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Numerical Solution of a Nonlinear Problem of Deformation of a
Thermoelastic Beam with a Variable Cross-Section
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The paper discusses the nonlinear problem of a beam’s planar deformation in situations of large
displacements. It presents the study of the strain state of an elastic beam with a linearly varying
rectangular cross-section under thermomechanical loading. A nonlinear system of ordinary dif-
ferential equations has been obtained for the components of the displacement vector—axial and
transverse displacements, the angle of rotation of the normal, and the components of internal force
factors (axial and transverse forces, bending moment). Boundary conditions are stated. The tem-
perature field is stationary and varies along the axis of the beam at a given time. The nonlinear
system of equations has been solved numerically using the built-in function of the mathematical
editor Mathcad.
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1 Introduction

Geometrically nonlinear problems of planar deformation of the beams are discussed in the
following publications [1, 2, 3, 4]. A fundamental system of equations has been obtained for the
beams (y/po < 1, po-is the initial curvature of the axis of the beam; y is a coordinate in the cross-
section thickness) under thermomechanical loading. A nonlinear boundary value problem is
formulated. For a given one-dimensional stationary temperature field, the fundamental system
consists of six nonlinear ordinary differential equations, solved using the shooting method.
Numerical calculations have been performed for the straight thermally elastic beams with a
constant cross-section. Longitudinal and transverse displacements, rotation angles of the cross-
sections, as well as internal force factors, have been determined. The stability problem has been
analyzed, and the critical force value has been calculated numerically.

The mathematical model of an elastic beam with a variable cross-section is studied in the
works of G. Jaiani [5, 6]. Using the three-dimensional theory, the fields of displacements,
deformations, and stresses are expanded into an orthogonal double Fourier-Legendre series with
respect to the variables of the cross-sectional thickness and width. All terms in the series, except
the first, are neglected. The case where the variable cross-section degenerates into a linearly
varying segment or a point is considered. The initial boundary value problem is analyzed, and
the existence and uniqueness of solutions are demonstrated.

The deformation of a long thermally elastic beam with a rectangular cross-section under
mixed boundary conditions is examined in [7]. Mixed boundary conditions involve a combina-
tion of prescribed temperature and displacement at the beam’s ends. The beam’s deformation
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is analyzed using the boundary integral method, which accounts for the combined effects of
thermal and mechanical loads. The analysis also considers the thermally elastic properties of
the material, including temperature-dependent thermal conductivity. The boundary integral
formulation involves dividing the beam’s surface into elements, representing the boundary con-
ditions using integral equations, and solving the resulting system of equations to determine
the beam’s deformation. This study provides insights into the deformation analysis of long
thermally elastic beams under mixed boundary conditions.

In [8], researchers developed a three-dimensional elastic beam model for bending analysis to
determine and optimize the shapes of active membrane structures. This model is beneficial for
the design and optimization of membrane constructions used as molds for concrete shells. The
proposed model represents membrane elements as interconnected 3D elastic beams, enabling the
analysis of large deformations. Residual forces at the nodes are computed using an energy-based
approach within the framework of the dynamic relaxation method. This method iteratively
refines the mesh shape until a self-equilibrated configuration is achieved. The results of the
proposed model were validated by comparing them with those obtained using the finite element
method (FEM), based on the minimization of total potential energy, demonstrating the model’s
accuracy and applicability for shape analysis and optimization.

Article [9] investigates the equilibrium of compressed beams with variable cross-sections.
The study focuses on beams with varying thicknesses, where a fourth-order differential equation
with variable coefficients describes deformation under longitudinal compression. The solution
to this problem provides insights into the equilibrium behavior of the beam, accounting for vari-
ations in its transverse dimensions. It is shown that the variability of the beam’s cross-sectional
width significantly affects its equilibrium. The differential equation captures the complex in-
teractions between the beam’s geometry and its mechanical response during compression. This
research contributes to a deeper understanding of the equilibrium of beams with non-uniform
cross-sections. The findings have potential applications in various engineering fields, including
structural mechanics and materials science.

Monographs [10, 11] discuss one-dimensional nonlinear problems of deformation for elastic
beams. The work in [10] provides a comprehensive analysis of beam deformation, where the
displacements of the points along the beam’s axis are parallel to a single plane. The geometry
of the deflected line (the beam’s axis) is considered within the elastic limits during the bending
of the beams. Both linear and nonlinear problems assume that the length of the elastic line
remains unchanged [10, 11]. Under thermomechanical loading, all layers of the beam undergo
deformation due to thermal expansion (compression). In some cases, displacements associated
with stretching and compression and those related to changes in curvature may be of the same
order.

2 The fundamental equations of beam deformation

Let us consider the deformation of curved beams in the yz-plane under thermomechanical
loading with large displacements. The layer, concerning which we analyze the deformation
geometry, is called the thermally elastic layer, and its projection onto the yz-plane is called
the thermally elastic line. The thermally elastic line represents the curve passing through the
centroids of the beam’s cross-sections projected onto the yz-plane [12].

Let us study the displacements and deformation based on the change in the geometry of the
thermally elastic line of the beam. We assume that the temperature field is one-dimensional
and varies along the beam’s axis. Let the curvature of the thermally elastic line before and after
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deformation be denoted by pg and p, respectively. The angle of inclination of the sides of the
thermally elastic line relative to the z-axis before and after deformation will be denoted by 6
and 6, respectively. The displacement along the z-axis is denoted by w, and the displacement
along the y-axis is denoted by — v. It is clear that

where [-is the arc length of the thermally elastic line in the deformed configuration (correspond-
ing coordinate), or w = w(lp), v = v(lp), p = p(lo), 6 = 0(lp), with lp being the arc length of
the thermally elastic line in the undeformed configuration.

The system of fundamental equations for the deformation of a thermally elastic beam in the
plane has the following form [1]:

The geometry equations:
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where ¢ is the deformation of the thermally elastic line, x,is the characteristic of the change
in curvature, M is the bending moment, R and H are the internal force components relative
to the y and z axes, respectively, g, and g, are the distributed external forces relative to the y
and z axes, respectively, and m is the intensity of the bending moment.

If the material’s elasticity modulus F is constant, then the deformation ¢y of the thermally
elastic line and the characteristic parameter of the change in the curvature x, are determined
from the following relationships:

o=t i E/ £TdA 3)

M E
Xo= I*+I* / el.y.dA, (4)

where A* is the generalized cross-sectional area of the beam, I is the generalized moment of
inertia of the cross-section, N is the normal force in the cross-section, and ¢” is the thermal
deformation.

The normal force in the cross-section is determined as [1,12]:

N = Hcosf + Rsinf (5)
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The generalized cross-sectional area A* and the generalized moment of inertia I} are calcu-
lated using the following formulas [12]: A*= f E(T)dA, I: = [y*E (T)dA,

The thermal deformation is given by el = « (T Tp), where « is the coefficient of linear
expansion, Ty is the initial temperature, and T is the temperature at the given moment in
time.

From equations (1) and (2), when 6y = 0 and py — oo we have dly = dz, we obtain the
equations for the bending of straight beams. For a rectangular linearly variable cross-section of
a straight beam, see Figure 1, the system of fundamental equations takes the form:
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The deformation of the thermally elastic line and the radius of curvature after deformation
are determined by the following formulas [13]:

N T
60—EA(Z)+€ (7)
1+¢9
_ , 8
r=—1 (8)

where the cross-sectional area of the beam is determined according to Figure 1:

aer-af(? 1) 5]

According to formula (4), the characteristic parameter of the curvature change is determined

as follows [13]: s .
T ()] R Y

The temperature deformation ¢ does not change with respect to the y coordinate. Accord-
ingly, in relationship (9), the second term on the right-hand side is zero relative to the axis
passing through the centroid of the section.

The nonlinear differential equations (7), along with formulas (5), (7), and (9), form a closed
system of equations. For integrating the system of differential equations there are boundary
conditions depending on the type of fixation at the ends of the beam: fixed support v =0, w =
0, M = 0; rigid support v =0, w =0, # =0, and so on.
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Figure 1: Straight beam with a variable rectangular cross-section.

3 Numerical calculation

The nonlinear boundary problem can be effectively solved using numerical methods. For nu-
merical calculations, we enter dimensionless quantities. [13]:
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where [ is the length of the beam before deformation, and g¢.- is the maximum value of the
distributed load.
The system of equations (7), (5), (3), and (4) can be written in dimensionless quantities as
follows:
% = (1+4¢€p)sind ,
d
dz

= (1+¢ep)cosf —1,

(10)
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The system of equations (10) can be written in a vector-matrix form as follows:

~

Y' = F(y,q), where  y = (ﬁ,zﬁ,@,f?, ﬁ, M)T,

For performing numerical calculations in the Mathcad system, the following designations
have been introduced: y; = 0; yo = W; y3 =0; y4 = R; ys = H; y¢ = M.
Then, the system of equations will have the following form:
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4 Calculation results

As a test item, the transverse bending of a cantilever beam with a consistent cross-section with a
load distributed with a constant intensity was calculated. In this case, the boundary conditions
have the form: z=0; y; =0, y2 =0 y3 =0; z=1; y4 =0, y5 =0 yg =0. The results of the numerical
calculation are exactly in line with the known analytical solution.

Figure 2 and Figure 3 illustrate the results of numerical calculation for components of
displacements, components of internal force, and bending moment under thermomechanical
loading. The calculation was made for the following data: a = 5cm; b = 10 c¢cm; [ = 1lm;
E =2-10" n/m? ¢, = 100 n/m; ¢, = 0; m = 0; a = 2-1075 1/%C; Ty = 20%; T = 3.
The initial values of shooting parameters (y4,ys,ys) were taken according to the solution to
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Figure 2: Calculation results for the relationship by/b=0.1 a) Displacement components,
b) Internal force components and bending moment =z @ =g s =9 s® =R, s6=

H, s =M
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Figure 3: Calculation results for the relationship bp/b=0.01 a) Displacement components,
b) Internal force components and bending moment =z @ =g sW=9 sO=PR, s6=

H, =M

the linear problem. The Mathcad’s built-in function sbval allows us to effectively define the
shooting parameters: y4 = R, ys = H, ye= M.

Figure 2 and Figure 3 illustrate that the components of the displacements increase signif-
icantly with the reduction in the relationship bg/b. It is valid to say that the mathematical
editor Mathcad effectively solves the nonlinear boundary problem.
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Figure 4: Calculation results for a cantilever beam with a movable hinge at the right end for
the relationship bg/b=0.01. a),b) Displacement components; c¢) Internal force components and
bending moment =z s =p sW=9 s®=nR sO=H s"=M

A statically indeterminate cantilever beam with a movable hinge at the other end was
calculated. Boundary conditions have the following form: 2 =0, y; =0, yo =0, y3 =0; Zz=
1, y1 =0, y5 = 0, y¢ = 0 For the relationship by/b = 0.01, the shooting parameters found



78 Lecture Notes of TICMI

by the sbval function are equal to: y4(0) = —0.858, y5(0) = 0, ys(0) = —0.358. Figure 4
illustrates the results of the numerical calculation, particularly, displacement components and
internal force components for the relationship by/b = 0.01. Figure 5 illustrates the results of
numerical calculation, components of displacement and components of internal forces

Figure 5: Calculation results for a cantilever beam with a movable hinge at the right end for
the relationship bp/b=0.1. a),b) Displacement components; ¢) Bending moment d) Transverse

force. stV =z, s@ =5, sW =0, s® =R, s =H, V=M

= -
(=1
i
=]

N I R W R ]
=] taa =3 =3 1=
T
1

[ T
T

Figure 6: Calculation results of a beam rigidly fixed at both ends for the relationship by/b=0.1.
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Figure 6 illustrate the calculation results of a beam rigidly fixed at both ends for different
values of the relationship by/b. The shooting parameters for the value of by/b = 0.lare equal
to:y4(0) = —0.712, y5(0) = —312.692, y6(0) = —0.226. Figure 6 illustrates the results of the
numerical calculation: displacement components and internal force components. The values of
the shooting parameters for the relationship by /b = 0.01 are equal to:y4(0) = —0.855, y5(0) =
—171.976, ye(0) = —0.357. It should be noted that the number of iterations for finding the
shooting parameters increases significantly when solving a statically uncertain problem.

5 Conclusion

a) The convergence of the iterative process essentially depends on the selection of the initial
values of the shooting parameters. As an initial approximation for the values of shooting
parameters, we can choose the solution of a linear problem for a beam with a constant cross-
section;
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b) reduction in the relationship by /b essentially affects the values of the transverse displace-

ments and the angle of rotation of the cross-section;

¢) An applied program for solving the nonlinear boundary value problem with the mathe-

matical editor Mathcad has been drawn up.

It is valid to say that nonlinear problems of transverse bending of beams of variable cross-

section under thermomechanical loading can be effectively solved numerically by Mathcad soft-
ware.
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