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Abstract. The analysis on manifolds with singular geometry (e.g., with
conical points, edges, corners, or higher polyhedral singularities) gives rise
to a new machinery of operators with symbolic structures which is able
to express the regularity of solutions to elliptic boundary value problems
via parametrices. Examples are mixed problems of Zaremba type, crack
problems, or models when potentials in an operator have singularities at
special points or along interfaces within the domain (for instance, Coulomb
or other potentials in Schroedinger operators, coming from the position of
particles).

We outline a calculus on corresponding stratified spaces, where the strata
(boundaries, interfaces, etc.) contribute their own principal (and complete)
symbols to the problem which determine ellipticity and induce adequate
new scales of weighted spaces and subspaces with asymptotics.

The problems including the symbolic structures will be interpreted in the
framework of algebras of operators with a specific dependence on parameters
and with a typical degenerate behaviour in the distance variables to the
singularities. We illustrate an iterative process of building up the calculus
for higher singularities.
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Introduction

Elliptic operators on spaces with singular geometry appear in connection
with numerous applications of mechanics, elasticity theory, crack theory, and
mathematical physics, but also in pure mathematics such as geometry and
topology.

The approach that we are discussing here, is to a large extent inspired by
singular integral equations and pseudo-differential analysis. Both the concrete
models themselves and the theoretical insight have been promoted by the work
of Vekua and other Georgien scientists, especially, Muskhelishvili, Kupradze,
and may others, and there is now a long tradition in this field in Georgia, with
strong activities up to the present. Models with singularities in the geometry of
a manifold or in the coefficients of operators have been studied by many authors
worldwide. Despite of the achievements of the ‘classical’ period, connected
with the names of Kondratiev [16], Agranovich and Vishik [1], Grisvard [11],
and many others, there is now a broad international development and a new
enthusiasm in studying singular problems by new means and with realistic
chances to understand them in terms of pseudo-differential algebras, index
theory, and geometric and topological ideas. An overview on the latter aspects
and a comprehensive bibliography is given in [20].

There is an enormous variety of different problems with specific challenges
and individual properties that affect the nature of solvability, up to numerical
processes. It is therefore desirable to point out a number of common features
(‘axioms’) that apply to sufficiently general situations of applications. This is
the primary goal of our approach.

1. Degenerate operators and symbolic hierarchies

1.1. Fuchs type and edge-degenerate operators. The basic (local) model
of a (regular) conical singularity is the cone

X∆ := (R+ ×X)/({0} ×X) (1.1)

with X being a C∞ manifold (here compact, with or without boundary), where
{0} × X represents the conical singularity v in the quotient space. We then
have the open stretched cone

X∧ := R+ ×X ∼= X∆ \ {0}
with a splitting of variables (r, x). An example is X∆ = Rn+1 with v = {0} as
the conical singularity and X = Sn, the unit sphere. Expressing a differential
operator Ã in Rn+1 of order µ ∈ N with C∞ coefficients in Rn+1 in polar
coordinates we obtain an operator of the form

A = r−µ

µ∑
j=0

aj(r)
(−r

∂

∂r

)j
(1.2)

with coefficients aj(r) ∈ C∞(R+, Diffµ−j(X)). Here Diffν(X) is the space of
differential operators on X of order ν, with smooth coefficients in local coor-
dinates.
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Another example of an operator (1.2) with µ = 2 is the Laplace-Beltrami
operator, associated with a Riemannian metric on X∧ of the form

dr2 + r2gX(r),

with gX(r) being a family of Riemannian metrics on X, smooth in r up to
r = 0.

Operators of the form (1.2) will be called of Fuchs type. Given a manifold
M with conical singularity v, i.e., M \ {v} is C∞, and M is locally near v
modelled on (1.1), we have a space Diffµ

deg(M), defined to be the set of all
A ∈ Diffµ(M \ {v}) that are locally near v of the form (1.2). (In the singular
set-up the notation ‘manifold’ is used for convenience; clearly, it happens that
M is not a topological manifold, namely, when the base of the cone is not a
sphere.)

In this exposition we freely employ some basic tools on pseudo-differential
operators on a C∞ manifold X. By Lµ

cl(X;Rl) for an open C∞ manifold X we
denote the space of classical pseudo-differential operators of order µ ∈ R with
parameters λ ∈ Rl that are (mod L−∞(X;Rl)) locally given in the form

Op(a)(λ)u(x) =

∫∫
ei(x−x′)ξa(x, ξ, λ)u(x′)dx′d̄ξ,

d̄ξ = (2π)−ndξ, with an amplitude function a(x, ξ, λ) in Hörmanders (1, 0)-
space of classical symbols in the covariable (ξ, λ) ∈ Rn+l. We set L−∞(X;Rl) :=
S(Rl, L−∞(X)), with L−∞(X) being the space of all operators on X with C∞

kernel (referring to a measure dx belonging to a Riemannian metrix on X).
By definition every A ∈ Lµ

cl(X;Rl) has a parameter-dependent homogeneous
principal symbol, locally given by the homogeneous principal part a(µ)(x, ξ, λ)
of a(x, ξ, λ) in (ξ, λ) 6= 0 of order µ. For l = 0 the homogeneous principal
symbol of an A ∈ Lµ

cl(X) will also be denoted by σψ(A)(x, ξ). In particular,
any A ∈ Diffµ

deg(M), regarded as an element of Diffµ(M \{v}) ⊂ Lµ
cl(M \{v}),

has a corresponding principal symbol σψ(A). Locally near v in the variables
(r, x) with covariables (%, ξ) we have a ‘reduced’ symbol

σ̃ψ(A)(r, x, %, ξ) := rµσψ(A)(r, x, r−1%, ξ) (1.3)

which is smooth up to r = 0.
A manifold M with conical singularity v is a simple example of a stratified

space, with M \ {v} being the ‘main’ stratum and v another stratum (called
‘mimal’ later on), such that M is the disjoint union

M = (M \ {v}) ∪ {v}.
The symbol σψ(A) is associated with M \ {v}, while v contributes another
(operator-valued) symbolic component, the so-called conormal symbol σc(A).
In the splitting of variables (r, x) ∈ X∧ locally near v we have

σc(A)(w) :=

µ∑
j=0

aj(0)wj : Hs(X) → Hs−µ(X), (1.4)
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a family of operators between standard Sobolev spaces Hs(X), parametrised
by w ∈ C (or, later on, by w on a weight line Γn+1

2
−γ with Γβ := {w ∈ C :

Re w = β}).
Let us now pass to the typical differential operators on a manifold M with

edge Y .
A manifold M with edge Y is a topological space containing Y as a subspace,

such that M \ Y and Y are C∞ manifolds, and M is locally near any point of
Y modelled on a wedge

X∆ × Ω (1.5)

with a C∞ manifold X and open Ω ⊆ Rq, with q = dim Y .
An operator A ∈ Diffµ(M \Y ) is said to be edge-degenerate, if it has locally

near Y in a splitting of variables(r, x, y) ∈ R+ ×X × Ω the form

A = r−µ
∑

j+|α|≤µ

ajα(r, x)
(−r

∂

∂r

)j
(rDy)

α (1.6)

with coefficients ajα ∈ C∞(R+ × Ω, Diffµ−(j+|α|)(X)). Let Diffµ
deg(M) denote

the set of all such A.
From the embedding Diffµ

deg(M) ⊂ Lµ
(cl)(M \ Y ) we have the standard prin-

cipal symbol σψ(A) of any A ∈ Diffµ
deg(M). Moreover, locally near a point of

Y in the variables (r, x, y) with covariables (%, ξ, η) we have a reduced symbol

σ̃ψ(A)(r, x, y, %, ξ, η) := rµσψ(A)(r, x, r−1%, ξ, r−1η) (1.7)

which is smooth up to r = 0, as we see from (1.6). The edge Ω contributes an-
other principal symbolic component, the so-called edge symbol which is locally
in the variables (r, x, y) defined by the expression

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)
(−r

∂

∂r

)j
(rη)α, (1.8)

(y, η) ∈ Ω× (Rq \ {0}).
The operators (1.8) are (y, η)-wise of the form (1.2) and act in weighted

distribution spaces Ks,γ(X∧) on the infinite stretched cone X∧ = R+ ×X

σ∧(A)(y, η) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧) (1.9)

Those spaces are defined in terms of a more general class of spaces, namely,

Ks,γ;g(X∧) := ωHs,γ(X∧) + (1− ω)Hs;g
cone(X

∧), (1.10)

by setting Ks,γ(X∧) := Ks,γ;s−γ(X∧). Here ω(r) is a cut-off function (i.e.,
ω ∈ C∞

0 (R+), ω = 1 near r = 0). Moreover, Hs,γ(X∧) and Hs;g
cone(X

∧) are
formulated in terms of order reducing families on X.

Recall that for every µ ∈ R there exists a parameter-dependent elliptic
family Rµ(λ) ∈ Lµ

cl(X;Rl) such that

Rµ(λ) : Hs(X) → Hs−µ(X)

is a family of isomorphisms for all λ ∈ Rl and s ∈ R.
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Applying that for l = 1, the space Hs,γ(X∧) is defined to be the completion
of C∞

0 (R+, C∞(X)) with respect to the norm

‖u‖Hs,γ(X∧) :=
{ 1

2πi

∫

n+1
2
−γ

‖Rs(Im w)Mu(w)‖2
L2(X)dw

} 1
2
,

with Mu(w) =
∫∞
0

rw−1u(r)dr being the Mellin transform, w ∈ C.

Taking an order reducing family Rs(%̃, η̃) ∈ Ls
cl(X;R1+q

%̃,η̃ )) we first define

Hs;0
cone(R × X) to be the completion of C∞

0 (R, C∞(X)) with respect to the
norm

‖u‖2
Hs;0

cone(R×X)
:=

{∫
‖〈r〉−sRs(r%, rη1)(Fu)(%)‖2

L2(X)d%
}1/2

(1.11)

with F being the Fourier transform on R and any fixed η1 ∈ Rq \ {0}, 〈r〉 :=
(1 + |r|2)1/2, and then we set

Hs;g
cone(X

∧) := 〈r〉−gHs;0
cone(R×X)|R+×X .

In the formula (1.11) the dimension of the extra covariable η is arbitrary, but
6= 0.

If we endow the space Ks,γ(X∧) with a strongly continuous group of iso-
morphisms

κλ : u(r, x) → λ
n+1

2
+s−γu(λr, x),

λ ∈ R+, then we have twisted homogeneity in the sense

σ∧(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ

for all (y, η) ∈ Ω× (Rq \ {0}), λ ∈ R+.

1.2. Operators with edge conditions. An aspect of our calculus is the
following. Given an algebra of differential operators on a configuration M ,
say

⋃
µ∈NDiffµ

deg(M) when M is a manifold with edge Y , pass to a pseudo-

differential calculus on M \ Y which contains the parametrices of elliptic ele-
ments. There are then two basic questions: What is ellipticity, and what are
the specific features of such a calculus. In this section we give an impression
on what we understand by ellipticity.

The case of edge singularities has much in common with boundary value
problems.

For instance, consider the half-space R1+q

+ 3 (r, y) with boundary Rq and a
differential operator A with smooth coefficients

A =
∑

j+|α|≤µ

ajα(r, y)Dj
rD

α
y . (1.12)

Then the standard ellipticity means σψ(A)(r, y, %, η) =
∑

j+|α|=µ ajα(r, y)%jηα

6= 0 for (%, η) ∈ R1+q \ {0}. However, analogously as (1.8) we have an extra
symbol, namely, the principal boundary symbol

σ∂(A)(y, η) := σψ(A)(0, y, Dr, η) : Hs(R+) → Hs−µ(R+) (1.13)
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which plays a role for the ellipticity of a boundary value problem. In fact, the
σψ-ellipticity entails the Fredholm property of (1.13) for η 6= 0, s−µ > −1

2
(the

operators (1.13) are surjective in this case). Then extra boundary operators

u → B1u|r=0, . . . , BNu|r=0

with differential operators Bj ∈ Diffµj(R1+q

+ ), j = 1, . . . , N , give rise to a vector
of mappings

σ∂(|r=0 ◦Bj)(y, η) := |r=0 ◦ σψ(Bj)(0, y,Dr, η) : Hs(R+) → C, j = 1, . . . , N,

that fills up (1.13) to a family of isomorphisms
t(σ∂(A), σ∂(|r=0 ◦B1), . . . , σ∂(|r=0 ◦BN))(y, η) : Hs(R+) → Hs−µ(R+)⊕ CN

(1.14)

for all (y, η) ∈ T ∗R1+q \ 0. The isomorphism (1.14) is just what characterises
the ellipticity of the boundary value problem

Au = f in R1+q, Bju|r=0 = gj on Rq, j = 1, . . . , N. (1.15)

Classical examples of ellipticity of this kind are the Dirichlet or Neumann
problem for the Laplacian A = ∆.

Let us set Tj := |r=0◦Bj and T := t(T1, . . . , TN), σ∂(T )(y, η) := t(σ∂(T1), . . . ,
σ∂(TN)). The boundary value problem (1.15) can be identified with a column
matrix of operators

A := t(A T ) (1.16)

with the principal symbol

σ(A) := (σψ(A), σ∂(A)),

σψ(A) := σψ(A), σ∂(A) := t(σ∂(A) σ∂(T )).

Analogous definitions make sense on an arbitrary C∞ manifold with bound-
ary. The problem to complete the system of such operators A to a pseudo-
differential calculus has been solved in [3] in terms of pseudo-differential oper-
ators with the transmission property at the boundary. This calculus consists
of operator block matrices

A =

(
A + G K

T Q

)
(1.17)

with A having the transmission property at the boundary, a so-called Green op-
erator G, a trace operator T , a potential operator K, and a pseudo-differential
operator Q on the boundary. The role of G is to complete parametrices of
a given σψ-elliptic upper left corner to an analogue of Green’s function. The
role of potential operators is quite evident. Parametrices of elliptic operators
(1.16) are certainly of row matrix form (P K) with such a K as the second
component, while P is just ‘Green’s’ function of the boundary value problem.

It is obvious that the half-space R+ ×Rq is a special wedge, where the base
X of the model cone X∆ is of dimension zero, i.e. X∆ = R+, and the boundary
Rq is the edge. However, the operators in such an edge calculus are much more
general than the ones with the transmission property. They contain at least
the pseudo-differential operators without the transmission property, such as
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operators with principal symbols |ξ| (ξ := (%, η)). Operators with symbols of
the latter kind are well-known in the context of the Zaremba problem when we
reduce Neumann conditions TN in terms of the potential KD of the Dirichlet
problem to the boundary, i.e., form TN ◦KD. Such operators have been studied
by many authors, mostly without any connection with the edge calculus, see
the work of Vishik and Eskin [33], Eskin [10]. In particular, Vishik and Eskin
observed and systematically studied the role of additional entries of trace and
potential type, similarly as in (1.17). Note that an algebra of such operators
was constructed in [22]. An interpretation within the edge calculus of [23] is
given in [30].

Considering now an edge-degenerate differential operator (1.6) we can ask
to what extent the scheme of boundary value problems as outlined for (1.12)
can be realised on a manifold M with edge Y . A calculus of that kind is
developed in [23], see also [25], or [9]. Note that when X is C∞ with boundary,
then such an edge calculus is to be combined with the calculus of boundary
value problems, see [15] or [13]. This theory contains, in particular, an operator
algebra that solves the Zaremba problem and other mixed problems in terms
of parametrix constructions and yields elliptic regularity with asymptotics, see
[7], or [13].

In the present chapter for convenience we assume X to be closed and com-
pact.

The substitute of the half-space R1+q

+ is now a wedge (1.12), and the analogue
of the boundary symbol (1.13) is the edge symbol (1.8). In contrast to elliptic
boundary value problems for differential operators the edge symbol (1.8) will
not always be a family of Fredholm operators (when A is elliptic as usual and
(1.7) does not vanish for all (%, ξ, η) 6= 0, up to r = 0). The Fredholm property
would be desirable to fill up the family (1.8) to a family of isomorphisms by
the edge symbols of extra conditions, similarly as explained in the context of
(1.14).

The Fredholm property of (1.8) requires the ellipticity of the operators (y, η)-
wise in the cone algebra on the infinite (stretched) cone X∧. This refers to the
symbols σψ and σc from the cone calculus, where σψσ∧(A) is automatically
non-vanishing as well as σ̃ψ(A) up to r = 0 (see (1.3)). However, (1.4) has the
form

σcσ∧(A)(y, w) =

µ∑
j=0

aj0(0, y)wj : Hs(X) → Hs−µ(X), (1.18)

and ellipticity in the cone calculus requires the bijectivity of (1.18) for all
w ∈ Γn+1

2
−γ for some chosen weight γ and all y.

Theorem 1.2.1. Let A be an edge-degenerate differential operator which is
(σψ, σ̃ψ)-elliptic and where (1.18) is a family of isomorphisms. Then (1.9) is a
family of Fredholm operators for all (y, η) ∈ Ω× (Rq \ {0}).
Remark 1.2.2. A general feeling for ellipticity on a non-compact manifold
would suggest that the conical exit of X∧ to r = ∞ also needs an ellipticity
condition. However, this is automatically satisfied in this case.
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To illustrate Remark 1.2.2 we consider an example, namely, an operator

Ã(x̃, Dx̃) =
∑

|α|≤µ

aα̃(x̃)Dα̃
x̃

in Rn+1 ∼= X∆ for X := Sn. Let the coefficients be classical symbols in the
‘covariable’ x̃ of order zero, and let aα̃(x̃)(0) denote the homogeneous principal
components in x̃ 6= 0. The Fredholm property of

Ã : 〈x̃〉−gHs(Rn+1) → 〈x̃〉−gHs−µ(Rn+1)

for any s, g ∈ R is equivalent to the usual ellipticity of Ã, i.e., σψ(Ã)(x̃, ξ̃) 6= 0,

(x̃, ξ̃) ∈ Rn+1 × (Rn+1 \ {0}), together with the conditions

σe(Ã)(x̃, ξ̃) :=
∑

|α|≤µ

aα̃(x̃)(0)ξ̃ 6= 0, (x̃, ξ̃) ∈ (Rn+1 \ {0})× Rn+1, (1.19)

and

σψ,e(Ã)(x̃), ξ̃) :=
∑

|α|=µ

aα̃(x̃(0)ξ̃
α 6= 0, (x̃, ξ̃) ∈ (Rn+1\{0})×(Rn+1\{0}). (1.20)

General information on the structure of operators globally in Rn in standard
Sobolev spaces may be found in [21], [5]; concerning (1.19), (1.20) see [25].
Applying this to an operator family

Ã(x̃, Dx̃, η) :=
∑

|α̃|+|β|≤µ

aα̃,β(x̃)Dα̃
x̃ηβ, η ∈ Rq,

which is parameter-dependent elliptic in the sense
∑

|α|+|β|=µ aα̃β(x̃)ξ̃α̃ηβ 6= 0

for all (x̃, ξ̃, η) ∈ Rn+1×(Rn+1+q \{0}), then for every fixed η 6= 0 the symbolic
conditions (1.19), (1.20) are automatically satisfied. Thus, if we introduce in
Ã(x̃, Dx̃, η) polar coordinates Rn+1

x̃ \ {0} → R+ × Sn, x̃ → (r, x), then the
situation is quite similar to (1.8) what concerns the behaviour for |x̃| = r →∞,
and η 6= 0; for X∧ = Rn+1

x̃ , i.e., X = Sn, we have (1 − ω)〈x̃〉γ−sHs(Rn+1) =
(1− ω)Hs;s−γ

cone (X∧) = (1− ω)Ks,γ(X∧).

Remark 1.2.3. An essential difference between the boundary symbol (1.13) of
a σψ-elliptic differential operator (1.12) and the edge symbol (1.8) of a (σψ, σ̃ψ)-
elliptic edge-degenerate operator (1.6) is that the conormal symbol (1.18) is
required to be a family of isomorphisms which depend on the chosen weight
γ. If this is the case, the operators (1.8) are not necessarily surjective, and
ind σ∧(A)(y, η) may also depend on γ.

Therefore, in general, to carry out a program of elliptic edge conditions, we
need to take into account analogues of 2× 2 block matrices (1.17) that contain
trace and potential operators at the same time.

In other words the calculus on a (say, compact) manifold M with edge Y
consists of operators

A : Hs,γ(M)⊕Hs(Y, J−) → Hs−µ,γ−µ(M)⊕Hs(Y, J+) (1.21)
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between weighted spaces Hs,γ(M) on M \ Y of smoothness s ∈ R and weight
γ ∈ R, and standard Sobolev spaces Hs(Y, J±) of distributional sections in
(smooth complex) vector bundles J± on Y . Such operators have a principal
symbolic hierarchy

σ(A) = (σψ(A), σ∧(A))

with σψ(A) := σψ(A) as usual, and the edge symbol

σ∧(A)(y, η) : Ks,γ(X∧)⊕ J−,y → Ks−µ,γ−µ(X∧)⊕ J+,y (1.22)

(with subscript ‘y’ indicating the fibre of the respective bundle over y), (y, η) ∈
T ∗Y \ 0.

Theorem 1.2.4. The operator (1.21) is Fredholm for some s = s0 ∈ R if and
only if A is (σψ, σ̃ψ)-elliptic, and if (1.22) a family of isomorphisms.

Remark 1.2.5. (i) The ellipticity of A in the sense of the conditions of
Theorem 1.2.4 is equivalent to the Fredholm property of (1.21) for all
s ∈ R.

(ii) The edge calculus, developed in [23] (see also [25], [9] ) contains the
parametrices of elliptic elements.

Remark 1.2.6. Given an edge-degenerate operator A (say, a differential op-
erator) such that σ∧(A)(y, η) defines a family of Fredholm operators, it is not
always guaranteed that is can be filled up to a family of isomorphisms (1.22)
with vector bundles J± over the edge. For that there is a similar topologi-
cal obstruction as for elliptic boundary value problems (see Atiyah and Bott
[2], Boutet de Monvel [3], or [26], [31]). The problem is similar to that for
Dirac operators in even dimensions that do not allow Shapiro-Lopatinskij el-
liptic boundary conditions; instead of that one can always pose global projection
conditions as is done in [26], [31], see also Nazaikinskij, Savin, Schulze, and
Sternin [19], and the bibliographies in these papers.

2. Operators on spaces with higher singularities

2.1. Manifolds with higher singularities. Manifolds with C∞ structure
form a category denoted by M0, with morphisms (isomorphisms) being the
differentiable mappings (diffeomorphisms). In a similar manner manifolds with
conical singularities or edges form a category M1, where the morphisms (iso-
morphisms) over the main strata agree with the ones from the smooth cate-
gory, while close to the singularities they respect the local conical or wedge
structures.

It is very important for the definition of manifolds with higher singularities
that

M ∈ Mk ⇒ M × Ω ∈ Mk for every Ω ∈ M0, (2.1)

k = 0, 1. Such a property is quite natural, and, of course, it will hold also for
arbitrary k ∈ N. The definition of higher (regular) singularities of order k is
inductive and reduces things to the order k − 1, k ≥ 1.

Definition 2.1.1. A topological space M is said to be a manifold of singularity
order k ≥ 1, written M ∈ Mk, if
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(i) there is chosen a subspace Y ⊂ M , Y ∈ M0, such that M \Y ∈ Mk−1;
(ii) Y has a neighbourhood U in M which has the structure of a (locally

trivial) cone bundle over Y with fibre X∆, with some X ∈ Mk−1.

We call Y the minimal stratum of M .

Denoting Y in the latter definition for the moment by Y k, the space M\Y k ∈
Mk−1 has again a minimal stratum Y k−1 ∈ M0 with (M \Y k) \Y k−1 ∈ Mk−2,
and so on. In this way we obtain a sequence of C∞ manifolds Y k−j ∈ M0,
j = 0, . . . , k, such that

M =
k⋃

j=0

Y j (disjoint union).

Let us call Y 0 the maximal stratum of M , and set dim M := dim Y 0.

Example 2.1.2. If M is the unit cube in R3, the maximal stratum Y 0 is the
open interior, Y 1 consists of the 6 open boundary faces, Y 2 of the 12 open
one-dimensional edges, and the minimal stratum Y 3 of the 8 corner points.
We then have M ∈ M3 and ∂M = M \ Y 0 ∈ M2.

Also Mk for arbitrary k ∈ N is a category in a natural way, with morphisms
and isomorphisms.

From Definition 2.1.1 it immediately follows that every y ∈ Y has a neigh-
bourhood V of y in M which is isomorphic to a wedge, i.e., there is a mapping

χ : V → X∆ × Ω

for an Ω ⊆ Rq open (dim Y = q) and some X ∈ Mk−1 that restricts to
isomorphisms

χint : V \ Y → X∧ × Ω = R+ ×X × Ω in Mk−1, (2.2)

χ0 : V ∩ Y → Ω in M0. (2.3)

The mapping (2.3) is nothing other than a chart on Y . The case dim Y = 0
is also admitted, then Y consists of corner points (a generalisation of conical
singularities with base X in Mk−1). From (2.2) we obtain local splittings of
variables (r, x, y) ∈ R+ ×X × Ω.

Assuming by induction that the (Fréchet) space Diffµ
deg(N) of typical differ-

ential operators on any N ∈ Mk−1 is already defined, by Diffµ
deg(M), M ∈ Mk,

we denote the set of all A ∈ Diffµ
deg(M \ Y ) that are locally near Y in the

variables (r, x, y) of the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)
(−r

∂

∂r

)j
(rDy)

α (2.4)

with coefficients ajα ∈ C∞(R+ × Ω, Diff
µ−(j+|α|)
deg (X)). For dim Y = 0 instead

of (2.4) we assume

A = r−µ

µ∑
j=0

aj(r)
(−r

∂

∂r

)j
, (2.5)
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aj ∈ C∞(R+, Diffµ−j(X)).
In the following we assume that X ∈ Mk−1 is compact.
Let us give a definition of the principal symbolic hierarchy of an operator

(2.4) or (2.5) (see Calvo, Martin and Schulze [4]).
Having defined σ(B) = (σ0(B), . . . , σk−1(B)) for every B ∈ Diffµ

deg(N), N ∈
Mk−1, with σ0(B) being the standard homogeneous principal symbol of B on
the main stratum ∈ M0 of N , for A ∈ Diffµ

deg(M), M ∈ Mk, we inductively
set

σ(A) := (σ0(A), . . . , σk−1(A), σk(A)) (2.6)

with σ(A|M\Y ) =: (σ0(A), . . . σk−1(A)) from the step before, and

σk(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)
(−r

∂

∂r

)j
(rη)α (2.7)

for (y, η) ∈ Ω× (Rq \ {0}), when q ≥ 1, or

σk(A)(w) :=

µ∑
j=0

aj(0)wj (2.8)

for w ∈ Γn+1
2
−γ, n = dim X, when q = 0.

The symbols (2.7) and (2.8) take values in the spaces

L(Ks,γ′;g(X∧),Ks−µ,γ′−µ;g(X∧))

and L(Hs,γ′(X), Hs−µ,γ′−µ(X)), respectively, with weighted spaces of smooth-
ness s ∈ R and weights γ′ = (γ1, . . . , γk−1) ∈ Rk−1, γ′ − µ := (γj − µ)1≤j≤k−1

(for k = 0 those weights are meaningless and omitted). Similarly as in (1.10)
the weight g ∈ R is responsible for the conical exit of X∧ to infinity.

2.2. Elements of the higher corner calculus. Similarly as in Chapter 1
where we employed the parameter-dependent calculus of pseudo-differential
operators on a C∞ manifold X, we assume by induction that the parameter-
dependent calculus of operators on any N ∈ Mk−1 is already established, with
a list of properties, also to be postulated, which play the role of theorems in the
calculus of next higher singularity order k. As noted in the context of boundary
value or edge problems we have to expect block matrices of operators, in the
present case, k×k block matrices A, with trace, potential and Green operators
with respect to all strata of N ∈ Mk−1. Let us content ourselves for the moment
with spaces of operators of type of upper left corners.

Let Aµ(N ;Rl) denote the space of such operators with parameter λ ∈ Rl,
l ∈ N. Moreover, by induction we assume that the weighted spaces Hs,γ′(X) for

compact X ∈ Mk−1 are already defined, moreover Hs,γ′
[comp)(X), Hs,γ′

[loc)(X) when

X is not necessarily compact (the use of ‘[’ and ‘)’ is motivated by supports ‘up

to the singularities’, similarly as Hs
[comp)/[loc)(R

1+q

+ ) := Hs
comp/loc(R1+q)|R1+q

+
).

We also feed in the information that for every µ ∈ R and weights γ′ ∈ Rk−1
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the space Aµ(X;Rl), X ∈ Mk−1 compact, contains an element Rµ(λ) that
induces isomorphisms

Rµ(λ) : Hs,γ′(X) → Hs−µ,γ′−µ(X)

for all s ∈ R (the weights γ′ ∈ Rk−1 are fixed; clearly Rµ(λ) depends on γ′).
One of the properties of the spaces Hs,γ′(X) (and similarly of the ‘[comp)/

[loc)’ variants of these spaces) is that

Hs,γ′(X) = hγ′Hs,0(X)

for all s ∈ R, with a strictly positive weight function hγ′ which is locally in
the variables (r1, . . . , rk−1) of the form hγ′ = rγ1

1 . . . r
γk−1

k−1 ϕ with a ϕ ∈ C∞(X)

(:= Diff0
deg(X)). Moreover, the space H0,0(X) is a weighted L2-space on the

main stratum of X, for instance, when X locally near its minimal stratum is
modelled on a wedge R+ × Xk−1 × Rqk−1 3 (rk−1, ·, yk−1), with Xk−2 ∈ Mk−2

then H0,0(R+ ×Xk−2 × Rqk−1) = r−
nk−2

2 L2(R+ × Rqk−1 , H0,0(Xk−2)), etc.
Alternatively, a weight function hγ′ can be iteratively defined as a function

which is locally in the variables (rk−1, ·, yk−1) of the form hγ′ = r
γk−1

k−1 hγ ′′ϕ with

a weight function hγ′′ on Xk−2 × Rqn−1 , and a ϕ ∈ C∞(R+ × Xk−2 × Rqk−1),
γ′′ := (γ1, . . . , γk−2) ∈ Rk−2.

We define Hs,γ(X∧) for s ∈ R, γ := (γ′, γk) ∈ Rk, to be the completion of
C∞

0 (R+, H∞,γ′(X)) with respect to the norm

‖u‖Hs,γ(X∧) :=
{ 1

2πi

∫

Γn+1
2
−γk

‖Rs(Im w)Mu(r)‖2
H0,γ′−s(X)

dw
}1/2

,

n = dim X; here Rs(λ) is an order reducing family in As(X;R).
Moreover, if Rs(%̃, η̃) ∈ As(X;R1+q

%̃,η̃ ), q ≥ 1, is an order reducing family, we

define the space Hs,γ′;0
cone (R×X) to be the completion of C∞

0 (R, H∞,γ′(X)) with
respect to the norm

‖u‖
Hs,γ′;0

cone (R×X)
:=

{∫
‖Rs(r%, rη1)(Fu)(%)‖2

〈r〉n
2 L2(R,H0,γ′−s(X))

}1/2

for any fixed η1 ∈ Rq \ {0}. We then pass to

Hs,γ′;g
cone (X∧) := 〈r〉−gHs,γ′;0

cone (R×X)|X∧

and set

Ks,γ;g(X∧) := ωHs,γ(X∧) + (1− ω)Hs,γ′;g
cone (X∧),

with any fixed cut-off function ω, and Ks,γ(X∧) := Ks,γ;s−γk(X∧).

Remark 2.2.1. Setting (κλu)(r, x) := λmu(λr, x), λ ∈ R+, for any m ∈ R we
obtain a strongly continuous group of isomorphisms,

κλ : Ks.γ;g(X∧) → Ks,γ;g(X∧)

for every s, γ, g ∈ R. Usually we set m = n+1
2

+ s− γk.
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The expected length of this overview does not admit to develop all essential
properties of our scales of spaces. Let us only observe that the specific choice
of the oder reducing families is unimportant, as well as of η1 6= 0 or the cut-off
function.

The proper content of the spaces is, of course, hidden in the nature of the
parameter-dependent calculus. This is not completely straightforward. The
following considerations give an idea of how they locally look like.

To sketch elements of the calculus, consider, for instance, the case q > 0.
The main ingredients are operator functions

p̃(r, y, %̃, η̃) ∈ C∞(R+ × Ω, Aµ(X;R1+q
%̃,η̃ )),

X ∈ Mk−1, and associated edge-degenerate families

p(r, y, %, η) := p̃(r, y, r%, rη). (2.9)

A crucial theorem of the ‘higher edge quantisation’ is the following theorem,
which transforms operators

Opr(p)(y, η)u =

∫∫
ei(r−r′)%p(r, y, %, η)u(r′)dr′d̄%

based on the Fourier transform on R+ into operators

opδ
M(h)(y, η) := M−1

δ,w→rh(r, y, w, η)Mδ,r′→w

based on the Mellin transform, modulo some smoothing operators. Here Mδ is
the weighted Mellin transform, i.e., (Mδu)(w) := M(r−δu)(w + δ), δ ∈ R, and
h(r, y, w, η) is an operator-valued Mellin amplitude function of the form

h(r, y, w, η) : = h̃(r, y, w, rη), (2.10)

h̃(r, y, w, η̃) ∈ C∞(R+ × Ω,Aµ(X;C× Rq));

C indicates holomorphic dependence on w ∈ C, and the parameter-dependence
refers to Im w ∈ R on the lines Γβ for every β ∈ R, uniformly in compact β-
intervals.

Theorem 2.2.2. To every edge-degenerate family (2.2.2) there exists a holo-
morphic Mellin symbol (2.10) such that

Opr(p)(y, η) = opδ
M(h)(y, η)

mod C∞(Ω,A−∞(R+ ×X;Rq)) for every δ ∈ R.

Edge-degenerate operators Opy(p) are then quantised near Y by forming
operators Opy(a) with edge anplitude functions of the form

a(y, η) :=σr−µ{ω(r[η])op
γ−n

2
M (h)(y, η)ω̃(r′[η]) (2.11)

+ (1− ω(r[η]))ω0)r[η], r′[η])Opr(p)(y, η)(1− ˜̃ω(r′[η]))}σ̃
with cut-off functions ω, ω̃, ˜̃ω, σ, σ̃, such that ω̃ ≡ 1 on suppω, ω ≡ 1 on supp˜̃ω,
σ̃ ≡ 1 on suppσ. Moreover, ω0(r, r

′) := ψ((r − r′)2/(1 + (r − r′)2)) with any
ψ(t) ∈ C∞

0 (R+) such that ψ(t) = 1 for t < 1/2, ψ(t) = 0 for t > 3
2
.
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The ‘non-smoothing’ part of operators in Aµ(M), M ∈ Mk, k ≥ 1, close
to the higher singularity Y , is of the form Opy(a) with an amplitude func-
tions (2.11). Far from Y those operators are simply elements of Aµ(M \ Y )
constructed before, using M \ Y ∈ Mk−1.

For the step from k to k + 1 we can produce Aµ(M ;Rl) with parameters
λ ∈ Rl, l ∈ N, by formally replacing the covariable η ∈ Rq in (2.11) by
(η, λ) ∈ Rq+l. Together with Aµ(M \ Y ;Rl), known from the preceding step,
we then obtain the non-smoothing part of the parameter-dependent calculus
on M .

The operator function is (2.11) an operator-valued symbol in S∞(Ω×Rq; E, Ẽ)
for

E := Ks,γ;g(X∧), Ẽ := Ks−µ,γ−µ;g(X∧) (2.12)

for every s, g ∈ R. Here Sµ(Ω×Rq; E, Ẽ) is the space of all a(y, η) ∈ C∞(Ω×
Rq,L(E, Ẽ)) such that

‖κ−1
〈η〉{Dα

y Dβ
η a(y, η)}κ〈η〉‖L(E,Ẽ) ≤ c〈η〉µ−|β|

for all (y, η) ∈ K×Rq, K b Ω, and all α, β ∈ Nq, with constants c(α, β, K) > 0.
The space Hs,γ(M) on M ∈ Mk, s ∈ R, γ ∈ Rk, are locally along the
minimal stratum Y , identified via a chart to Rq, modelled on edge spaces
Ws(Rq,Ks,γ;s−γk(X∧)). Here Ws(Rq, E) is the completion of S(Rq, E) with re-
spect to the norm ‖〈η〉sκ−1

〈η〉û(η)‖L2(Rq ,E). In a similar manner we define ‘comp’-

and ‘loc’-spaces in y ∈ Ω ⊆ Rq. Then, taking (2.11), we obtain continuous op-
erators

Opy(a) : Ws
comp(Ω, E) →Ws−µ

loc (Ω, Ẽ)

with the spaces (2.12), for all s ∈ R.
Another element are so-called Mellin operators in the upper left corners and

block matrix Green operators; the latter ones encode edge conditions of trace
and potential type. This gives beyond the scope of the present overview.

Those operators, together with global smoothing operators give rise to the k
th generation of calculus, i.e., Aµ(M), M ∈ Mk. Similarly as (2.6) they have a
principal symbolic hierarchy, with σ0(A) being the standard principal symbol
of the upper left corner as a classical pseudo-differential operator on the main
stratum Y 0 of M . As in the edge calculus (see, e.g., [18]) one can show that
an operator is compact in weighted spaces when all components of its symbol
vanish. This is then a new starting point for the Fredholm property of elliptic
operators and other expected features of the calculus.

Let us finally note that already the ‘usual’ edge calculus of [23] which was
refined and completed later on by many other authors (see [14], [8], [32], [34],
[17], [15], [6]), and also the subsequent corner theory belonging to the singular-
ity order k = 2 with its applications (see [24], [28], [27], [29], [13], [12]), contains
many theories as substructures that are often known under different notation,
namely (apart from the standard pseudo-differential calculus), the theory of
elliptic boundary problems, both for smooth domains, as well as with conical,
edge, and corner singularities, and operators on other kinds of non-compact
configurations, especially, with conical exits to infinity.
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There remain many tasks for future activities. In respect of the high com-
plexity of the theory it is still important to make the approach more and more
transparent, in order to pass later on to further applications, e.g., in the context
of geometric operators, or index theory.
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