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Some special cases of single-machine problems is considered. In these cases there are many
optimal solutions. It is given the formulas of quantity of optimal solutions and calculated
the probability of the event that an arbitrary schedule is optimal; the sufficient conditions to
increase the value of this probability is given and the corresponding optimal full completion
time is calculated.
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1. Introduction

A combinatorial optimization problem is characterized by a set of feasible solutions
that contains one or more optimal solution. A combinatorial optimization problem,
in fact, may possess a large number of optimal solutions, and there may exist special
cases of that problem with even larger number of optimal solutions. Defining the
whole set of optimal solutions may not be easy even for a polynomially solvable
problem, and of course, this is always the case for an N P-hard one. Even finding
the number of optimal solutions might be useful. Indeed, this may allow us to find
the probability of an event that a randomly selected solution is optimal. In this
paper we study a strongly N P-hard single-machine scheduling problem in which
jobs have release and delivery times and the objective is to minimize the maximum
job completion time. We identify the quantity of optimal solutions for a number of
special cases of the scheduling problem and calculate the probability of the event
that a randomly created schedule is optimal. We derive sufficient conditions under
which this probability is very close to 1. For each of these cases we give an explicit
formula for calculating the optimal objective value.

We first describe our scheduling problem that is commonly abbreviated as
1|7i, ¢i|Cmag (the three-field notation introduced by Graham et al. [2]). We have
a single machine and n jobs Ji,Js,...,J,. Each job J; becomes available at its
release time r;, it needs continuous processing time p; on the machine, and an ad-
ditional delivery time or tail g; after the completion of processing of the job J; on
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the machine for its full completion (the delivery of job J is machine-independent
and requires no further resource (the job is delivered by an independent agent). The
release times and delivery times are non-negative real numbers, while a processing
time is a positive number. A feasible schedule S assigns every job J; to the machine
in time interval [t;(S), t;(.S)+p;] on a non-negative time axes so that t;(S) > r; and
this interval has no intersection with the interval of any other job (we consider half-
open time intervals), where ¢;(S) is the starting time of job J; and ¢;(S)+p; = ¢; is
the completion time of that job in schedule S. The full completion time of job J; in
schedule S, C;(S) = ¢;(S)+q;. The objective is to find an optimal schedule, a feasi-
ble one S minimizing the maximum job full completion time Cyyq0(S) = max Ci(S).
So the optimal objective value is Copy = min maxCj(S) = min  Chues(S),
Ser(J(n)) i<n Sem(J(n))
where 7(J(n)) is the set of all feasible schedules.

Jackson [3] has proposed an efficient heuristic method for the version of the
above scheduling problem without job release time, and later it was extended by
Schrage [5] for the case when the job release times exist. The extended Jackson’s
heuristic (J-heuristic for short) iteratively, determines the current scheduling time
as the maximum between the minimum release time of yet unscheduled job and
the completion time of the latest so far assigned job. Iteratively, among the jobs
released by time ¢, it schedules one with the largest delivery time. As the number of
scheduling times is O(n) and at each time search for a minimal /maximal element in
an ordered list is accomplished, the time complexity of the heuristic is O(nlogn).
Jackson’s heuristic is also referred to as LT D-heuristic (Largest Delivery Time)
heuristic.

In the special cases of problem 1|r;, ¢;|Cpq When all job release times or delivery
times are equal, J-heuristic gives an optimal solution, and with integer release times
and unit processing times .J-heuristic gives also an optimal solution. Vakhania
[6] has proposed an O(n?logn) algorithm for the minimization version with two
possible job processing times. Chinos and Vakhania [6] have shown that even in
the case, when we have only two release times and only two delivery times, the
problem 1|rq,72,q1,q2|Cmas i N P-hard. Recently, Reynoso and N. Vakhania [4]
have proposed some heuristics of optimal solutions to some special cases of problem
171,72, 41, q2|Crmac-

In this paper we develop this line of investigation for problem 1|r;, g;|Ciq. based
on the observation that, in a number of special cases of that problem, the total
amount of optimal solutions is large. Hence, it is meaningful to calculate the prob-
ability of the event that the stochastically chosen schedule is optimal. We find
sufficient conditions which provide a very high probability that a randomly cho-
sen schedule is optimal. In the following Section 2 we study the special case of
the scheduling problem with equal job release times, and in Section 3 we consider
another special case with two allowable job release and delivery times.

2. Equal job release times

Throughout this section, we deal with the special case 1|¢;|Cynqa. of our scheduling
problem in which the release time of all jobs is the same, i.e., 7y =19 =--- =1, = 7.
Without loss of generality, we assume that the numbering of the jobs is such that
N=2G2 " 2qn
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Theorem 2.1: Suppose for problem 1|q;|Cinae there is an optimal schedule o such

that
Copt(0) =1 +p1+p2+ - +pr+
and
Gk TPk 2 1 (1)
and
Gk = Pttt + Pp + Gt (2)
Then for all permutations of numbers 1,2,...,k — 1,i1,49,...,1_1 and permuta-
tions of numbers k+ 1,k +2,...,n,4k41,...,%n, the schedule

JivsJigy ooy Jig 1 Jhes

ik+17"

'7Ji

n

is optimal; the number of the optimal schedules equals to (k — 1)!(n — k)!. The
(k—1)(n—k)!

probability of the event that stochastically chosen schedule is optimal is i
Proof: As
Copt(0) =7 +p1 +p2+ -+ Pk + G,

for any schedule Ciua2(L) > Cop(o). Consider any schedule S with the sequence

JivsJigy ooy Jiw s Iy Jigyrs -5 Jiy, Where J;, Jiy, ..., J;, | is any permutation of
jobs Ji,Jo,. .., Jy—1 and J;,,,...,J;, is any permutation of jobs Jy41,...,J,. We

show that this schedule is optimal by computing the value of Cy,(S) for all m < n.
If m = n, it is easy to see that C,(S) = Cop(0).
If m < n, then by condition (1)

Co(S)<r+pi+-+pea+qa <r+pi+-+pk_1+ Pk + @ = Copt(0).
If m > n, then by condition (2)
Co(S) <r+pi+-+pe+Dkt1 +Pn+ @1 <T+p1+-+pp+q = Copt(0).

Therefore, for this schedule Cp,(S) = Copt(0).
The number of all permutations J;,, J;,,...,Ji,_, is (k — 1)! and the number of
all permutations J;, ,,,...,J;, is (n — k)!. Therefore, as the number of all feasible

schedule is n!, the probability of the event that the stochastically chosen schedule
(k—1)!(n—k)! -

is optimal equal to ]

Remark 1: From the optimal schedule o with Cop(0) = Ci(0), if it is con-
structed a feasible schedule S in which job J,,, m < k is inserted in position [ > k,
then this schedule is not optimal. Because, for this schedule we have

r+pi4c A+ DPm—1 +Pmt1+ o+ D1+ P+ D1+ P+ G > Ci(0)
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since qr < ¢m (and pry; > 0. Also, if in any schedule L the job J,,,m > k, is
inserted in position [ < k, then

r4+pr+ D1+ P+t + e+ g > Cilo).

Therefore, the full completion time of last mentioned schedule becomes greater then
Copt- Hence, if the condition Cyp(0) = Ci (o) is fulfilled, only schedules with the
following types Ji,,...,Ji,_,» Jks Jiy1s- - -5 J1, can be optimal, where Jy,,...,J;, |
is any permutation of jobs Ji,...,Jy_1 from schedule o and .J;,_,,...,J;, is any
permutation of jobs Jxi1,...,J, from schedule o. Since the number of such per-
mutations equals to (k — 1)!(n — k).

In the conditions of Theorem 2.1, the probability of the event that an optimal
schedule has the form Jj,,...,J;, ., Jk, Ji,qs---5 1, 08 1.

Remark 2: 1t is possible to generalize the conditions (1) and (2) of the Theorem
2.1 by the conditions

qs + Ds > q1 (1,)

forany 1 <l<s<k-—1and

Gr > Pra1+ o+ D+ @rat (2"

for any k <r <t <n.
Then we obtain the following strengthened result from Theorem 2.1:

Theorem 2.2: Suppose that for problem 1|q;|Cpar there is an optimal schedule
such that Copt(0) =1+ p1+p2+ -+ pr + qx for any 0 < k <n.
If the conditions (1') and (2') are fulfilled then for all permutations of numbers

LI+1,...,8—1,8;4,941,.-.,05—1,15 and for all permutations of numbers r,r +
L.t =1t pytpa1, ... 00—1,%, a schedule of the form
Ji,Jos o Jien i Jiys i Jigs Jiqs e
oIkt e iy iy Jiy i, o

is optimal; probability of the event that the stochastically chosen schedule is optimal
is greater or equal to % For the conditions 1 and 2 of Theorem 2.1
(l=1,s=k—1andr=k+ 1, t =n) this probability equals to 1.

Proof: Denote the above mentioned schedule by S. It is easy to see, that Cy(S) =

Cr(0) = Copt. We show that Cp,(S) < Ci(S) for all 1 < m < n. It is obvious if
m<Il—1and m >t. Let | <m < s, then

Cn(S)=r+p1+-+p1+py+-+pi, +4¢, <

<r+pi+--+prtpy oot pi, oo Pt @ <
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<r4pr++ps—1+ps + ¢ = Cs(0) < Cp(o) = Ci(S).

Let now r < m < ¢. Then

Cn(S)=r+pr+-+petperat-+patp, + o +pi, +a, <

<r+pi+-+pratpi,t+o+pi, o+t <

ST‘I‘pl‘I""pr‘l’Qr :CT(S) < Ck(U) :COPt‘

The number of all permutations J;,, J;,,,,...,Ji, is (s =+ 1)! and the number
of all permutations J;_,J; ,,,...,J;, is (t —r + 1)I. According to Remark 1, the
number of feasible schedules is (k — 1)!(n — k)!. Therefore, probability of the event
that stochastically chosen schedule is optimal is greater or equal to

9

(s=1+ DIt —r+1)
(k—1)l(n—k)!

PT‘(Sopt) Z

The conditions (1') and (2") will be satisfy another part of jobs, by this reason we
use relation “greater or equal”. O

Proposition 2.3: Suppose that for the problem 1|q¢;|Crmaz, ¢ = Gi+1 + Pit1, © =
1,2,...,n—1, then schedule o is an unique optimal schedule and

Copt(0) =p1 + q1 = C1(0) = Ca(0) = --- = Cp(0).
Proof: It is easy to see that

Copt(0) =p1+q =Ci(o) =p1+p2+ @ =

=Cyo)=-=p1+p2+-+Pp-1+ 1= Cyrlo).

Consider any schedule S, different from schedule ¢. If the job in position [ in
schedule o appears in position m > [ in schedule S then schedule S cannot be
optimal, since

Con(S)=p1+-+pa+pp+ F+Pma+o+q=

as q = Pi+1 +Pre2 + quao = - = P41 + - -+ Pm + @ Hence schedule o is unique
optimal schedule. O
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3. Two allowable job release and delivery times

In this section we deal with an N P-hard version 1|r; € {r1,72}, ¢; € {q1, ¢2}|Crnaa
(see [1]). Without loss of generality, let 71 < ro and ¢1 < g2. We aim at finding the
number of optimal solutions; calculate the number of feasible solutions and based
on which we calculate the probability of the event that a stochastically chosen
schedule is optimal as a derivation of number of optimal solutions to the number
of feasible schedules.

We need the following notations: denote by J(r;,q;) the set of jobs with release
time r; and delivery time g; and by J(r;) (J(g;) respectively) the set of jobs with
release time r; (delivery time g;); for any set of jobs A, denote by P(A) the sum of
the processing times of jobs from the set A. Denote by J(r1, g2, 72 —r1) the minimal
subset of set J(r1,¢2) ordered in non increasing order with P(J(r1,q2, 72 —71)) >
ro—ry, i.e., by removing any element from this set, the above inequality will not hold
any more. It is clear, that such a subset is not unique. Denote by A(r1, g2, 72 — 1)
the collection of sets such that:

A(r1,q2,m2 — 1) = {J(r1,q2,72 — 11), J(r1, 92,72 — 1) C J(r1,q2) }-
We similarly denote by J (71,72 —r1) the minimal subset of the set J(r;) ordered in

non increasing order with P(J(ry,79 —71)) > ro — r1 and denote by A(rq,re — r1)
the collection of such sets:

A(ry,re —m) = {J(r1,r2 — 1), (11,72 — 1) C J(r1)}
The corresponding complement sets are:
J(r1,q2,r2 — 1) = J(r1,q2) \ J(r1, g2, 72 — 1)
and
J(r1,rg —mr) = J(r1) \ J(r1,m2 — 1r1).
We will use NV(A)! for the factorial of the number of elements of the set A. As it is

shown in [4], schedule o is optimal for problem 1|r; € {r1,r2}, ¢ € {q1, 2} Crax
if the condition

r1+ P(J(r1,q2)) > 1o (3)

is satisfied. By adding additional conditions, we can obtain the following results.

Proposition 3.1: If in the problem 1|r; € {r1,72}, ¢; € {q1,92}|Cmax the condi-
tion (3) is satisfied then the schedule

S =J(r1,q2,r72 —11)J(r2,62)J(r1, 2,72 — 1) (r2,G1)J (11, q1)

Is optimal, if

a2 > P(J(q1)) + a1, (4)
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then
Copt =11+ P(J(r1,42)) + P(J(r2,q2)) + q2;
if
a2 < P(J(q1)) + a1, (5)
then

Copt =711+ P(J(r1,92)) + P(J(r2,92)) + P(J(q1)) + @1

The total number of optimal solutions is greater or equal to

Nopt = ZN(J(Tl,QQ,TQ —r))IN(J(r1,q2, 72 — 11)UJ (r2,92))IN(J(q1))!.

A(Tl ,q2,T2—T1)

The probability of the event that the stochastically chosen schedule is optimal is

opt

greater or equal to Pr(Sept) > ]\],\;m‘, where

Nfeas. = Y N(J(r1,ry — r1))IN(J°(ry, 72 — 1)U (r2))!.

A(7'177“2—7“1)

Proof: It is easy to see, that .S is the optimal schedule: we can construct an opti-
mal solution combining in order: first, any permutation formed from the elements
of subset J(r1,qa,r2 — 1) of set J(r1,q2); further, any permutation of the rest of
the elements from the set J(g2), and at last, any permutation formed from the jobs
from the set J(g1). The number of such schedules is given by the formula of Nop;.
The total amount of all feasible schedules is similarly calculated. As J (71, g2, r2—71)
and J(r1,r2 — r1) are not unique, we have sum by such sets of jobs in formulas
Nopt and Nyeqs.. The value of Cypy is easily calculated according of inequalities (4)
and (5). O

Proposition 3.2: If in the problem 1|r; € {r1,72}, ¢; € {q1,42}|Cmax the condi-
tion

i+ P(J(r)) <r (6)

is satisfied, then Cope = 19 + P(J(r2)) + qo.

The number of optimal schedules is Nopy = N (J(r1))!N(J(r2))! and the number
of feasible schedules is same — Nfeqs. = N(J(1r1))IN(J(r2))!.

Thus, probability of the event that stochastically chosen schedule is optimal equals
to 1.

Proof: The inequality (6) obligates to schedule firstly jobs from J(r;) and after
possible gap, to schedule the jobs from J(ry). From this easily follows the formula of
the number of optimal solutions, which is equal to the number of feasible schedules.
The value of C,); is easily calculated too. O
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Now we consider more interesting and non-trivial cases when the following con-
dition is satisfied:

r1+ P(J(r1, q2)) <ra < P(J(r1)). (7)

As in [4], denote by L = (Ji,Ja,...,J;) the sequence of all jobs from the
set J(r1,q1) sorted in non-increasing order of their processing times. Denote by
J1(r1,q1) any subset of set J(r1,q1) such that

P(Ji(r1,q1)) = maxJ C J(r1,q1)P(J), P(J) <ro—1r1 — P(J(r1,q2))
and by Ja(r1,q1) any subset of J(r1,q;) such that
P(J2(r1,q1)) = minJ C J(r1,q1)P(J), P(J) > r2—r1 — P(J(r1,q2)).

As we have a finite number of Jobs, the above defined sets exist but may be there
are more than one subset of each type (in fact, it is N P-hard to find such a subset).

Given one of the above defined subsets, we will construct feasible schedules com-
posed of the permutations from the specified subsets in which the jobs in each
subset are included in non-increasing order of their processing times. For example,
the schedule

S =(J(r1,q2), Ji(r1,q1), J(r2,q2), J (12, q1), Ji (71, q1))

is composed of the jobs of the specified five subsets, the jobs of each subset being
included in non-increasing order of their processing times, whereas the partial order
of the jobs of different subsets is determined by the order in which the subsets
appear in the expression.

Consider now two schedules

S = (J(r1,q2), Ji(r1,q1), J(r2, q2), J(ra, q1), J5(r1, q1))
and
S” = ('](Tlan)a JQ(Tl,Ql), J(T27QQ)7 J(T’Q,Ql), JQC(Tlaql))-

Now we describe the conditions under which one of them is optimal.

Proposition 3.3: Let the condition (7) be satisfied. If
g2 > P(Jf(r1,q1)) + P(J(r2,q1)) + @1 (8)
then the schedule
S" = (J(r1,q2), i (r1, q1), I (r2, q2), J(r2, 1), J5 (r1, 1))

is optimal, Copt = 19+ P(J(12,92)) + q2. The total amount of all optimal schedules
18

Nopt = N(J(r1,q2) U J1(r1, q1)) !N (J (72, ¢2))!N (J (72, q1) U i (r1, ¢1))!-
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The number of feasible schedules is
Nyeas. = N(J(r1) \ Ji(r1, @) !N (J(r2) U Ji (r1, o))l

Accordingly, pmbabilit% of the event that stochastically chosen schedule is optimal,
opt

equals to Pr(Sept) = N

Proof: It is clear that Ciuaz(S’) > 12+ P(J(r2,¢2)) + g2. By the condition (8) we
have

r2 + P(J(r2,q2)) + g2 > ra + P(J(r2,q2)) + P(Ji(r1,q1)) + P(J(r2 + @1)) + q1.
Therefore, Cipaz(S") = ro + P(J(r2,q2)) + q2. As

Crnaz(S") =12+ P(J(r2,42)) + g2 <
ri+ P(J(r1,q2)) + P(Ja(r1,q1)) + P(J(r2,q2)) + @2 <
< max{ry + P(J(r1,q2)) + P(J2(r1, 1)) + P(J(r2, @2)) + @2,
r1+ P(J(r1, q2)) + P(J2(r1, q1) + P(J(r2, 42))+

+P(J(r2,q1)) + P(J5(r1,q1)) + a1} = Caa(S™);

C’opt = Cma:c(sl) =72+ P(J(TQaQQ)) + qo.

Further, the sum of the processing times for any permutation of jobs from
the set J(r1,q2) U J1(r1,q1) is equal to the sum of the processing times of jobs
J(r1,q2)J1(r1,q1) (here jobs are ordered according to there processing times in
non-increasing order). As well the sum of the processing times for any permutation
of jobs from the set J(r2,q1)UJS(r2, ¢1) is equal to the sum of the processing times
of jobs from the set J(r2, q1)J5(r2, ¢1). The number of permutations of jobs in these
sets of jobs is N (J(r1,q2) U Ji(r1,q1))!N(J(r2,q1) U Jf(r2,¢1))! and we obtain the
formula of Nyp. In regard to the value Nyeqs., the set J(r1) \ J5(r1,q1) is same
as the set J(r1,q2) U Ja(r1,q1) and it is feasible to schedule any of permutations
of jobs J(r2) U J§(r1,q1) after the time moment 73 (To receive high probability of
number of optimal schedules, we shortened the huge number of schedules selected
them naturally). O

Further, denote 1 = r; + P(J(r1,q2)) + P(J2(r1,q1)) — 2 > 0. It is clear,
that e = 0 if and only if, when P(Ji(r1,q2)) = P(J2(r1,¢1)). Denote also g2 =
P(J{(r1,q1)) + P(J(r2,q1)) + @1 — g2. Then we have
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Proposition 3.4: Let the condition (7) be satisfied. If

P(J{(r1,q1)) + P(J(r2,q1)) + @1 < q2 < €2 + ¢2, 9)
Then:

if e1 — g9 < 0, the schedule

5" = (J(r1,q2), Jo(r1,q1), J(r2, q2), J (r2, q1), J5 (71, q1))

s optimal,

Copt =71+ P(J(r1,q2)) + P(J2(r1,q1)) + P(J(r2,q2)) + o,

Nopt = N(J(r1,q2) U J2(r1,q1))!N(J(r2,q2))!N (J (r2, 1) U J5(r1,q1))!,  (10)

Nfeas. = N(J(r1) \ J5(r1,q1))IN(J (r2) U J5 (11, q1)); (11)

if e1 — g9 > 0, the schedule

S = (J(r1,q2), Ji(r1,q1), J(r2, q2), J(r2, q1), J5 (11, q1))

s optimal,

Copt =12 + P(J(r2)) + P(Ji(r1,q1)) + ¢1,

Nopt = N(J(r1,q2) U J1(r1,q1))!N(J(r2,02))!N(J(r2, 1) U Ji (1, 1)), (12)

Nfeas. = N(J(r1) \ Ji(r1,q1))IN(J (r2) U J (11, q1))! (13)
Proof: From the left inequality of (9) it follows that

Crmaz(S") =11+ P(J(r1,42)) + P(a(r1,q1)) + P(J (r2, 42)) + q2;

C’max(S') = max{rg + P(J(TQ, QQ)) + q2,

r2 + P(J(r2,q2)) + P(J(r2,q1)) + P(J{(r1,q1)) + g2}

From the right inequality of (9) it follows that

Crmaz (") =12 + P(J(r2, q2)) + P(J(r2,q1)) + P(J7(r1, 1)) + qu.-
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It is easy to see that Chuae(S”) — Crax(S') = €1 — 2. Therefore, if e1 —e9 < 0 then
Crnaz(S") = Copt. The schedule S” is optimal. The schedule, which is received firstly
from any permutation of the set J(r1)\ JS(r1,¢1)) and after, from any permutation
of the set J(r2,¢2)) and at last from any permutation of the set J(r2, q1)UJS(r1, 1)
is again an optimal schedule, which gives the number of N,,;. We can reject some
feasible schedules and consider only schedules firstly from the set J(r1)\ JS(r1,¢1))
and after from the set J(r2) U JS(r1,q1). The quantity of such feasible schedules
is given by formula (11). Analogously, If &1 — g2 > 0 then Cpaz(S’) = Cops. The
schedule S’ is optimal. The schedule, which is received from any permutation of
the set J(r1) \ J{(r1,¢1)) and from any permutation of the set J(r2,¢2)) and from
any permutation of the set J(ra, 1)U Jf(r1,¢1) is again an optimal schedule, which
gives the quantity of N,,. We can obtain formulas (12) and (13) similarly as in
the case S”. O

Proposition 3.5: Let the condition (7) be satisfied. If
g2 < P(J5(r1,q1)) + P(J(r2, 1)) + 1 (14)
then the schedule
S = (J(r1.q2), Jo(ri.@1), J (r2, 42), I (r2,q1), J5 (71, 1)) (15)

(in all of partial sets jobs are ordered according to their processing times in non-
increasing order) is optimal,

Copt =11+ P(J(r1)) + P(J(r2)) + q1, (16)

Nopt = N(J(r1) \ J3(r1,¢1))IN (J (72, 92))IN (J (r2, q1) U J3(r1, 1)) (17)
The number of feasible schedules is
Nfeas. = N(J(r1) \ J3(r1,q1))IN(J (r2) U J5 (11, q1))!, (18)

probability of the event that stochastically chosen schedule is optimal, equals to

Pr(Sept) = ]\J,\;Zts..

Proof: It is easy to see that

Crmaz(S") =1+ P(J(r1,q2)) + P(Ja(r1, 1))+

+P(J(r2, q2)) + P(J2(r2, 1)) + P(J3(r1, q1)) + @1

and

Cmax(sl) =7+ P(J(Tla Q2)) + P(‘]l(T1>QI))+

+P(J(r2,q2)) + P(J(r2,q1)) + P(Ji(r1, 1)) + @1 + ¢,
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Where € > 0 is the gap after scheduling of jobs from J;(71,q1) before job release
time moment ry. Therefore, Cyaz(S") > Ciaz (S”) and Cq (S”) = Copt, which is
represented by formula (16). We receive every optimal schedule if we schedule any
permutation of jobs from the set J(r1,qg2) U Ja(r1,q1), after schedule any permuta-
tion of jobs from the set J(rg2,g2) and finally we schedule any permutation of jobs
from the set J(r2,q1)UJS5(r1,q1). According of this, the formula of Ny, is given by
formula (17). In this case the number of feasible schedules is given by the formula
(18). O

When we introduced above the sets of schedules Ji(r1,q1) and Ja(r1,q1), we
mentioned, that to find these sets is N P-hard problem. Therefore, to find schedules
in Proposition 3.3-Proposition 3.5 is N P-hard problem. For this reason in [4] are
introduced heuristics concerning the problems of these propositions.

At last we consider the heuristic of the schedule o and calculate the number
of such heuristics S which gives the same to the heuristic of the schedule o full
completion time Caq(S) = Crga ((H(0)).

As it is mentioned above, in the cases (3) and (6) the schedule o is optimal and in
Propositions 3.1 and 3.2 is given the formulas of the number of optimal solutions.
For the case (7), we consider again the set L = (Jy, Jo, ..., Ji) the sequence of all
jobs from the set J(r1,¢1) sorted in non-increasing order of their processing times.
Denote by Jy the subset of the set L, Jg = (Ji,Ja,...,Jm), m < k, such that
1+ P(Jg) > 19, but r1 + P(Jug \ {Jm}) < r2. Denote also by J§; the set L\ Jg.
In case of (7), according of the o-heuristic, we have the following result:

Proposition 3.6: If the condition (7) is satisfied, then the schedule o is

g = (J(Tl,QQ),JH,J(TQ,QQ),J(TQ,Ql),JE]) (19>

(in all of partial sets jobs are ordered according to there processing times in non-
increasing order). If

q2 > P(Jg) + P(J(r2,q1)) + qu, (20)
then
Cmaz(0) =11+ P(J(r1,q2)) + P(Ju) + P(J(r2, ¢2)) + g2 (21)
The number of heuristic schedules S with Cpu:(0) = Ciaa(S) is
Ny = N(J(r1,q2) U Jg)IN(J(r2,q2))'N(J(re2,q1) U Jg)!. (22)
The number of feasible schedules is
Nyeas. = N(J(r1,q2) U Ju)IN(J (r2) U Jp)!. (23)
If

a2 < P(Jg) + P(J(r2,q1)) + a1, (24)
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then
Craz(0) =11+ P(J(r1,q2)) + P(Jg) + P(J(r2)) + P(J§) + q1. (25)

And all other values are same as the above considered case.

Proof: It is easy to see that formula (19) gives the schedule o. By the condition
(20) we have

Craz(0) = max{r; + P(J(r1,q2)) + P(Jg) + P(J(r2,q2)) + q2,

r+ P(J(r1,q2)) + P(Ju) + P(J(r2,q2)) + P(J(r2, 1)) + P(J(r1, 1)) + @1} =

=r1+ P(J(r1,q2)) + P(Jg) + P(J(r2,q2)) + qo.

The schedule, which contains any permutation of jobs (J(r1,q2) U Jg), and af-
ter, any permutations of jobs J(re,q2) and, at last, any permutations of jobs
(J(r2,q1) U J§) has full completion time equal to Ciyq(0), therefore the num-
ber of such heuristic schedules is given by formula (22). Formula (23) gives the
number of shortened feasible schedules as it is obvious, that among such schedules
is our heuristic schedules. It is easy to see, that the condition (24) gives the value
of full completion time by the formula (25). O
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