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Strain gradient theories of elasticity are used for the description of the so-called size effect:
Materials in (sub-) micro-structures show a stiffer elastic response, e.g., during bending. A
quantitative understanding of the size effect is important during the design phase of micro-
and nanosized systems which, for example, may be accompanied by Finite Element (FE)
simulations. Special attention will be paid to a specific higher-order theory known as the so-
called modified strain gradient theory of linear elasticity, which goes beyond the limits of the
classical Boltzmann continuum. The objectives of this paper are to determine the material
length scale parameters by analyzing experimental data obtained from force-displacement
measurements using extremely small cantilever beams. The corresponding data is studied
with analytical as well as numerical tools based on higher gradient theory. In particular,
deflection measurements were performed and force data was recorded for submicron beams
made of epoxy and SU-8. Bending rigidities were measured with the help of atomic force
microscopy. An analytical solution of Euler-Bernoulli beam theory is presented incorporating
the necessities of the extended theory. In contrast to existing work on the formulation of the
strain gradient theory in terms of an FE-formulation and analysis, the crucial differential
equation developed here is consistently based on the balance of linear momentum and on
the balance of moment of momentum. The obtained data from the finite element modeling,
the derived analytical formulae and the obtained data from the experiments is used for the
evaluation of higher gradient coefficients.

Keywords: Strain gradient theory, Couple stress theory of elasticity, Finite elements,
Variational formulation.
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1. Introduction

A quantitative understanding of the so-called size effect in micro- and submicrostruc-
tures is of great importance during modeling of Micro- and Nanoelectromechanical
Systems (MEMS/NEMS). A size effect on the micro- and on the nanoscale is, for
example, reflected in a stiffer elastic response to external loads. This has been
observed in metals and polymers deforming plastically [7, 8]. As far as a size effect
in elasticity is concerned, Lam et al. (2003) [10] observed an increase in bending
rigidities of micro-beams made of epoxy. The values for the bending rigidities were
about 2.4 times larger than predicted by conventional theory, when the beam thick-
nesses decreased from 120 to 20 µm. McFarland et al. (2005) [13] have observed
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similar variations in the bending rigidities of polypropylene micro cantilevers, also
within the linear elastic regime. Analogously, other experiments have shown an
apparent increase in Young’s modulus without referring to higher-order theories
[3, 11]. Lam et al. (2003) [10] have shown that in the absence of strain gradients
(for example, in uniaxial tensile tests) the elastic behavior of epoxy is independent
of the thickness of the sample, which is confirmed by strain gradient models.
Conventional theories based on the Boltzmann (a.k.a. Cauchy) continuum are
not able to predict a size effect. In the present work the strain gradient theory is used
as a so-called continuum theory of higher-order. First works on the development
of couple stress theories by, e.g., Toupin (1962) [16], Mindlin & Tiersten
(1962) [14], Koiter (1964) [9] and Mindlin & Eshel (1968) [15] contain second
order derivatives of the displacement vector to account for quantities such as
curvature or rotation. It was not before the introduction of second order derivatives
in terms of higher-order constitutive relations and energy considerations, that a
generalization of a strain gradient continuum had been achieved and Eringen
proposed “nonsimple materials of the gradient type” [5] in order to derive the
corresponding higher-order material dependencies.

2. Modified strain gradient theories

The starting point of the present study is the evaluation of one of the three reduced
forms of the higher-order strain energy densities for small deformations uSG (“SG” =
Strain Gradient), postulated by Mindlin (1962) [14]. In the following, we make use
of the Einstein summation convention on repeated indices. Spatial partial deriva-
tives in a Cartesian coordinate system are denoted by comma-separated indices.
Mindlin’s various representations of the strain energy density read:

uSG = u1ST(εij , ηijk ) = u2ND(εij , η̃ijk ) = u3RD
(
εij , η̄ij , ¯̄ηijk

)
, (1)

where εij = u(i,j) = 1
2 (ui,j + uj,i ) denotes the small strain tensor (or the symmetric

part of the gradient of displacement), ηijk = uk,ij the second gradient of displacement,
¯̄ηijk = 1

3 (uk,ij + ui,jk + uj,ki ) the symmetric part of the second gradient of displace-
ment, η̃ijk = 1

2 (uk,ij + uj,ki ) = εkj,i the gradient of strain, η̄ij = ϕi,j = 1
2εilk uk, lj

the gradient of rotation, ϕi = 1
2εijk uk,j the macroscopic rotation vector, and εijk the

alternating tensor (or Levi-Civita symbol). The corresponding work-conjugated
stress measures of the first form are [4]:

σij = ∂u1ST

∂εij
and µijk = ∂u1ST

∂ηijk
, (2)

if linear elastic material behavior is assumed. σij and µijk denote the Cauchy stress
tensor and the hyper- (or double-) stress tensor, respectively. For nonsimple materials
of the gradient type a linear-elastic strain energy density of the first form results in:

u1ST = Cijkl εkl εij +Dijklmn ηlmn ηijk +Bijkloηklo εij , (3)
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where Cijkl and Dijklmn are the elastic and higher order elastic constants and Bijklo
denote coupling constants [2]. These will vanish for the material symmetry class of
isotropic materials and then the linear-elastic strain energy density reduces to [4, 15]:

2u1ST = α1εij εij + α2εkk εmm + β1ηijk ηijk + β2ηiik ηjjk

+ β3ηiik ηkjj + β4ηijj ηikk + β5ηijk ηkji ,
(4)

where α1 and α2 are identified as Lamé’s constants, whereas β1, ...,5 represent five
additional material parameters. In order to reduce the number of independent addi-
tional material parameters from five to three, a decomposition of the second gradient
of displacement ηijk (as introduced by Fleck & Hutchinson (1997) [6]) is used in
combination with making use of the macroscopic rotation vector ϕi . The symmetric
part of the second order deformation gradient ¯̄ηijk (see Fig. 1) reads:

¯̄ηijk = 1
3 (uk,ij + ui,jk + uj,ki ) . (5)

¯̄ηijk is further decomposed into a spherical part η(0)ijk and into a deviatoric part η(1)ijk :

η
(0)
ijk = 1

5
(
δij ¯̄ηmmk + δjk ¯̄ηmmi + δki ¯̄ηmmj

)
and η

(1)
ijk = ¯̄ηijk − η(0)ijk . (6)

ijk
ijk A

ijk

(1)

ijk

(0)
ijk ij

S
ij A

ijimm, A
ij

Figure 1. Scheme of decomposition of the second order gradient of displacement.

With the help of the definition of the macroscopic rotation vector ϕi and the anti-
symmetric part of its gradient χAij = 1

2 (ϕi,j − ϕj,i ), two relations can be obtained:
First, the spherical part of the second order deformation gradient η(0)ijk can be de-
composed into εmm,i and χAij ; second, it can be shown that the anti-symmetric part
of ηijk will completely depend on the gradient of rotation η̄ij , i.e.:

(i): ¯̄ηmmi = εmm,i + 2
3εilnχ

A
ln , (7)

and

(ii): ηAijk = 2
3 (εikl η̄lj + εjkl η̄li ) . (8)

When assuming symmetry for the couple stress tensor µij (the work-conjugate of the
gradient of rotation), as proposed by [19], the anti-symmetric part of the gradient
of rotation does not affect the strain energy. In summary, the linear-elastic strain
energy density for isotropic nonsimple materials of the gradient type uMSG reads in



48 Bulletin of TICMI

its modified form (“MSG” = Modified Strain Gradient):

uMSG = û
(
εij , εmm,i , η

(1)
ijk , χ

S
ij

)
= 1

2σij εij + 1
2pi εmm,i + 1

2µ
(1)
ijk η

(1)
ijk + 1

2µijχ
S
ij

= 1
2λεii εkk + µεij εij + µ`2

0εmm,i εnn,i + µ`2
1η

(1)
ijk η

(1)
ijk + µ`2

2χ
S
ijχ

S
ij ,

(9)

where the corresponding work-conjugated stress measures are:

σij = ∂uMSG

∂εij
=λεkk δij + 2µεij , pi = ∂uMSG

∂εnn,i
=2µ`2

0εmm,i

µ
(1)
ijk = ∂uMSG

∂η
(1)
ijk

=2µ`2
1η

(1)
ijk , µij = ∂uMSG

∂χSij
=2µ`2

2χ
S
ij ,

(10)

involving the Cauchy force stress tensor, σij , the couple stress tensor, µij , and two
further higher-order material stress measures, pi and µ(1)ijk .

3. A finite Element approach to a reduced MSG model

Various papers on the Finite Element Method (FEM) of strain gradient theories
deal with the adjustment of special finite element formulations in order to calculate
and evaluate second order gradients of displacement [1, 18]. In contrast to them the
present study implements a reduced part of the modified strain gradient theory of
linear elasticity, i.e., for the case `0 =`1 =0 and `2 =`. The derivation of the presented
variational formulation is consistently based on the balance of linear momentum and
on the independent balance of moment of momentum. This procedure provides the
possibility of a more or less rational justification of size effects by only referring to
the intrinsic rotations.

3.1. A variational formulation for the FE implementation

The starting point is the static balance of linear momentum in its global formulation,
without body-forces:

0 =
¾

∂V

tj dA =
¾

∂V

ni σij dA , (11)

where tj represents the force stress vector acting on the surface of the volume V . By
applying Gauss’ theorem, the surface integral in Eq. (11) is turned into a volume
integral, and the local form of the static balance of linear momentum reads:

»

V

σij,i dV = 0 ⇒ ∂σij

∂xi
= 0 . (12)
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The global formulation of the static balance of moment of momentum without body-
couples is derived analogously [10]:

0 =
¾

∂V

(εjik xi tk +mj ) dA =
¾

∂V

(εjik xi nl σlk + niµij ) dA . (13)

After application of Gauss’ theorem the surface integral in Eq. (13) is turned into
a volume integral and the local form of the static balance of moment of momentum
becomes [5]:

0 =
»

V

(
(εjik xi σlk ),l + µij,i

)
dA =

»

V

(
(εjik xi, l σlk + εjik xi σlk, l ) + µij,i

)
dA . (14)

If symmetry of the force stress tensor σlk =σkl is assumed, and the static balance of
linear momentum (Eq. 12) is used, then:

εjik xi, l σlk = εjik δil σlk = εjlk σlk = 0 , (15)

and

εjik xi σlk, l = 0 , (16)

and the local form of the static balance of moment of momentum is:
»

V

µij,i dV = 0 ⇒ ∂µij

∂xi
= 0 . (17)

The weak formulation of the differential equations (12) and (17) is obtained by
multiplication with a variation of the fields of displacement δuj and rotations δϕj
(a.k.a. test functions), respectively:

»

V

σij,i δuj dV = 0 and
»

V

µij,i δϕj dV = 0 . (18)

Due to the arbitrariness and independence of both sets of test functions, the infor-
mation contained in the original two equations is not affected by the summation:

»

V

(σij,i δuj + µij,i δϕj ) dV = 0 . (19)

By using the rules of integration by parts:
»

V

σij,i δuj dV =
»

V

(σij δuj ),i dV −
»

V

σij δuj,i dV ,

»

V

µij,i δϕj dV =
»

V

(µij δϕj ),i dV −
»

V

µij δϕj,i dV ,

(20)
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and by applying Gauss’ theorem in its more general formulation including jump
terms, the volume integrals in Eq. (20) are turned into surface integrals:

»

V

(σij δuj ),i dV =
¾

∂V

σij δuj nidA−
»

S

r
σij δuj

z
nidS ,

»

V

(µij δϕj ),i dV =
¾

∂V

µij δϕj nidA−
»

S

r
µij δϕj

z
nidS .

(21)

Since the volume V is decomposed into small subvolumes (discretization) in which
the fields of displacement and rotation are approximated polynomially, the continu-
ity of these fields from element to element is not guaranteed yet, and needs to be
accounted for by the jump terms. S denotes the singular surfaces that arise from
the discretization of the volume. The jump brackets are defined as follows:

r
σij δuj

z
ni =

(
σ+

ij δu
+
j − σ−ij δu−j

)
ni ,

r
µij δϕj

z
ni =

(
µ+

ij δϕ
+
j − µ−ij δϕ−j

)
ni ,

(22)

where (·)+ and (·)− are the components of a quantity evaluated on the positive
side of S minus its evaluation on the negative side. ni is the surface normal of the
corresponding surface, showing into the positive region. By combining Eqs. (19)–(21)
we obtain:

0 = −
»

V

σij δuj,i dV +
¾

∂V

σij δuj nidV −
»

S

r
σij δuj

z
nidS

−
»

V

µij δϕj,i dV +
¾

∂V

µij δϕj nidV −
»

S

r
µij δϕj

z
nidS .

(23)

By utilizing pre-implemented continuous Lagrange finite elements (CG-elements),
between which the displacement field is defined as continuous, the jump term given
by Eq. (22)1 is already accounted for and does not need to be incorporated addi-
tionally. Furthermore, σij ni is replaced by the force stress vector tj as well as µij ni

is replaced by the couple stress vector mj , which will be set equal to zero since in
practice it is difficult to realize anyway. This leads to:

0 = −
»

V

(σij δuj,i + µij δϕj,i ) dV +
¾

∂V

tj δuj dV −
»

S

r
µij δϕj

z
nidS . (24)

By means of the definitions of the Cauchy-like force- and couple stress tensors in
Eqs. (10)1 and (10)4, it can be seen that these measures are symmetric. For this
reason and by taking advantage of tensor calculus of symmetric and anti-symmetric
tensors, it can be shown that it is equivalent to multiply symmetric tensors by
symmetric counterparts. Here, a replacement is performed for δuj,i ⇒ δεij and
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δϕj,i ⇒ δχSij . Finally, the implemented variational formulation reads:

0 =
»

V

(
σij δεij + µij δχ

S
ij

)
dV −

¾

∂V

tj δuj dV +
»

S

r
µij δϕj

z
nidS . (25)

3.2. Boundary conditions for a cantilever beam

Following a conventional three-dimensional elasto-static finite element analysis of a
cantilever beam, the translational and rotational motion of the entire model is sup-
pressed by setting the displacements of the nodes on the clamped surface (at x = 0,
cf., Fig. 2-a) equal to zero, what is implemented as a Dirichlet boundary condi-
tion. The loading results from defining a constant force stress vector tj =(0, 0,−F/A)
on the surface at x = L.

(a) (b)

Figure 2. (a) Coordinate system, mesh, and bending mode of the simulation of a cantilever. (b) Numerically
evaluated bending line of the model, for different length scale parameters.

In particular, no boundary condition for the microscopic rotation is incorporated due
to the direct coupling of the rotation vector to the gradient of displacement. Equa-
tion (25) has been implemented in the open-source finite element project FEniCS,
which is able to provide a mesh that consists of second order tetrahedra elements in
order to account for the second order derivatives of ui. The Galerkin method is ap-
plied for spatial discretization and the system matrix is solved based on the method
of Gaussian elimination. A deviation of less than 5% of deflections in comparison
to the CS analytics (cf., Sect. 4) is achieved for a minimum number of elements, if
Poisson’s ratio is set equal to zero.

4. An analytical approach to Euler-Bernoulli beams

Based on the strain energy density (Eq. 9) for the case `0 = `1 = 0 and `2 = `, the
Euler-Bernoulli assumptions are realized by suitable specification of the form
of the displacement vector. The corresponding differential equation:(

EI + µA`2
)
wIV(x) = q(x), ∀x ∈ [0, L] , (26)
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is then derived by using the principle of virtual work. The bending line in an ana-
lytical expression can be obtained by using the following boundary conditions:

Zw′′′(L) = F , Zw(0) = 0 ,
Zw′(0) = 0 , Zw′′(L) = 0 ,

(27)

where Z is an expression for the bending stiffness, Z =
(
EI + µA`2). The bending

line is then given by the following expression:

w(x) = − F

(EI + µA`2)

[
x3

6 −
Lx2

2

]
. (28)

The shear modulus for the analytical approach is µ = E/(2 + 2ν), without transfor-
mation of E between plain strain and plane stress condition. The bending rigidity
is defined to be the ratio of the external force to the deflection of the point where
the force is acting. W and T denote the width and the thickness of the beam, re-
spectively. By comparison to the conventional bending rigidity, D0 = 3EI/L3, and
by expanding the second moment of inertia, I=WT 3/12, and the area of the cross-
section, A = WT , the normalized bending rigidity of the present model reads:

D

D0
= 1 + 6

(1 + ν)

(
`

T

)2
. (29)

This formula depends additionally on the external beam dimension T as well as on
the internal length scale parameter `.

5. AFM experiments with epoxy and SU-8

Static bending tests on freestanding beam structures were performed in order to mea-
sure the elastic modulus of structures with outer dimensions of a few micrometers.
The load F was applied by using the off-axis laser-reflective Atomic Force Microscope
(AFM) MultiView-1000 from Nanonics Imaging Ltd.1 The system consisted of a flat
scanner, including a fine thread that is driven by piezo-elements, which need a high-
voltage power supply. The detection device works with four Photo-Sensitive Diodes
(PSD) interconnected as a Wheatstone bridge and monitor deflections of the laser
beam path. The laser reflects in an obtuse angle from a fixed AFM-cantilever, such
that the system directly monitors its deflections wc, when it is deformed by the
piezo uplift (referred to as the separation z). The raw PSD-signal, obtained in [mV],
is converted into forces F = kcwc in [µN] by the help of a calibration procedure.
From this procedure the spring constant of the AFM-cantilever was determined as
kc = 31.4 N m−1. The calibration process is detailed in Varenberg et al. (2005)
[17], and was performed by using a precise silicon normal provided by the PTB.2 In
micro-beam bending tests it can be assumed that the raw AFM-data consists of a

1www.nanonics.co.il, Jerusalem, Israel
2Physikalisch Technische Bundesanstalt – Braunschweig, Germany
3Fraunhofer Institute for Reliability and Microintegration Berlin, Germany
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combined signal of the deflection of the AFM-cantilever and the micro-beam’s deflec-
tion w in the following manner: w= z− wc. By assuming rectangular cross-sections
of the specimens, the following classical relations between the AFM mearues F/w,
the bending rigidities D and the elastic modulus E are used:

D = F

w
, D0 = 3EI

L3 , E = 4L3

WT 3
F

w
. (30)

SU-8 is known as the photo-resist NanoTM-SU-8, which is used in micro-system
technology (cf., [12]) and produced by the company MicroChem. Structuring of the
solid samples (cf., Fig. 3) was carried out in the labs of IZM3. Widths and lengths
of the samples were realized in the range of 80−124 µm and 82−920 µm, respectively.

50 µm

Figure 3. Exemplary SU-8 micro-beam glued to a glass support (on the left hand side) and loaded with a
single force by the AFM Tip (on the right hand side). Recorded by optical microscopy.
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Figure 4. Plot of the results for the experiments on epoxy and SU-8, as well as approximations by analytical
solutions and finite element simulations.

The epoxy was processed in the following way: The commercially available resin HT
2 from Poxy Systems was mixed with the appropriate hardener in the ratio 100:48
and put between two preparation glasses within a 45-minute processing time. Dif-
ferent spacers between the preparation glasses assured an adjustable film thickness
of 17− 170 µm. The cured epoxy film was cut into stripes by the help of a paral-
lel cutting tool, which allowed obtaining widths between 100− 400 µm. The single
stripes were glued over the edges of cover glasses. The effective bending length was
determined as the distance between the edge of the glass support and the point
of force application, and varied between 180 − 4400 µm. The influence of the vis-
cous material behavior of epoxy was investigated by applying different loading rates
between 0.1− 20 µm s−1, with only a one percent scatter of the measured values.
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6. Results

Based on the experimental work, the material length scale parameter of the modified
strain gradient theory can be determined by using a least square method between the
experimental data and analytical calculations with the help of the target function
of the present theory (Eq. 29).

Table 1. Results

Material Parameter I Parameter II

Epoxy E= 3.93 GPa `= 4.35 µm
SU-8 E= 4.14 GPa `= 1.39 µm

When the sizes of structures made of epoxy and SU-8 are reduced, a size effect
regarding the bending stiffness occurs. The value of the material length scale pa-
rameter for epoxy, which was obtained from measurements in the present work, can
now be compared to the literature value [10]. The deviation is about 17%. The vari-
ation may be attributed to different manufacturing processes, to a difference in the
base materials for the epoxy resin, and to different technical equipment. In summary,
bending experiments with differently sized samples can be used to measure the cor-
responding material length scale parameters of higher-order continuum theories in
linear elastostatics. However, attention has to be paid to the fact that an indepen-
dent quantification of material parameters requires additional modes of deformation.
Due to the small scale, difficulties may arise in the experimental techniques. This
limitation could serve as an explanation for the sparsity of experimental data for
different deformation modes in literature and remains a future challenge.
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