2 (S), then the following jump relations hold across the surface S:

{V (ψ)}+ = {V (ψ)}− = Hψ ∈ H
1
2 (S) on S,{ ∂V (ψ)

∂n

}±
=

(
∓ 1

2
I +K∗

)
ψ ∈ H−

1
2 (S) on S,

where K∗ and H are defined by (2.6) and (2.7) respectively.
(iii) The following boundary integral operators are continuous:

H : H−
1
2 (S) → H

1
2 (S), H : L2(S) → H1(S), (5.1)

−1
2
I +K∗ : H−

1
2 (S) → H−

1
2 (S), −1

2
I +K∗ : L2(S) → L2(S), (5.2)

−1
2
I +K : H

1
2 (S) → H

1
2 (S), −1

2
I +K : H1(S) → H1(S), (5.3)

1
2
I +K∗ : H−

1
2 (S) → H−

1
2 (S),

1
2
I +K∗ : L2(S) → L2(S), (5.4)

1
2
I +K : H

1
2 (S) → H

1
2 (S),

1
2
I +K : H1(S) → H1(S). (5.5)

Moreover, the operators (5.1), (5.4), and (5.5) are invertible, while the operators (5.2) and (5.3)
are Fredholm operators with zero index having one-dimensional null-spaces.
(iv) There is a positive constant δ1 such that〈

−Hψ, ψ
〉
S

> δ1 ‖ψ‖2

H− 1
2 (S)

for arbitrary ψ ∈ H−
1
2 (S).

Remark 5.2. If S ∈ Cm,α, where m is a positive integer, k is a nonnegative integer, k 6 m−1,
and 0 < β < α 6 1, then the operator

H : C k,β(S) → C k+1,β(S)

is invertible (see, e.g., [4], [13], [18]).

Remark 5.3. In the case of C∞-smooth surface S, the operator −H is a pseudodifferential
operator of order −1 with positive definite principal homogeneous symbol matrix and has the
mapping property (see, e.g., [3], [4], [13], [18], [21], [23])

H : H t(S) → H t+1(S) for arbitrary t ∈ R. (5.6)

Moreover, operator (5.6) is invertible for all t ∈ R.
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6 Appendix B: A rough estimate of λ1

It is evident that the operators (3.3) and (3.21) have the same sequence of eigenvalues, in
particular, they have the same greatest eigenvalue λ1 (see Remark 3.3). Since λ1 equals to
the norm of the corresponding operator (see, e.g., [9, Ch. 6]), it follows that the norms of the
operators (3.3) and (3.21) equal to each other. To choose an explicit bound for the parameter
τ in the iteration relation (3.8), one needs at least a rough estimate of the eigenvalue λ1. To
obtain such a rough estimate in the case of a Lipschitz surface S, we consider operator (3.21)
in L2(S), where

Mψ(x) = H
(
− 1

2
I +K∗

)
ψ(x) +

(
H 1, ψ

)
L2(S)

H 1

=
∫
S

∫
S

Γ(z − y)ψ(z)dSzdSy
∫
S

Γ(x− y) dSy

− 1
2
Hψ(x) +HK∗ψ(x), x ∈ S, ψ ∈ L2(S). (6.1)

Denote by M = ||M||L2(S)→L2(S) the norm of this operator.
To find an upper boud of M, let us introduce the functions:

F1(x) =
∫
S

∫
S

Γ(z − y)ψ(z)dSzdSy
∫
S

Γ(x− y) dSy, x ∈ S,

F2(x) = −1
2
Hψ(x), x ∈ S, (6.2)

F3(x) = HK∗ψ(x), x ∈ S. (6.3)

It is evident that if

B1 = sup
x∈S

∣∣∣ ∫
S

dSy
|x− y|

∣∣∣, (6.4)

then

‖F1‖L2(S) 6
B2

1 |S|
16π2

‖ψ‖L2(S), (6.5)

where |S| is the area of the surface S.
From (6.2) using the Cauchy-Schwartz inequality we get

64π2 [F2(x)]2 =
[ ∫

S

1
|x− y|

|ψ(y)|dSy
]2

=
[ ∫

S

1

|x− y|
1
2

|ψ(y)|
|x− y|

1
2

dSy

]2

6
∫
S

dSy
|x− y|

∫
S

|ψ(y)|2

|x− y|
dSy 6 B1

∫
S

|ψ(y)|2

|x− y|
dSy. (6.6)

Now, by Fubini’s theorem we derive the following estimate

‖F2‖2
L2(S) 6

B1

64π2

∫
S

∫
S

|ψ(y)|2

|x− y|
dSydSx

6
B2

1

64π2

∫
S
|ψ(y)|2 dSy =

B2
1

64π2
‖ψ‖2

L2(S) ,
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i.e.,

‖F2‖L2(S) 6
B1

8π
‖ψ‖L2(S). (6.7)

Further, from (6.3) we have

[
F3(x)

]2 =
1

16π2

[ ∫
S

1
|x− y|

( ∫
S

∂

∂n(y)
1

|y − z|
ψ(z) dSz

)
dSy

]2

=
1

16π2

[ ∫
S

( ∫
S

1
|x− y|

( ∂

∂n(y)
1

|y − z|

)
dSy

)
ψ(z) dSz

]2

=
1

16π2

[ ∫
S

K(x, z)
ψ(z)
|x− z|

dSz

]2
, (6.8)

where

K(x, z) = |x− z|
∫
S

1
|x− y|

( ∂

∂n(y)
1

|y − z|

)
dSy, x, z ∈ S.

In view of the estimate (see, e.g., [10], [20])∫
S

1
|x− y|

( ∂

∂n(y)
1

|y − z|

)
dSy = O

(
|x− z|−1

)
, x, z ∈ S,

the function K(x, z) is bounded and let

B2 = sup
x,z∈S

|K(x, z)|.

Then, from (6.8) we get [
F3(x)

]2
6

B2
2

16π2

[ ∫
S

|ψ(z)|
|x− z|

dSz

]2
,

and using (6.4) we arrive at the estimate

‖F3‖L2(S) 6
B1B2

4π
‖ψ‖L2(S). (6.9)

Keeping in mind (6.1) and combining the inequalities (6.5), (6.7), and (6.9), we finally obtain
the following estimate of the norm M of the operator M,

λ1 = M = ||M||L2(S)→L2(S) 6
B1(2π +B1|S|+ 4πB2)

16π2
. (6.10)
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