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ON FINITE AND INFINITE OT -SETS
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Abstract: A set X in the Euclidean space Rm is said to be an ot-set if every
three-point subset of X forms an obtuse-angled triangle. Some properties of
finite and infinite ot-sets are considered. In particular, under the Continuum
Hypothesis, it is demonstrated that in the planeR2 there exists an uncountable
set of points in general position, no uncountable subset of which is an ot-set.
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Numerous interesting problems and open questions in the geometry of Eu-
clidean spaces can be indicated, which are of set-theoretical or combinatorial
character. As a rule, they are closely connected with point set theory, finite
or discrete systems, and the structure of convexity (see [1], [3], [4], [5], [6], [7],
[9]). A number of problems of such a kind was raised by P. Erdös in a series
of his publications (cf., for example, [3], [4]).

Here we would like to discuss some questions of this type. First of all, let
us introduce the notation and several definitions.

Below, the symbol N denotes the set of all natural numbers. The cardinal-
ity of N is denoted by ω (which is usually identified with N).

R is the real line and, for any natural number m, the symbol Rm denotes
the m-dimensional Euclidean space (consequently, R = R1).

c is the cardinality of the continuum, i.e., c = card(R) = 2ω.
ω1 denotes, as usual, the least uncountable ordinal (cardinal) number.

Let X be a subset of Rm. We shall say that X is an ot-set if every three-
element subset of X forms an obtuse-angled triangle.

The following two properties are directly implied by the above definition:
(i) any subset of an ot-set is also an ot-set;
(ii) if {Xj : j ∈ J} is a directed (with respect to the standard inclusion

relation) family of ot-sets, then ∪{Xj : j ∈ J} is also an ot-set.

Example 1. In the space Rm, where m ≥ 2, consider the curve given by
the formula

t → (t, t2, ..., tm) (t ∈ [0, 1]).

It is easy to verify that the range of this curve is an ot-set, all whose points
are in general position (i.e., no m + 1 of them lie in an affine hyperplane of
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Rm). The above-mentioned curve plays an important role in the theory of
convex polyhedra, because for m ≥ 4 it provides various examples of so-called
Carathéodory-Gale polyhedra (see, e.g., [5]).

We shall say that an ot-set X ⊂ Rm is maximal if there is no ot-set in Rm

properly containing X.
The following statement is a geometric corollary of general set-theoretical

concepts.

Theorem 1. Any ot-set in the Euclidean space Rm is contained in some
maximal ot-subset of Rm.

Indeed, it can readily be seen that the following two relations for a set
Z ⊂ Rm are equivalent:

(1) Z is an ot-set;
(2) every finite subset of Z is an ot-set.
In other words, the property of being an ot-set is of finite character (see, e.g.,

[11]). Thus, the assertion of Theorem 1 trivially follows from the Kuratowski-
Zorn lemma or, more precisely, from its consequence concerning any property
of finite character.

As far as we know, the following problem remains unsolved.

Problem 1. Give a characterization of all maximal ot-subsets of Rm.

Here are two simple (and constructive) examples of maximal ot-sets in the
Euclidean plane R2.

Example 2. Let X be a half-open unit semi-circumference in the plane
R2, i.e.,

X = {(cos(ϕ), sin(ϕ)) : 0 ≤ ϕ < π}.

Then X is a maximal ot-subset of R2.

Example 3. Let f : R → R be a function, G(f) denote the graph of f
and suppose that the following conditions are satisfied:

(a) f is increasing and continuous;
(b) all points of G(f) are in general position in the plane R2 (i.e., no three

points of G(f) are collinear).
Then G(f) is a maximal ot-set in R2.

Less trivial examples of maximal ot-subsets of the space Rm, are presented
in [8].

It is easy to show that no finite ot-subset of Rm (m ≥ 2) can be maximal.
More precisely, if X ⊂ Rm is a finite ot-set in Rm (m ≥ 2), then there exists
a point x ∈ Rm \X such that the set X ∪ {x} is an ot-set, too.

On the other hand, the following statement was proved in the same work
[8].

Theorem 2. There exists a countable locally finite maximal ot-subset of
the plane R2.
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Notice that the statement analogous to Theorem 2 can be established for
the m-dimensional Euclidean space Rm, where m > 2. In other words, we
have the following

Theorem 3. If m > 2, then there exists a countable locally finite maximal
ot-set in the space Rm.

The proof of this statement can be carried out in the same manner as for
the Euclidean planeR2 (cf. the argument given in [8]). Some additional purely
technical details occur, but they are not connected with substantial difficulties.

Examples 2, 3 and Theorems 2, 3 show that there exist maximal ot-sets
whose cardinalities are equal to c and ω respectively. Keeping in mind these
examples and theorems, it is natural to formulate the second unsolved problem
concerning ot-sets in Euclidean space.

Problem 2. Let m ≥ 2 be a natural number and let κ be a cardinal
number from the open interval ]ω, c[. Does there exist a maximal ot-set in Rm

whose cardinality is equal to κ?

Obviously, this problem becomes trivial under the Continuum Hypothesis.
The next example is taken from [8] and vividly shows that the maximality

of an ot-set essentially depends on the dimension of Euclidean space which
contains the ot-set.

Example 4. Consider the three-dimensional Euclidean space R3 and its
two-dimensional vector subspaceR2×{0}. Let S be a closed semi-circumference
in R2 × {0} whose end-points are y and z. Let l(y, z) denote the straight line
passing through y and z. Take any point x on l(y, z) not belonging to the line
segment [y, z] and put

X = (S \ {y}) ∪ {(x, 1)}.

It is not hard to check that X is an ot-set in R3. Also, as we already know,
S \{y} is a maximal ot-subset of the plane R2×{0} (see Example 2). Since X
properly contains S \ {y}, we conclude that S \ {y} is not a maximal ot-set in
the space R3. Moreover, we cannot even assert that X is a maximal ot-subset
of R3. For instance, if the semi-circumference S is such that

(∀t ∈ S)(||t− x|| < 1),

then the set

X ′ = (S \ {y}) ∪ {(x, 1)} ∪ {(x,−1)} = X ∪ {(x,−1)}

turns out to be an ot-subset of R3 which properly contains X.

The following question naturally arises: is it true, for a finite set Z ⊂ Rm

containing sufficiently many points no three of which are collinear, that there
exists an ot-set Y ⊂ Z containing the prescribed number of points?



30 Bulletin of TICMI

The answer to this question is positive. The proof of this fact is based on
widely known Ramsey’s theorem (see [13], [11]) and on one interesting result
of combinatorial geometry.

Theorem 4. Let X be a subset of Rm such that any three points from X
form either acute-angled or right-angled triangle. Then card(X) ≤ 2m.

For the proof of Theorem 4 and further comments on this statement, see,
e.g., [1].

In connection with Theorem 4, it is reasonable to consider the next example
which shows that, for an infinite-dimensional separable Hilbert space over the
field R, the situation is radically different.

Example 5. Let H denote an infinite-dimensional separable Hilbert space
(over R). It can be shown that there exists a set X ⊂ H such that:

(a) the cardinality of X is equal to c;
(b) any three distinct points of X form an acute-angled triangle.
The existence of X follows directly from the well-known result of infinite

combinatorics stating that there is an almost disjoint family of infinite subsets
of N, whose cardinality is equal to c. Indeed, without loss of generality, we
may identify H with the standard Hilbert space

l2 = {t ∈ RN :
∑

{(t(n))2 : n ∈ N} < +∞}.

Let {Nj : j ∈ J} be a family of infinite subsets of N such that:
(1) card(J) = c;
(2) card(Nj ∩Nj′) is finite for any two distinct indices j ∈ J and j′ ∈ J .
Now, for each j ∈ J , define the element xj ∈ l2 by the formula

xj(n) = (1/2n)χj(n) (n ∈ N),

where χj denotes the characteristic function of the set Nj ⊂ N.
Putting X = {xj : j ∈ J}, it is easy to check that any three distinct points

of X form an acute-angled triangle (cf. [9] where a more complicated argument
for establishing the existence ofX with the above-mentioned properties (a) and
(b) is presented).

Combining Theorem 4 with Ramsey’s theorem, it is not difficult to prove
the following statement.

Theorem 5. Let k be an arbitrary natural number. There exists a natural
number p = p(k,m) having the following property:

for any set X ⊂ Rm with card(X) ≥ p, no three points of which are
collinear, there is an ot-set Y ⊂ X with card(Y ) = k.

The infinite (countable) version of Ramsey’s theorem yields an analogue of
Theorem 5 for infinite (countable) sets.

Theorem 6. Let X be an arbitrary infinite subset of Rm no three points
of which are collinear. Then there exists an infinite ot-set Y ⊂ X.
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The last statement does not admit a generalization to the case of uncount-
able sets in Rm. More precisely, if X ⊂ Rm is an uncountable set no three
points of which are collinear, then we cannot assert (in general) thatX contains
an uncountable ot-subset. In order to show this, we need a certain geometric
property of two-dimensional Sierpiński sets.

Recall that in 1924 Sierpiński constructed (by starting with the Continuum
Hypothesis and utilizing the method of transfinite recursion) a certain subset
of the real line R, which later became a standard tool for producing various
counterexamples in general topology, classical measure theory, and real analy-
sis. This set is now called a Sierpiński set (in R). Its definition looks as follows
(see, e.g., [12]).

A set S ⊂ R is a Sierpiński set if S is uncountable and intersects each
Lebesgue measure zero subset of R in countably many points.

It readily follows from this definition that S is of first category (i.e. small
from the Baire category viewpoint) but is extremely bad from the Lebesgue
measure standpoint. The latter means that every uncountable subset of S is
nonmeasurable in the Lebesgue sense and, consequently, has strictly positive
outer Lebesgue measure.

As was mentioned above, Sierpiński sets play an important role in many
topics of general topology and real analysis (see, for instance, [10], [12]). Here
we wish to give an application of two-dimensional Sierpiński sets to combina-
torial geometry of the Euclidean plane.

Let λ (respectively, λ2) denote the standard one-dimensional (respectively,
two-dimensional) Lebesgue measure on R (respectively, on R2).

If X is any λ-measurable subset of R, then according to the classical
Lebesgue theorem, λ-almost all points of X are its density points (see, e.g.,
[12]). The analogous statement is true for sets measurable with respect to λ2.

Now, let L be an arbitrary straight line in R2 and let Z ∈ dom(λ2).
For each point z ∈ R2, let us denote by L(z) the straight line in R2 passing

through z and parallel to L.
We shall say that a point z ∈ R2 is a linear density point of Z in direction

L if this z is a density point of L(z) ∩ Z ⊂ L(z).
The set of all linear density points of Z in direction L will be denoted below

by the symbol D(Z,L).

Lemma 1. For any Z ∈ dom(λ2), the set D(Z,L) is λ2-measurable.

We omit the standard proof of Lemma 1.

Lemma 2. For any set Z ∈ dom(λ2), we have

λ2(Z \D(Z,L)) = 0,

i.e., λ2-almost all points of Z are its linear density points in direction D.

The proof of Lemma 2 easily follows from the above-mentioned Lebesgue
theorem, Lemma 1 and Fubini’s theorem.
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Lemma 3. Let L1 and L2 be any two straight lines in R2 and let Z be an
arbitrary λ2-measurable set with λ2(Z) > 0. Then there exists a point z ∈ Z
which simultaneously is a linear density point of Z in direction L1 and a linear
density point of Z in direction L2.

Clearly, Lemma 3 is a direct consequence of Lemma 2. In its turn, Lemma
3 easily implies the next auxiliary statement of geometric character.

Lemma 4. Let △ be a triangle in R2, let a and b be the lengths of two
sides of △, and let γ denote the internal angle of △ formed by these sides. Fix
a real ε > 0 and take any set Z ∈ dom(λ2) with λ2(Z) > 0. Then there exist
three points x, y and z in Z such that:

(1) the internal angle in the triangle [x, y, z] formed by the line segments
[x, y] and [x, z] is equal to γ;

(2) |a/b− ||x− y||/||x− z||| < ε.

It follows from Lemma 4 that, for any triangle △, the set Z contains the
vertices of a triangle which is almost similar to △. Therefore, taking an arbi-
trary acute-angled triangle △, we obtain that Z contains the vertices of some
triangle △∗ which is almost similar to △, so one may assume that this △∗ is
acute-angled as well.

The just mentioned geometric fact will be crucial for our further consider-
ation.

A set S ⊂ R2 is a Sierpiński set if S is uncountable and intersects each
λ2-measure zero subset of R2 in countably many points.

Lemma 5. Assuming the Continuum Hypothesis, there exists a Sierpiński
set S in R2, all points of which are in general position.

Proof. The argument is fairly standard (cf. [12], [9]). Let {Bξ : ξ < ω1}
denote the ω1-sequence of all those Borel subsets of R

2 which have λ2-measure
zero. By using the method of transfinite recursion, we construct a family
{sξ : ξ < ω1} of points of R2.

Suppose that, for an ordinal ξ < ω1, the partial family {sζ : ζ < ξ} has
already been defined and put

S(ξ) = {sζ : ζ < ξ}.

For any two distinct points x and y from S(ξ), denote by L(x, y) the straight
line passing through x and y. Now, consider the set

P (ξ) = (∪{Bζ : ζ < ξ}) ∪ (∪{L(x, y) : x ∈ S(ξ), y ∈ S(ξ), x ̸= y}).

Evidently, λ2(P (ξ)) = 0. Therefore, we may take a point s ∈ R2 \ P (ξ) and
put sξ = s.

Proceeding in this manner, we are able to construct the required family
{sξ : ξ < ω1} ⊂ R2. Finally, denoting

S = {sξ : ξ < ω1},
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we conclude that S is a Sierpiński set in R2 and all points of S are in general
position. This completes the proof of Lemma 5.

Now, we are ready to prove the following statement.

Theorem 7. Under the Continuum Hypothesis, there exists an uncountable
set S ⊂ R2 of points in general position, such that no uncountable subset of S
is an ot-set.

Proof. Let S be as in Lemma 5 and let us verify that for this S the
assertion of Theorem 7 is valid. Suppose otherwise, i.e., suppose that there
exists an uncountable S ′ ⊂ S which is an ot-set. According to the definition of
Sierpiński sets, S ′ has strictly positive outer λ2-measure. Consider the closure
cl(S ′) of S ′. Clearly, the set cl(S ′) is λ2-measurable and λ2(cl(S

′)) > 0.
Now, one of the consequences of Lemma 4 says that cl(S ′) contains the ver-

tices of an acute-angled triangle. On the other hand, since all neighbourhoods
of any point of cl(S ′) contain some points of S ′, and S ′ is an ot-set by our as-
sumption, it readily follows that any three distinct points of cl(S ′) must form
either obtuse-angled or right-angled triangle. We thus obtain a contradiction
which ends the proof.

Remark 1. Similarly to the proof of Theorem 7, it can be established
that, under Martin’s Axiom, there exists a set S ⊂ R2 with card(S) = c such
that:

(a) all points of S are in general position;
(b) there is no ot-subset of S whose cardinality is equal to c.
Indeed, the role of S can be played by a generalized Sierpiński set in R2

no three points of which are collinear.

Remark 2. As is known, the dual objects to Sierpiński sets are Luzin sets
(see, e.g., [12] where the Sierpiński-Erdös duality principle and Luzin sets are
discussed with some applications). For proving Theorem 7, we could start with
a Luzin set Z ⊂ R2, all points of which are in general position (the existence of
such an Z follows from the corresponding analogue of Lemma 5). Arguing in
this manner, we get a simpler proof of Theorem 7 which does not need Lemmas
1 - 4. However, Lemmas 1 - 4 are of their own interest and can be applied to
other combinatorial and set-theoretical questions of Euclidean geometry.

Remark 3. The well-known Dushnik-Miller theorem [2] from infinite com-
binatorics states that if G is an uncountable complete graph whose edges are
coloured with two colours, say, 0 and 1, then either there exists an uncountable
subgraph of G all whose edges are coloured with 0 or there exists an infinite
subgraph of G all whose edges are coloured with 1 (see also [9] where much
stronger versions of the result are presented). This is one of possible gener-
alizations of Ramsey’s theorem to the case of uncountable sets. Theorem 7
shows in an implicit manner that if we replace edges (i.e., two-element subsets)
by three-element subsets, then the corresponding combinatorial statement fails
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to be true in general.
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