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Here we encounter and study very general stochastic positive linear operators induced by
general positive linear operators that are acting on continuous functions in the trigonometric
sense. These are acting on the space of real fractionally differentiable stochastic processes.
Under some very mild, general and natural assumptions on the stochastic processes we pro-
duce related trigonometric fractional stochastic Shisha-Mond type inequalities of L9-type
1 < g < oo and corresponding trigonometric fractional stochastic Korovkin type theorems.
These are regarding the trigonometric stochastic g-mean fractional convergence of a sequence
of stochastic positive linear operators to the stochastic unit operator for various cases. All
convergences are produced with rates and are given via the trigonometric fractional stochastic
inequalities involving the stochastic modulus of continuity of the a-th fractional derivatives
of the engaged stochastic process, @ > 0, a ¢ N. The impressive fact is that only two basic
real Korovkin test functions assumptions, one of them trigonometric, are enough for the con-
clusions of our trigonometric fractional stochastic Korovkin theory. We give applications to
stochastic Bernstein operators in the trigonometric sense.

Keywords: Stochastic positive linear operator, trigonometric fractional stochastic Korovkin
theory and trigonometric fractional inequalities, trigonometric fractional stochastic
Shisha-Mond inequality, stochastic modulus of continuity, stochastic process.

AMS Subject Classification: 26A33, 41A17, 41A25, 41A36, 60E15, 60H25

1. Introduction

Inspiration for this work comes from [2], [3], [14], [15], [16]. This work continues
our earlier work [5], now at the stochastic fractional level. First we mention the
foundations of Stochastic fractional calculus in the direct analytical sense, see [10],
in section 2, this is in the Caputo fractional direction. In the section 3, about back-
ground, we talk about the ¢-mean (1 < ¢ < oo) first modulus of continuity of a
stochastic process and its upper bounds. There we describe completely our setting
by introducing our stochastic positive linear operator M, see (15), which is based on
the positive linear operator L from C ([—m, 71]) into itself. The operator M is acting
on a wide space of Caputo fractional differentiable real valued stochastic processes
X. See there Assumptions 3.6, 3.8, 3.9. We first give the main trigonometric point-
wise fractional stochastic Shisha-Mond type inequalities ([14]), see Theorems 4.1,
4.2, and their several corollaries covering important trigonometric special cases.
We continue with trigonometric fractional ¢g-mean uniform Shisha-Mond type
inequalities, see Theorems 4.3, 4.4, and their interesting corollaries. All this the-
ory is regarding the trigonometric fractional stochastic convergence of operators
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M to I (stochastic unit operator) given quantitatively with rates. An extensive
trigonometric application about the stochastic Bernstein operators follows in full
details. Based on our Shisha-Mond type inequalities of our main Theorems 4.1 -
4.4 we derive trigonometric pointwise and uniform Stochastic Korovkin theorems
([12]) on stochastic processes, see Theorems 6.1 - 6.4. The amazing fact here is,
that basic conditions on operator L regarding two simple real valued functions,
one of them trigonometric, that are not stochastic, are able to enforce fractional
stochastic convergence on all stochastic processes we are dealing with; see Concepts
3.5 and Assumptions 3.6-3.9 on [—7, 7].

2. Foundation of Stochastic Fractional Calculus ([10])

Let t € [a,b] C R, w € Q, where (2, F, P) is a probability space. Here X (t,w)
stands for a stochastic process. Case of X (-,w) being continuous on [a,b], V w € €.
Then by Caratheodory Theorem 20.15, p.156, [1], we get that X (¢,w) is jointly
measurable.

Next we define the left and right respectively, Riemann-Liouville stochastic frac-
tional integrals ([10]), where o > 0 is not an integer:

%X (2,0) = F(la) / (2= ) X (t,w) dt, (1)

and

b
8 X (2,0) = I‘(la)/ (t—2)* ' X (t,w) dt, )

vV x € [a,b], Vw e Q, where T is the gamma function.

In the following important cases we prove that g%, X, I;* X are stochastic pro-
cesses:

i) Assume that (Q,F,P) is a complete probability space, and that
(x —t)* ' X (t,w) is an integrable function on [a,z] x Q, V & € [a, b], then by Fu-
bini’s theorem, [13], p. 269, I3, X (z,-) is an integrable function on Q, V = € [a, b].
Similarly, if (t —2)* ' X (t,w) is an integrable function on [z,b] x Q, V z € [a, b],
then again by Fubini’s theorem I;* X (x,-) is an integrable function on €2, V
x € [a,b]. That is I$ X (z,w) and If* X (z,w) are stochastic processes.

ii) Assume a general probability space (€2, F, P) and the Lebesgue measure spaces
on [a,z|, [x,b], ¥V = € [a,b]. These are clearly o-finite measure spaces. We assume
that the jointly measurable stochastic process X (t,w) > 0 on [a,b] x €, hence
(=) X (f,w) > 0 on [a,2] x Q, and (t —2)* ' X (t,w) > 0 on [z,b] x Q, V
x € [a,b], and both are jointly measurable. Then by Tonelli’s theorem, [13], p. 270,
we get that I$, X (x,-), If* X (z,-) are measurable functions on 2, V x € [a, b]. That
is I3, X, I;* X are stochastic processes. The above facts provide the foundation of
stochastic fractional calculus in the direct analytical sense. So it is not unusual to
consider that Ig¥, X, I;* X are stochastic processes.

iii) Given that X (-,w) is in Ly ([a, b]) then I X (,w) € L1 ([a,b]), V w € Q, see
[11], p. 13, and I}* X (-,w) € L1 ([a,b]), V w € Q, see [8], p. 334.

And given that X (-,w) € L ([a,b]), then I3, X (-,w) € C([a,b]), when 0 < a <
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1, and I, X (-,w) € AC ([a,b]) (absolutely continuous functions), when a > 1, V
w € Q, see [6], p. 388. Similarly, if X (-,w) € L ([a,b]), then I}* X (-,w) € C ([a,]),
when 0 < v < 1, and I X (-,w) € AC ([a,b]), when oo > 1, V w € Q, see [9].

We need

Definition 2.1: ([10]) Let a non-integer o > 0, n = [a] ([-] be the ceiling of
the number), ¢ € [a,b] C R, w € Q, where (2, F, P) is a general probability space.
Here X (t,w) stands for a stochastic process. Assume that X (-,w) € AC"™ ([a, b])
(spaces of functions X (-,w) with X(*=Y (. w) € AC ([a,b])), V w € Q.

We the call stochastic left Caputo fractional derivative

Do X (2,0) = — | /x(x—t)"_o‘_lX(")(t,w)dt, 3)

I'n—«
Ve lab],VweQ.
And, we call the stochastic right Caputo fractional derivative

n b
DY X (z,w) = =D / (z—2)" XM (2,w) dz, (4)

Vx€la,bl,Vwe
Remark 1: (to Definition 2.1) We further assume here that

‘X(n) (t,w)) < M*, V (t,w) € [a,b] x Q,
where M* > 0. Then, by (3), we have

D% X (2,0)] < — )/x (o — 0" X0 (1)t <

'n—«

M v _ p\n—a-—1 _M*(‘T*a)nia
F(n—a)/a (z—1) dt = 'n—a+1)"

That is

M*(x—a)"™®

D¢ X < ="
ID5X ()| € T oy

vV x € [a,b]. (5)

Also, from (4) we get

1

‘DI?LX (:U,w)‘ < m

b
/ (z — )"t ‘X(”) (z,w)‘ dz <

M b _:L,n—oc—l Z_M*(b_x)n_a
F(n—a)/x(z ) d CT(n—a+1)’
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That is

M*(b—x)" "

Th—at+1)’ V€ lab. (6)

’Dg‘_X (x,w)l <

By (1)-(4), it is not strange to assume that D¢, X, Dj* X are stochastic processes.

3. Background (see also [10])

We need

Definition 3.1: We define the relative g-mean first modulus of continuity of
stochastic process X (t,w) by

O (X, 5)L4,[c,d} =

up { ([1x @ -x <y,w>|QP<dw>);

0>0,1<qg<o0.

cx,y € [e,d] C [a,b], |z—y| Sé},
(7)

Definition 3.2: Let 1 < ¢ < co. Let X (x,w) be a stochastic process. We call X
a g-mean uniformly continuous stochastic process over [a,b], iff Ve >03 4§ > 0:
whenever |x — y| < §; z,y € [a,b] implies that

/Q | X (z,8) — X (y,)|? P (ds) <e. ()

We denote it as X € C,gq ([a,b]) .
It holds

Proposition 3.3: ([5]) Let X € CRUq (la,b]), then 0 (X,6) 1, 44 < 00, any 6 >
0.

Besides it holds

Proposition 3.4: ([5]) Let X (t,w) be a stochastic process from [a,b] x (Q, F, P)
into R. Then the following is true ([c,d] C [a,b]):

(i) (X, 0) 4 [0.q) s nonnegative and nondecreasing in & > 0,

() B (X,8) e = 01 (6,0) o = 0, 47 X € CF ()

(ZZZ) 04 (X, 0 + 52)LQ,[c,d} < (X, (51)Lq7[c’d} + (X, 52)L‘1,[c,d]7 61,09 > 0,
(Z’U) Q1 (Xv m(s)[,q7[c7d] < le (Xv 6)Lq7[c7d] ) 6> O; me N7
5 (v) 0 (X, A0) 0 e < TN (X, 0)pofeq) < A+ DN (X,0) 0 g A >0,
>0,
(vi) & (X + K(S)Lq7[c7d] <O (X, 5)]447[0@] + Q1 (Y, 5)Lq,[c,d} , 0>0,
(vit) (X, ) o [e,q) 15 continuous on Ry for X € CRU" ([e,d]) -

We give
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Remark 1: (to Proposition 3.4) By Proposition 3.4 (v) we get

r—y
0 (Xl g < 52 0 (X000 0

V x,y € [e,d], any 6 > 0.
We give

Remark 2: (continuation of Remark 1) We assume again that |X (n) (t,w)| <
M*, ¥V (t,w) € [a,b] x Q, where M* > 0. Let 6 >0, 1 < ¢ < co. Then

1

Q4 (D2.X,8) 14 o = SUD { ( /Q (D2X) (2,0) — (DLX) (g, )| P <dw>) "

T,y € [Cad] - [avb]v |1“_y| S(;}S

1

sup { ( [ 02X @) 4 1(05) )7 P <dw>) "

(8]
x?Z/G[C’d]g[aﬂb]’ ‘l‘—y‘g(;} < (10)

“ﬂ;*”“"{% (o= (g =) P las) )

z,y € e, d] C[a,0], |z —y| <0} =

M*

m sup { ((x —o)" N+ (y — c)"fa) :

2M* n—o
2,y € [c,d] C [a, ], |x_y|§5}§m(d—0) :
That is
2M*
Q1 (DE.X <————(d—-0e)"" 11
1( *C 75>L‘1,[c,d] = P(n_a+1) (d C) ) ( )

where a < c < d<hb.
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Similarly, we have

2M*
0 (DX <—~ " (d-0o)" " 12
1( d— 75)Lq7[c,d}—r(n_a+1)( C) ) ( )
where a < c<d<b.
Next let zg € [a, b], then
2M*
sup O (Dg,, X,9),, <———— sup (b—mzp)"*
zo€E[a,b] ( )L okeo.b] I (n —a+ 1) zo€[a,b]
2M*
=——(b—a)"" . 13
Fn—agy 0”9 (13)
Similarly, we have
2M*
sup Q1 (Dg_X,0),, .1 < =———— sup (zg—a)"" "
IOE[QJ)] ( )L 7[ ) 0] F (n — + 1):1?06[(1,!7}
2M*
=———(b—a)""". 14
Tn—aty 09 (14)

We need

Concepts 3.5 (sce also [10]) Let L be a positive linear operator from C ([a, b])
into itself. Let X (t,w) be a stochastic process from [a, b] x (€2, F, P) into R, where
(Q, F, P) is a probability space. Here we assume that for a non-integer o > 0,
[a] =n, X (-,w) € AC™ ([a,b]) with X (-,w) € Lo ([a,b]), V w € Q.

We also assume for each t € [a,b] that X*) (¢ .) is measurable for all k =
1,...,n—1. Further we assume that D% X (z,w) is a stochastic process for z € [t, 1],
w e Q, and D X (z,w) is a stochastic process for z € [a,t], w € Q; V t € [a, b].

Define

M(X)(tw):=L(X(w) (), YweQ Ve, (15)

and assume that it is a random variable in w. Clearly M is a positive linear operator
on stochastic processes.

We mention

Assumption 3.6 (as in [10]) Let non-integer o > 0.

i) For any t € [a,b] we assume that DX (z,w) is continuous in z € [t,b],
uniformly with respect to w € Q. IL.e. Ve > 0 3 § > 0 : whenever |21 — 22| < §;
21,22 € [t,b], then | D& X (z1,w) — D% X (22,w)| < e, Vw € Q.

We denote this by D% X € CF ([t,b]), the space of continuous in z, uniformly
with respect to w, stochastic processes over [t,b] .

ii) For any ¢t € [a,b] we assume that D{* X (z,w) is continuous in z € [a,t],
uniformly with respect to w € Q. I.e. Ve > 0 3 § > 0 : whenever |z — 22| < J;
21, 22 € [a, t], then ‘Df‘_X (z1,w) — DY X (zz,w)‘ <egVwe
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We denote this by D& X € CY ([a,t]), the space of continuous in z, uniformly
with respect to w, stochastic processes over [a,t] .

Remark 3: Assumption 3.6 implies:

i) D&X (1,w) € C([t,b]), Vw € Q, and DX is g-mean uniformly continuous in
z € [t,b], that is DX € C4” ([t,b]), for any 1 < ¢ < oo.

ii) D X (-,w) € C([a,t]), Vw € Q, and Dy X is g-mean uniformly continuous

in z € [a,t], that is D X € CRU" ([a,t]), for any 1 < ¢ < oo.
We need
Definition 3.7: Denote by

(EX) (1) ::/QX(t,w)P(dw), Vtelab, (16)

the expectation operator.
We make
Assumption 3.8 (as in [10]) We assume that

(E ’X(k)‘q) (t) < oo, Ve [ab, (17)

g>1,foral k=0,1,...,n—1, n=[a]; @ > 0 non-integer.
We make
Assumption 3.9 (as in [10]) We assume that

(E ‘X(k)D (1) < o0, V1€ [ab], (18)

forall k=0,1,....,n— 1, n = [a]; @ > 0 non-integer.
We give

Remark 4: By the Riesz representation theorem ([13]) we can say that there
exists p¢ unique, completed Borel measure on [a, b] with

my = ([a,b]) = L (1) () >0, (19)
such that
L(f)(t) = - (@) dpy (x), Vi €lab],V fel(ab]). (20)
Consequently we have
ME) @) = [ X (@w)du(e), V() € o <8 (21)

and X as in Concepts 3.5.
Here x|, 5 (s) stands for the characteristic function on [y, d] C [a,b].
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Notice that (r > 0)

/M (s =) (dS):/[a,b} o () s =t pe (ds) = L (|- =t xp () (1), (22)

and

/ (t—s)" pe(ds) = / X () |s = " e (ds) = L (|- = " Xjagy (1)) (£) . (23)
[a,t] [a,b]

Let now n = [a], « ¢ N, a > 0, k = 1,...,n — 1. Then by Holder’s inequality we

obtain

| | @0 du@
[a,b]

< [ o tdu @) <
[a,b]

(=) k
</[ ’ 2z — 8T dpy (x)) (e ([a, b)) o)

Therefore we have

(=o)L <2 G-y 0]

+1k
(ol o Folls
ooab] Jla,b]

allk=1,...,n— 1.
Besides, we observe

C([avb]) > ’ _t|a+1 Xla,t] () < ’ _t’a—H? Vte [a7 b]v

and

C([a,b]) 3 [ =t X () < | =™, V€ fab].

By positivity of L we obtain

2=t g O) @ <20 =0 @

00,[a,b] 00,[a,b]

by L (] — t\‘”l) (t) being continuous in t € [a, b], see p. 388 of [4],
and

7 (= 0) @], < [E Q-0 o

(24)

(25)
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Above (22)-(25) and (28), (29) can be used to derive convergence from (30), (32)-
(34) next.

In this work we denote by E(X[a,t] () (&) = e ([a,t]) < L(1)(t), and by
L (xje) () () = pe ([t,0]) < L (1) (1)
Next we mention the first main result from [10], on the quantitative stochastic

fractional approximation regarding stochastic processes:

Theorem 3.10: (/10]) Suppose Concepts 3.5, Assumptions 3.6 and 3.8. Here the
non-integer o > 0 s such that o > %, where p,q > 1 such that % + % =1. Then, V
t € [a,b], we have:

(B (1M (X) = X|%) (1)) < (B|X|%) (1)

L(1)(t) - 1]

i ®17) (1))
+Z«mXJNmWﬂVﬂﬁW

k=1

+ 2; 1 JR = T (30)
L(a)(p(a— 1)+ 1)7 (¢ + 1)

I

=

(2 (1~ 17 gy () ()

1
q

| (T w0 0) 7+ )5 41

1 = D
x Q1 | DX, L (] —¢atetD) : t>
( (G (= 1 xi 0) @ -

a

+ { (E (X[a,t} ) (t))’l’ (E (|. — t‘q(oc+1) Xfo.] (_)) (t)> a(a+D)

1

| E o ) 0) 7 )7 41

1

X (Df_X, ((qi 1)f <| — g[ale+) Xia ()) (t)> q<a+1>> } } |
L4 [art]
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Here we have
DX (t,w) =Dt X (t,w) =0, (31)

YV w e Q, see [8], pp. 358-359.
We assume also

DX (s,w) =0, for s < t,

and
DY X (s,w) =0, for s > t,
Vwe Q.
We mention the second main result from [10], the Lj-quantitative stochastic
fractional approximation of the stochastic processes, it is the ¢ = 1 analog of

Theorem 3.10. Inequality (32) is much simpler than (30).

Theorem 3.11: ([10]) Suppose Concepts 3.5, Assumptions 3.6 and 3.9. Here
a>0,a¢ N, n=[a]. Then, V t € [a,b], we have

E (1M (X) = XI) (1) < (BIX]) (1) |L(1) (1) ~ 1]

ORI (o) g

x O (fotX, (Z (,. . (.)> (t)) i

> L1,[t,b] } .

We also mentiom a uniform norm result (denote ||| 54 = [[f]lso)- It is based
on Theorem 3.10.

Theorem 3.12: (/10]) Suppose Concepts 3.5, Assumptions 3.6 and 3.8. Here the
non-integer o > 0 is such that o > é, where p,q > 1 : %—i— % = 1. Additionally
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assume that }X(") (t,w)‘ < M*,V (t,w) € [a,b] x Q, where M* > 0. Then

1B (IM (X) - X% < 1B (X])]|%

-1

q

STICEY

2. I |2 (=07 ]

k=1

o0

2%
T (a)(p(a—1)+1)7 (g+1)7@D

+

‘m(q+1)m‘il>+1]q HZ(1) g

[e.o]

X [HE(U

[e o]

a(at1) (33)

o0

X {{HE <\ — t!q(a—H) X[t,b] ()) (t)

8 tzl[g)b}gl (Dth7 ((Q-lk 1) HE (| B t‘q(a—H) Xied ()> (t)Hoo) Q(;M) L9,[¢,0] }

_a
q(a+1)

+ {HE (] _ t‘q(aﬂ) X <)> (t)

o0

oo (g ool ) 1)

Based on Theorem 3.11 we mention the following uniform estimate:

Theorem 3.13: ([10]) Suppose Concepts 3.5, Assumptions 3.6 and 3.9. Here
a >0, a¢ N, n=[a|. Additionally assume that |X(") (tw)| < M*, V (t,w) €
[a,b] x Q, where M* > 0. Then

IE (M (X) = Xl < I1E (X))l HE(D - 1HOO

HL Ol + ail]

+Z#OO HE <(' _t)k) <t)Hoo * [ r(;o+ 1)
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x {HE (y- — " Xjag (')) (t)

o

a+1

oo

< s o (DX [E (-0 v 0) 0 )
LY [a,t

te(a,b) oo

e

a+1

FE( =1 xwn O) 0|

X sup O (thx,\i(\-—tr““m () () ) }
L1 [t,b]

tela,b] 0o

We make

Remark 5: Next we specify [a,b] as [—m, 7). Clearly then L : C ([-m,7]) —

C ([—m,m]) is the positive linear operator on hand.

Here n = [al], a ¢ N, a > 0, k = 1,...,n — 1. Next we use Holder’s inequality.

‘We notice that

(o () Yo L o (55

: (/[m] <Sin <|x ; t‘>a+1> dpit (ﬂf)> N (e ([, 7)) S
B <E ((Sin (’;t'»m) (t)) a (E (1) (t)) =

That is

- (E ((Sm (bﬂ))aﬂ) (t)) o <E (1) (t)> e

for k =1,...,n — 1; true also for ¢ (v + 1) instead of (o + 1), for any 1 < ¢ < cc.

Next [l denotes [-flog, (—r,m -
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: ((Sin <|Zt‘)>k) (0
: ((Sin (W))aﬂ) ol IEo ol

for k =1,...,n —1; (37) is true also for ¢ (o + 1) instead of (a+ 1), for any 1 <
q < .
In this work we use a lot the following well known inequality:

Consequently, we have

o0

<

Y
o)

2| < 7sin (';') Ve [-m 7. (38)

Notice that, for any t € [, 7], we have C ([-7,7]) 3 |- — t| X[—ry (1) < |- =] €
C ([—m,m]), therefore

C(omeh > (sn (XN S (o () Eoommy . o

Consequently, by positivity of L we obtain

E( (s () ] <[ (o (551)) )
(40)

Similarly, for any ¢ € [, 7], we have C ([-7,7]) > [ —t|xpn () < | —1 €
C ([-m,7]), thus

C (|-, 7]) > <sin <‘_ﬂi[““()>)a+§l (sin (‘;t‘))ag C([—mx]). (41)

Hence
(o (RN o] <[ (51)) 0
“(42)

So, if the right hand side of (40), (42) goes to zero, so do their left hand sides.
Above in (39)-(42), one can use ¢ (a4 1) instead of (a + 1), 1 < ¢ < 0.

A further detailed analysis reveals:

We have (1 < ¢ < o0)

<

o0

<

o

L (1=t X () (1) 2 /m (2= )7 dp ()
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o q(a+1)
:2q(a+1)/[t ]< 5 ) dpg (z)

That is, we have obtained

E (1= 114y (0) () < (2t L (( (5 <~>))q<a+l)> 0.

(44)
Similarly, we get

L1t 3 (0) () < r) e L ((sin (e <->))qw> .

(45)
Above inequalities (44), (45) are valid for any 1 < g < oo.
Furthermore, we observe that

L(C-0")m|= (2 — )" dp (a)
( .

<[ le-tFdu
[—7‘(,71']

_ ok /[_M] <"’3;t‘>kdut @) 2 (2m)" /[_m <sm <|x;t>>kdut (z)  (46)



Vol. 24, No. 1, 2020 41

Y ((sm (';t'))k) .

That is

Vte[-mn],al k=1,...,n—1

4. Main Results

Next we present our first main result on the trigonometric quantitative stochastic
fractional approximation of stochastic processes.
It is a pointwise result.

Theorem 4.1: Here [a,b] = [—m,7]. Suppose Concepts 3.5, Assumptions 3.6 and
3.8. Let « > 0, a ¢ N, such that o > é, where p,q > 1 and % —i—é = 1. Then, V

t € [-m, 7|, we have

(B (IM(X) — X|%) (£)) < (E|X]%) ()

E(l)(t)—l‘

Q=

5 (& |x<’:!\") (t)) -y ( <Sm < - ﬂ))’“) o

k=1

1
204"!‘ » ,ﬂ_a

T (a)(p(a—1)+1)7 (g+1)7@D

A4 (E () @)’ (z <<sm (s (,)>>q<a+1>> (t)> i

1
1 S

X [(E (X[t,ﬂ ()) (t))ajl (g+ 1)(0%) - 1} q

o (thX’ 7 ((qi K ((Sm (Wﬁm <->))q<a+l)> <t>> H)

La,[t,n]
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{0 (2o (5 a)) ) )

) [@ (na ) ) g+ )75 + 1]}1

x (D?X, 2 <(qi 1)E ((sin (" ; t’x[_w (.)>)q(a+1)> (t)) w) }} .
La,[—m,t]

Proof: By Theorem 3.10 on [—m, 7] we get (V ¢t € [—m,7]) that

(B (1M (X) = X|%) 1)+ < (BIXI) (1) |L) (1) - 1]

1 ®17) ()
SO ey
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a 1 7 q(x i .
x (Dt_X, <(q+1)L (\. gfaletD (.)) (t)> )qu[m}} =: (%).

Using (44), (45) and (47) we obtain:

() < (EBIXI) 0 [L1) (- 1]

S i ((59) )

k=1

2
T (a)(pla—1)+1) (g+1)=D

* {{ <E (xiem () (t)); (2m)® (E <<sin <‘;t’><[t,w] (-)))q(aﬂ)) (t)) -

+

< (2 e ) )

o) )0 ), )

X O (D?X, 2 (mil)i <<sm (" ; t’x[_m] (.)>>Q(a+l)> (t)) M) }} ,
Lo, [-m]

proving the claim. O

(¢ + 1)@ + 1} ! (50)
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We continue with the trigonometric Lq-quantitative stochastic fractional point-
wise approximation of stochastic processes.

Theorem 4.2: Here [a,b] = [—7,7|. Suppose Concepts 3.5, Assumptions 3.6 and
3.9. Here a >0, a ¢ N, n = [a]. Then, V t € [—7, 7|, we have

E (1M (X) = X|) (t) < (BIX]) 0| L(1) (6) 1]

) {(Z e ) (t)> iR (o i 1)] (E <<Sm (qu,ﬂ <‘>>>a+l> (t>> )
x O (thX, 2m (f ((Sin <\ ; tlx[m] (')>>a+1> (t)) ail) Lwt’ﬂ} .

Proof: By Theorem 3.11 for [a,b] = [-7, x|, and V t € [—m, 71|, we get

E (1M (X) = X|) (1) < (B|X]) (&) |L(1) (1) ~ 1]

SO (o) o+

o (0 (1= e 0) 0)7) (52)
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o

(€m0 0) 7+ s | E (= i 0) )

1

x (Dstx, (Z (1=t X () ) "‘“)Lly[t’ﬂ} = (%),

Using (44), (45) and (47) we obtain:

x O (Df:tX, o (E <<sin <|';t|x[tm] (')>>“+1> (t)> +) . (53)
LY [t.)

The claim is proved. O

We continue with trigonometric fractional uniform estimates (
I'lloo) in Lg-mean (1 < g < c0).

H'Hoo,[fﬂ,ﬂ] =

Theorem 4.3: Here [a,b] = [—m,7]. Suppose Concepts 3.5, Assumptions 3.6 and
3.8. Let a« > 0, « ¢ N, n = [a], such that o > %, where p,q > 1 and % —&—% = 1.

Additionally assume that }X(") (t,w)‘ < M*, Y (t,w) € [—m, 7] X Q, where M* > 0.
Then

1B (IM (X) = X% < 1B (X])]|%

-1
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i (o (=YY

L — t
((sm ( 1 (t)

”“(q+1)<a1‘1>+1]q Hiu) ’

[e.e] e}

1

e

k=1

o0

reoty [HE(U

T (a)(pla—1)+1) (g+1)=D

P (( ("7 <->))q<a+l)> 0
(o)), )
i <<sm (5 ma >))Q(a+l)> o

[e.9]

(o)™ )0 )77,

Proof: Based on Theorem 4.1, we take into account (13), (14) and the positivity
of L. O

q(a+1)

te|—m,m]

X sup € <D*tX 2m <( =y

_|_

x sup §2 (Dt_X 2m <(q+1)

te|—m,m]

We continue with the Li-mean uniform stochastic fractional result.
Theorem 4.4: Here [a,b] = [—7,7|. Suppose Concepts 3.5, Assumptions 3.6 and
3.9. Let a > 0, o ¢ N, n = [a]. Additionally assume that ‘X(") (t,w)‘ < M* Y
(t,w) € [—m, 7| x Q, where M* > 0. Then

IE (1M (X) = Xl < I1E (XD Hfﬂ) - 1Hoo

(o () )

(XD

o0

e ol ]
Ao (5t Yo
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P ((sm (5 <->))a+l> 0

X sup (D?X,27r

te|—m,m]

1
aﬂ)
o0 L' [—m,t]

=
a+1

+

P (s (= o) )0
(o0 (5 00)) )

o0

X sup (fotX, 2

te[—m,m]

(5 000)) o)
o /L[t

Proof: Based on Theorem 4.2. We take into account (13), (14) and the positivity
of L. O

We continue with interesting corollaries.

Corollary 4.5: All as in Theorem 4.1. Further assume L(1) = 1 and
X®) (tg,w)=0,VweQ, allk=1,...,n—1, for a fizred ty € [—m,7|. Then

N CH‘%ﬂ.a
(E (M (X) = X|) (o))" < 2

I'(a)(pla—1)+1)r (g+ 1)aD

- {{ (Z (Xtto.m () (to)); (E <<Sin ("_ﬁxum] (-)))q(a+1)> (t0)> -

1
q

1

) [(Z (Xtto.m () (to)) g 1) E ¢ 1}

1
q

% [(E (X[_”ﬂfo} ()) (t0)> w (g + l)ﬁ + 1]

47
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7 . |—to a(at1) TerD
x (D%_X, o <(q}r1)L ((sm (%X[_W,to] ('))) > (to)) ) }} .
Lq,[fﬂ',to]

Corollary 4.6: All as in Theorem 4.1. Further assume that L (1) = 1 and % <
a<1 (i.e.n=1). Then, ¥Vt € [—7,w], we have

1
204+;7I_a

E(IM(X) = X|9) (1)) < i . 57
(E(IM(X) - X|") (1)) YA TIETY YA (57)

X {{ (21 0) (2 (30 (5 0)) )]

1
q

1

X [(f (X1t () (t)) e )E 1}

x O (thX, 2 <(q Jlr 1)E <<Sin (I' ;tlx[m] (.)>>q<a+1>> (t)) <+>)

La,[t,n]

{0 o ()Y )

1

" [(Z (tt=ra) () (t)) - (g+ 1)@ + 1] q

x O (D?_X, 2 <(q+11)L ((Sm (‘Ttx[—ﬂvt] ()>) ) <t)> > [ }}} .
La[—m,t

Of great interest in Corollary 4.6 is the case of a = % We require that ¢ > 2.
Due to lack of space we omit this statement.

Corollary 4.7: All as in Theorem 4.2. Further assume that Z(l) =1 and
X (tg,w)=0,YweQ, allk=1,...n—1, for a fired ty € [—m,x]. Then

(27)°

E(\M(X)—Xl)(to)ém
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X { Rz a0 (tO))NL " (OlJlrl)] (E <(Sin (%X[—n,to] (')))aH) (to)> "
o (D%X’ o (E ((Sin (l _éltox[—mto} (.)>)O‘+1> (t0)> "‘1“)
LY [= to]
" [@ (deom () (to))ail + (ain} <E <(Sin (55X (‘))>a+1> (to)> "

x O (D,;‘;OX, o (E ((sin (" ;toxum (,)>>a+1> (t0)> +) } . (58)
L fto.x]

Corollary 4.8: All as in Theorem 4.2. Further assume that L (1) =1 and 0 <
a < 1. Then, V t € [—7,m|, we have

E(IM(X) - X)) (@) <

{ [(E (X[ () (t))ail +o i 1)] ('E ((Sin <|- - t|X[_m] (.)>>a+1) (ﬂ) o
xQ (DtaX, 27 (E <<Sin <|- ; t’X[—m} (.)>>a+1> (t)> QL)

Ll’[fﬂ-zt]

x Q (Df:tx, o (E ((sin <|' - t’x#,ﬂ (.)>>a+1> (t)) +) } . (59)
Lt

Corollary 4.9: All as in Theorem 4.2. Further assume z(l) = 1. Thenm V
t € [—m, x|, we have

E (M (X) - X|) (t) < 2v2
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@ (2 (m (5 0)) o)
o)) o)
LY~ ]
[y 3] (5 (o (5 0m0))

% O (DEtX, o (E <<sin <|;t’xu,w] (.))> 3) (t)> ) . (60)
L [t

) t,ﬂ'

|
SN—
—
o~
N—
SN—
wl~

Next we give uniform norm results. They are based on Theorems 4.3, 4.4.

Corollary 4.10: All as in Theorem 4.3. Assume further% <a<landL(1)=1.
Then

1

. [(q P 1)@ 4 1] |

I (@) (p(a—1)+1)7 (g+ 1)

L ((sin (';ﬂx[tﬂ (.)>>q(a+1)> (t)
‘Z ((sm ('%‘X[tm] (')))Q(GH)) (t)HOO> (;+)> s }
L <<sin <;t|><[mt} ()))q(aﬂ)) (t) o

[e.e]

() )] )7),

Corollary 4.11: All as in Theorem 4.4. Assume further0 < o < 1 and L (1) =1.
Then

(61)

1B (1M (X) - X|)||% <

il

X sup (fotX, 2w <(t1+11)

te[—m,m]
+ {

x sup (D¢ X, 27 (1
tel—mm] 1< t (a+71)

a
q(a+1)

(2m)* (a4 2)

12 (1M (X) = X[l < T(a+2)
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L <<sin <|’;t‘><[—7r,t1 (')>>a+1> (t)

P
a+1

o0

d

x sup 1 (D?X, 21

te|—m,m]

L <<sin <;t|><[w,ﬂ (')>>a+1> (t)

1
aﬂ)
> Lt ,[—W,t]

=
a+1

i (( ("5 e <~>)>QH> (0

o0

o0

51

_ ’ - t| a+1 a-lu
x sup Q | D&X, 27 || L (sin (4 X[t,7] ()>> (t) . (62)
te[—m,m]
L [t,x]

Corollary 4.12: All as in Theorem 4.4. Here o = % and L (1) =1. Then

131 () - K], < 222

te[—m,m]

L ((sin (met] (')>>§> (t) |

X sup Ql(DtQX, 27

_l’_

L ((sin (‘;ﬂxw,w} (')>> 2) (t)

L ((sin <|'4t><[tm] (')>>;> (t) |

te[—m,m]

X sup 4 (Dth, 2



52 Bulletin of TICMI

5. Application

Consider the Bernstein polynomials on [—7,x] for f € C ([—7, 7)) :
N

By (f) (x) = Z <];f> f (_W+ 2]7\rfk> <x24;7r>k <7r2—7rx>Nk’ 60

k=0

N € N, any = € [—m,7]. There are positive linear operators from C ([—m,7]) into
itself.

Setting ¢ (t) = f (2wt — w), t € [0, 1], we have g (0) = f (—m), g (1) = f (7), and

N
Bxa0=3 (§)a(5)ta-0""*=Bun @), celnal. (©)

k=0
Here x = ¢ (t) = 27t — m is an 1 — 1 and onto map from [0, 1] onto [—m, 7]. Clearly

here g € C ([0, 1]).
Notice also that

(Bx ((-22)) () = [(By (¢ - 07)) 0] 2 = 41—

_ (2]732 (2*:) (”%x) _ % (@ +m)(r—2) < 7;5 Ve -mal.

Le.
2
(BN ((. ~ x)2)> () <0 Yae[-mal. (66)
In particular
(Byl) (z) =1, Vxe[-mmn]. (67)

Define the corresponding application of M by

By (X) (t,w) := By (X (,w)) () =

S(N)r( 2 () ()T w

VNeNVte|-mn],Vwe N, where X is a stochastic process. Clearly By is a
stochastic process.
We give

Proposition 5.1: Let X (t,w) be a stochastic process from [—m, ] x (Q,F, P)
into R, where (Q, F, P) is a probability space. Here 0 < a < 1 (i.e. n = 1) and
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X (-,w) € AC ([—m, w1]) with XN (-,w) € Loo ([—7, 7)), ¥V w € Q. Further we assume
that DX (z,w) 1is a stochastic process for z € [t, ], w € Q, and D X (z,w) is
a stochastic process for z € [—m,t], w € Q; V t € [—m,w|. For any t € [—7, 7] we
assume that D% X (z,w) is continuous in z € [t, 7], uniformly with respect tow € Q.
And for any t € [—m, 7| we assume that D X (z,w) is continuous in z € [—m, ],
uniformly with respect to w € . Finally, we assume that (E|X|) (t) < oo, V
t € [—m,w|. Then, for anyt € [—m, 7|, we have:

(2m)*
I'(a+1)

y { |:(BN (Xt () (t))(%“ i " i 1)} (BN <<sin (|;t|X[mt] (-)))"“) (t)) =4

1

« . | _ t| atl o
x| D X, 27 | By (Sln <4X[—7T,t] ())) (t)
Lt,[—m,t]
1 R atl %ﬂ
+ B () )7 + ] <BN ((sm (5% 0)) ) <t>>

1

x O | DX, 2n <BN ((m (";”X[t,ﬂ (.)>)a+1> (t)) o . (69)

L [t,x]

E([By () - x|) (1) <

vV N € N.
Proof: By Corollary 4.8. O
We give

Proposition 5.2: All as in Proposition 5.1 with o = % Then, for anyt € [—m, 7],
we have:

E(‘EN (X) —XD (t) < 2v2

x { [(BN (X[ () (0)° + ;] (BN (<Sin (bﬂx[_”} (')>>g> (t))é
“ (D}X, o (BN <<sin <|;t|X[mt] (.))> 3) (t)) 5)
LY, [—mt]
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+ ﬂ (BN ((sin (";t'xm <->>> ) <t>>§
« 0 [ DX, 2r (BN <<sm (";“XM (.)>)g> (t)>§ . (70)

vV N eN.

w

-%RBN(Mmqm>@»

Proof: By Proposition 5.1. O

We continue with

Proposition 5.3: All as in Proposition 5.1 with o = L. Then, for any t €

2
[—7, 7|, we have:

E (‘EN (X) —XD (1) < m;@ (BN ((Sin (|;t|>>> (ﬂ)é
< | (DEX, o <BN <<sin (';”)) ) (t)) i) o
s (D;tx, o (e ( (50 (15))) <t>)§)m -

v

vV N eN.
Proof: By (70) and the positivity of By, see also (39) and (41). O
We make
Remark 1: By |sinz| < |z|, V z € R — {0}, in particular, sinz < z, for x > 0,
we get
3 3
si ‘_t| 2 < |_t| 2 1‘ t’é
in|—— — ) == —t2.
4 - 4 8

Hence

<<l (--a8) o) (72)

n((n(55))

o
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G )

We observe that

. N
By (|- =t3) 1) = >
k=

0

v |w

2k
N

t+mT—

(by discrete Holder’s inequality)
N 2 k N-k]1
§ Z 4+ — % N t+m T™—1
— N k 27 27

_ (BN ((. 4)2) (t))i O vielma]. (73)

Consequently, we have

[ (- ) o] < 25 -
and
me (s (50) Ve =2 vven

We further have

Proposition 5.4: All as in Proposition 5.1 with o = % Then, for anyt € [—m, 7]
we have:

E (‘EN (X) - XD (t) < 5{%?
) 2 i 2
x | (Dg_X, 2\/ﬁ> . + 0 <D,ftX, W) Llﬁ[m]] , (76)
vV N eN.
As N — +o0, we get E (‘EN (X) —XD (t) = 0.
Proof: By (71) and (75) and positivity of By. See also Proposition 3.3. O

Consequently we obtain

Proposition 5.5: All as in Proposition 5.1 with o = % Assume further that
‘X(l) (t,w)| < M*, ¥ (t,w) € [—m, 7] x Q, where M* > 0. Then

5V 2w

= (1Bx 00 - X)) < 77
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7[.2

1 L w2
x| sup O <D2_X, ) + sup <Df X, > , (77)
[te[w,ﬂ ! 2\/N LY [—-mt]  t€[—m,m] ' 2\/N L, [t,m]

V N €N.
As N — +o0, then HE (‘BN (X) —XDH — 0, i.e. By — I (stochastic unit
oo

operator) in 1-mean.
Proof: By (76) and Remark 2, see (13), (14). O
Remark 2: (to Proposition 5.5) Assume that

0 (D;X G ) KT e era) YN eN (78)
1 Ay T = > T = —T,T, 9
! 2V N LY~ ] 2vV N

where K1 > 0.
And assume that

0 <D5X “2> <om e ], YN eN (79)
1 * e = -, )
K 2VN /) pita) 2VN

where Ky > 0.
Conditions (78), (79) are of Lipschitz type of order 1.
By (77) and (78), (79), we easily derive that

I (0. < o
VY N € N, where 6 > 0.

Thus, at smoothness of order % we achieve speed of convergence #, N € N.
4

Without any smoothness, in [5], we proved that the speed of convergence was Tlﬁ’

N e N.

In the presence of the ordinary first derivative, see [5], in deterministic approxi-
mation the rate of convergence was %, N e N.

Naturally, we have as expected:

1 1 1
— < —<—, VNeN-{1}. 81
N <N <% { (s1)

6. Trigonometric Stochastic Korovkin Results
In this section E, M are meant as sequences of operators.
We give first pointwise results:
Theorem 6.1: Here all as in Theorem 4.1. Assume further that L (1) (t) — 1
~ .7 q(a+1)
and L <(sin <%)> > (t) = 0, pointwise in t € [—m,7].

Then E(|M (X)—X|")(t) — 0, pointwise in t € [—m, x|, that is M — I
(stochastic unit operator) in q-mean-pointwise with rates, quantitatively.
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Proof: We use (48), we take into account L (1) () — 1, (36); and L (Xt (1) (),
L (X[—Tr,t] (1) @) < L (1) (t), which L(1)(¢) is bounded, and by (39), (41) and
positivity of L we get that

E((sn (350m 0))" ) 0 2 (s (ea ) 0 <
E((sn(559)" ) @0

Finally, we use Proposition 3.4 (ii) for the €4 (-,-)’s to go to zero. O
We continue with
Theorem 6.2: Here all as in Theorem 4.2. Assume further that L (1) (t) — 1
and L <(Sin (lztl)yaﬂ)) (t) — 0, pointwise in t € [—m,].

Then E(|M (X)—X|)(t) — 0, pointwise in t € [—m, x|, that is M — I in
1-mean-pointwise with rates, quantitatively.

Proof: Based on (51), similar to the proof of Theorem 6.1, just take ¢ = 1 there.
O

Next we give uniform results:
Theorem 6.3: Here all as in Theorem 4.3. Assume further that z(l) — 1,

wniforaty, and | (sin (151))") )
Then ||E (M (X) — X[9)|

quantitatively with rates.

— 0.

[e.9]

w — 0 over [—m, 7], that is M — I in the g-mean,

Proof: We use (54), we take into account L (1) — 1, uniformly, (37); HE (1)” is

o0

bounded, use of (40), (42) and Remark 2, see there (13), (14). O
Next we give the Li-mean uniform result
Theorem 6.4: Here all as in Theorem 4.4. Assume further that z(l) — 1,

wniforaty, and | ((sin (54)) ™) 0)
Then ||E (|M (X) - X])

quantitatively with rates.

— 0.
[o.¢]
— 0 over [—m, x|, that is M — I in the 1-mean,

oo

Proof: Use of (55), similar to the proof of Theorem 6.3, just take ¢ = 1 there. O

Remark 1: An amazing fact/observation follows: In all trigonometric conver-
gence results here, see Theorems 6.1-6.4, the forcing conditions for convergences
are based only on L and basic real valued continuous functions on [—m, 7| and are
not related to stochastic processes, but they are giving trigonometric convergence
results on stochastic processes!
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