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1 Introduction

Hierarchical models constructed by I. Vekua’s dimension reduction method is a powerful tool
for investigation of Problems considered in angular 3D domains (see Appendix). The advantage
is threefold:

1. 3D problem is reduced to 2D problems;

2. 3D geometric singularity is transferred into singularity of governing differential equations
in 2D domains, therefore, into investigation of BVPs and IBVPs for singular ordinary and
partial differential equations and systems. Ilia Vekua’s method is especially fitting this
case;

3. The hierarchy models obtained in that way can be discretized by the p-version of the finite
elements (In this connection see [19], [20]).

While constructing hierarchical models for elastic prismatic and standard shells of variable
thickness, Ilia Vekua suggested and developed a dimension reduction method [1-3] (for the state
of art in this direction see [4], [5]) which in [6,7] is formalized in such a form that it is applicable
directly for constructing the hierarchical models corresponding to physical models containing
the thickness as a physical variable.

The present paper deals with the state of art in application of Ilia Vekua’s method of
dimension reduction for constructing and investigating the hierarchical models for different
physical models. The special attention is paid to the case of 3D angular domains, namely, to
the study of peculiarities of posing the boundary conditions caused by it within the framework
of the corresponding 2D boundary value (BV) and initial BV (IBV) problems. In other words
the special attention is paid to the case of 3D angular (such as that dihedral and polyhedral)
domains and the peculiarities of setting 2D BVPs caused by them.

Section 2 deals with the hierarchical models for elastic and piezoelectric, viscoelastic Kelvin-
Voight with voids prismatic and standard shells and bars (see Appendix).

Section 3 deals with the hierarchical models for thermoelastic deformation of chiral porous
prismatic shells.

Section 4 is devoted to fluids in prismatic and standard shell-like, bar-like, and canal-like
domains.

In Section 5 we indicate how the above techniques may be used for different materials and
summarise conclusions.

Each section is as much as possible selfcontained.
Throughout the paper we use Einstein’s summation convention on repeated indices (that

Latin and Greek run values 1,2,3 and 1,2, respectively) and the simplified notation for the

partial derivative (· · · ),i and
˙︷ ︸︸ ︷

(· · · ) mean differentiation with respect to variable xi and time t,

respectively. Further,
N
v kr and

N
ukr k = 1, 3, r = 0, 1, 2, ..., N, N = 0, 1, 2, ... mean solutions of

the governing systems of the Nth order approximation with respect to that unknowns, while
ukr and vkr mean the Fourier- Legendre coefficients up to the fector (r + 1/2)1/2a1/2 (i.e. the
mathematical moments of the unknown displacements uk, k = 1, 3) and that weighted ones (i.e.
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s.c. weighted moments given by vkr := h−r−1ukr). Sometimes the Fourier -Legendre coefficient
itself is called the mathematical moment of order k (see [3]). Clearly,

ϕr :=
(
r +

1
2

) 1
2
a

1
2Pr(ax3 − b), r = 0, 1, 2, ...

is the orthonormal system since

(+)

h∫
(−)

h

(
k +

1
2

)1/2(
l +

1
2

)1/2
Pk(ax3 − b)Pl(ax3 − b)adx3 = δkl

(see [18] p. 219 (the first edition), 258 (the second addition)) and the Fourier-Legandre coeffi-
cient

αr := (uk, ϕr) :=

(−)

h∫
(−)

h

(
r +

1
2

)1/2
a1/2ukPr(ax3 − b)dx3 =

(
r +

1
r

)1/2
a1/2ukr,

where

ukr :=

(−)

h (x1,x2)∫
(−)

h (x1,x2)

uk(x1, x2, x3)Pr

( x3

h(x1, x2)
− h̃

h

)
dx3,

is the rth order mathematical moment.

vkr := h−r−1(x1, x2)ukr = h−r−1(x1, x2)

(−)

h (x1,x2)∫
(−)

h (x1,x2)

uk(x1, x2, x3)Pr

( x3

h(x1, x2)
− h̃

h

)
dx3.

Evidently, in the sense of mean convergence [i.e., in L2(
(−)

h (x1, x2),
(+)

h (x1, x2))]

uk =
∞∑

r=0

αrϕr ≡
∞∑

r=0

(
r +

1
r

)
aukrPr(ax3 − b) ≡

∞∑
r=0

(
r +

1
r

)
hrvkrPr(ax3 − b).

Note that (see [13] and for that of cusped prismatic shells [14])

ukr = lim
N→∞

N
ukr, k = 1, 3.

Mainly, in the literature the upper index N = 0, 1, 2, ..., indicating the order of the approx-
imation, for the sake of simplicity of notion, is omitted, and the reader should be carefull not
to be confused.

Ilia Vekua’s approximated solution

N
uk =

N∑
r=0

(
r +

1
2

)
a

N
ukrPr(ax3 − b), k = 1, 3, a :=

1
h(x1, x2)

, b(x1, x2) :=

(+)

h +
(−)

h
(+)

h −
(−)

h

,
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and the partial sum of the Fourier-Legendre series

N∑
r=0

(
r +

1
2

)
aukrPr(ax3 − b), k = 1, 3,

are different but the both tend to the unique exact solution u of the corresponding 3D BVP as
N →∞ (see [13] and [14]).

It is also remarkable that I. Vekua (see [1] pp. 401-405) in the N = 1 approximation besides
classical normal, tangential, and transversal (intersecting) forces in other words, according to
I. Vekua, the zero order weighted mathematical moments and the first - order mathematical
moments according to I. Vekua, defined the additional first order mathematical moment called
by him as the splitting couple of forces which is nothing more than the equilibrated stress
vector that can be identified with singularities in classical linear elasticity known as double
force systems without physical moments equivalent to two oppositely directed forces at the
same point (see [15], p. 127). Singularities of this type were first discussed by Love [16] (see
p.56).

One thing more, in some practical (enginering) models displacements are represented as
polynomials of order ≤ n but they may represented as some linear combinations of Legenre
polynomials (see [17], p. 529), in particular,

xn
3 = a0nPn(x3) + a1nP1(x3) + · · ·+ annPn(x3),

therefore models of such type are contained as particular cases in I. Vekua’s hierarchical models.

2 Elastic prismatic and standard shells and bars

For the sake of simplicity we restrict ourselves to prismatic shells.
The first version of Vekua’s hierarchical models for cusped, in general, homogeneous elastic

prismatic shells in the Nth approximation has the form (see [4], page 19, we refrain from giving
the proof here)

µ

[(
h2r+1N

vαr,j

)
,α

+
(
h2r+1N

v jr,α

)
,α

]
+ λδαj

(
h2r+1N

v γr,γ

)
,α

(2.1)

+
N∑

s=r+1

(
r
Bαjks h

r+s+1 N
v ks

)
,α

+
r−1∑
l=0

r
ail

[
λδijh

r+l+1N
v γ l,γ + µh

r+l+1

(
N
v il,j +

N
v jl,i

)

+
N∑

s=l+1

l
Bijks h

r+s+1N
v ks

]
+ hr

r
Xj = ρhr ∂

2hr+1 N
v jr

∂ t2
,

r = 0, N, j = 1, 3,
q−1∑

q

(· · · ) ≡ 0,

where
r
Bijks := λδij

r
bks + µδkj

r
bis + µδik

r
bjs,

N
v kr :=

N
ukr

hr+1
, k = 1, 3, r = 0, N. (2.2)
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For j = 3 from the three groups of terms of the main part of (2.1) remains (µh2r+1N
v 3r,α),α

which will give integral criteria of well-posedness of Dirichlet (I :=
ε∫
0

dx2
h2r+1 < +∞) and Keldysh

type (I = +∞) problems (for the case N = 0 see Appendix).
For bars see [4] p. 54 (for more in details see [11]).

2.1 Field equations for piezoelectric Kelvin-Voigt materials with voids

Let a piezoelectric solid occupy a reference configuration Ω ∈ R3. Under the quasi-static
conditions, when the rate of change of the magnetic field is small and there is no electric
current, i.e., the electric field E and magnetic field M are curl free, the 3D governing equations
have the following form

Motion Equations

Xji,j + Φi = ρ
..
ui(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, t > t0, i = 1, 3; (2.3)

Hj,j +H0 + F = kϕ̈, (2.4)
Dj,j = fe, Bj,j = 0, Ω×]0, T [, (2.5)

whereXij ∈ C1(Ω) is the stress tensor; Φi are the volume force components; k is the equilibrated
inertia per volume unit, ρ is the mass density; ϕ := ν0 − ν ∈ C2(Ω) is the change of the
volume fraction from the matrix reference volume fraction ν0 (clearly, the bulk density ρ = νγ,
0 < ν ≤ 1, here γ is the matrix reference density); ui ∈ C2(Ω) are the displacements; Hj ∈
C1(Ω) is the component of the equilibrated stress vector, H0 ≡ g and F ≡ l are the intrinsic
and extrinsic equilibrated volume forces; we remind that Einstein’s summation convention is
used; indices after comma mean differentiation with respect to the corresponding variables
of the Cartesian frame Ox1x2x3 (throughout the work we assume existence of the indicated
(continuous) derivatives unless otherwise stated); dots as superscripts of the symbols mean
derivatives with respect to time t; χ : Ω×]0, T [→ R1 and η : Ω×]0, T [→ R1 are electric and
magnetic potentials, respectively, i.e., E = −gradχ, M = −gradη, fe : Ω×]0, T [→ R1 is electric
charge density. D := (D1, D2, D3) : Ω×]0, T [→ R3 is the electrical displacement vector,
B := (B1, B2, B3) : Ω×]0, T [→ R3 is the magnetic induction vector.

Kinematic Relations

eij =
1
2
(ui,j + uj,i), i, j = 1, 3, (2.6)

eij ∈ C1(Ω) is the strain tensor;
Constitutive Equations

Xji = Xij = Eijklekl + E∗ijklėkl + b̃ijϕ+ b∗ijϕ̇+ dijkϕ,k + d∗ijkϕ̇,k

+pkijχ,k +p∗kij
χ̇,k +qkijη,k +q∗kij η̇,k , i, j = 1.3, (2.7)

Hj = dkljekl + d∗klj ėkl + djϕ+ d∗j ϕ̇+ ãjiϕ,i + a∗jiϕ̇,i, j = 1, 3, (2.8)

H0 = −b̃ijeij − ξ̃ϕ − diϕ,i − b∗ij ėij − ξ∗ϕ̇− d∗i ϕ̇,i, (2.9)

Dj = pjklekl + p∗jklėkl − ζjlχ,l − ãjkη,l, j = 1, 3, (2.10)

Bj = qjklekl + q∗jklėkl − ãjlχ,l−ξjlη,l j = 1, 3, (2.11)
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where the constitutive coefficients Eijkl (elasticity), E∗ijkl (viscosity), b̃ij , di, dklj , α̃ji, ξ̃ (poros-
ity), b∗ij , d

∗
i , d

∗
klj , α

∗
ji, ξ

∗ (viscoporosity), pkij , p∗jkl, qkij , q
∗
jkl, ζjl, α̃jl, ξjl, pkij are the piezoelectric

coefficients, qkij are the piezomagnetic coefficients, ςjl and ξjl are the dielectric (permittivity)
and magnetic permeability coefficients, respectively, ãjl are the coupling coefficients connecting
electric and magnetic fields, satisfy the following relations

Eijkl = E∗jikl = Ejilk = Eklij ; E∗ijkl = E∗jikl = E∗jilk = E∗klij

b̃ij = b̃ji, dijk = djik, α̃ij = α̃ji;
b∗ij = b∗ji, d

∗
ijk = d∗jik, α

∗
ij = α∗ji, pjkl = pjlk, qjkl = qjlk, ζjl = ζlj ,

ãjl = ãlj , ξjl = ξlj , p
∗
jkl = p∗jlk, q

∗
jkl = q∗jlk.

The constitutive coefficients also meet some other conditions, following from physical con-
siderations, with a view to apply I. Vekua’s dimension reduction method, we require the con-
stitutive coefficients to be independent of x3.

Let us consider the general BVPs and IBVPs with the following mixed BCs

ui = fi on Γ0, Xijnj = gi on Γ1 = ∂Ω\Γ0, i = 1, 3, (2.12)

ϕ = fϕ on Γϕ
0 , Hjnj = gϕ on Γϕ

1 = ∂Ω\Γϕ
0 , i = 1, 3, (2.13)

χ = f
χ

on Γχ
0 , Djnj = g

χ
on Γχ

1 = ∂Ω\Γχ
0 , i = 1, 3, (2.14)

η = fη on Γη
0, Bjnj = gη on Γη

1 = ∂Ω\Γη
0, i = 1, 3, (2.15)

and the standard ICs in the case of dynamical problems

u(x, 0) = u0(x), u̇(x, 0) = u1(x), ϕ(x, 0) = ϕ0(x), ϕ̇(x, 0) = ϕ1(x),
x ∈ Ω;

(2.16)

here n := (n1, n2, n3) is the outward unit normal vector to ∂Ω, (f1, f2, f3), fϕ, f
χ
, fη are

the given displacement vector, volume fraction, electric and magnetic potentials, respectively,
(g1, g2, g3), gϕ, g

χ and gη are the given stress vector, normal components of the equilibrated
stress, electric displacement and magnetic induction vectors, respectively, while u0 and u1 are
the initial mechanical displacement and velocity vectors, whereas ϕ0 and ϕ1 are the initial
volume fraction distribution and its rate. Note that the sub-manifolds Γ0, Γϕ

0 , Γχ
0 , and Γη

0, of
the boundary ∂Ω in boundary conditions (2.12)-(2.15) are different, in general, from each other
and depending on the physical problem some of them may be empty.

2.1.1 Construction of hierarchical models. N th approximation

Below we use formulas (for proof see [6], Section 10).

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3

= fr,α +
r∑

s=0

r
aαsfs −

(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α, α = 1, 2,

(2.17)
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(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =
r∑

s=0

r
a3sfs +

(+)

f − (−1)r
(−)

f , (2.18)

or in the unified form
(+)

h (x1,x2)∫
(−)

h (x1,x2)

Pr(ax3 − b)f,j dx3 = fr,j +
∞∑

s=r

r
bjsfs, j = α, 3, α = 1, 2, (2.19)

provided
(+)

f and
(−)

f are not prescribed on the face surfaces.
(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,j dx3 = fr,j +
r∑

s=0

r
ajsfs

+
(+)

f
(+)
n j

√
1 + (

(+)

h ,1)2 + (
(+)

h ,2)2

+(−1)r
(−)

f
(−)
n j

√
1 + (

(−)

h ,1)2 + (
(−)

h ,2)2, j = α, 3, α = 1, 2,

(2.20)

provided
(+)

f and
(−)

f are prescribed on the face surfaces. Here

r
aαs := (2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, s 6= r;
r
aαr = r

h,α
h
,

r
a3s := −(2s+ 1)

1− (−1)r

2h
, 2h :=

(+)

h −
(−)

h ,

r
bjs := −r

ajs, j 6= r,
r
bαr := −(r + 1)

(+)

h ,α−
(−)

h ,α
2h

,
r
b3r = 0.

From (2.3)-(2.11), after multiplying them by Pr(ax3 − b) for r = 0, 1, · · · , and then integrating

within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2) with respect to the thickness variable x3, we obtain
the following formulas in ω:
(i) from (2.3)-(2.5), correspondingly, it follows that

Xαir,α +
r∑

s=0

r
ajsXjis +

r
Xi = ρ

∂2uir

∂t2
, i = 1, 3, r = 0, 1, · · · , (2.21)

Hαr,α +
r∑

s=0

r
aαsHαs +H0r +

r
H = kϕ̈r −Fr, r = 0, 1, · · · , (2.22)

Dγr,γ +
r∑

s=0

r
aisDis +

r
D = fer, r = 0, 1, · · · , (2.23)

Bγr,γ +
r∑

s=0

r
aisBis +

r
B = 0, r = 0, 1, · · · ; (2.24)
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where

r
Xi :=

(+)

X3i −
(+)

Xαi

(+)

h,α + (−1)r
[
−

(−)

X3i +
(−)

Xαi

(−)

h,α

]
+ Φir

= X(+)
n i

√
1 +

((+)

h,1

)2
+
((+)

h,2

)2
+ (−1)rX(−)

n i

√
1 +

((−)

h,1

)2
+
((−)

h,2

)2
+ Φir,

i = 1, 3, r = 0, 1, 2, · · · ;

since

x3 =
(±)

h (x1, x2) ⇒ F (x1, x2, x3) := x3 −
(±)

h (x1, x2) = 0

(±)
n,i =

(±)

F,i

±

√
(±)

F,21 +
(±)

F,22 +
(±)

F,23

⇒
(±)
n,α =

−
(±)

h,α

±

√
(±)

F,21 +
(±)

F,22 +
(±)

F,23

,
(±)
n,3 =

1

±

√
(±)

F,21 +
(±)

F,22 +
(±)

F,23

here X(+)
n i

and X(−)
n i

are components of the stress vectors X(+)
n

and X(−)
n

acting on the upper

and lower face surfaces with normals
(+)
n and

(−)
n , respectively,

r
H :=

(+)

H3 −
(+)

Hα

(+)

h,α + (−1)r
[
−

(−)

H3 +
(−)

Hα

(−)

h,α

]
+ Fr

(+)

H

√
1 +

((+)

h,1

)2
+
((+)

h,2

)2
+ (−1)r

(−)

H

√
1 +

((−)

h,1

)2
+
((−)

h,2

)2
+ Fr r = 0, 1, · · · ,

(+)

Hj and
(−)

Hj are components of the equilibrated stress vectors on the upper and lower face surfaces

with normals
(+)
n and

(−)
n , respectively.

r
D :=

(+)

D3 −
(+)

Dγ

(+)

h,γ + (−1)r
[
−

(−)

D3 +
(−)

Dγ

(−)

hγ

]

=
(+)

Di
(+)
ni

√
1 + (

(+)

h,1 )2 + (
(+)

h,2 )2 +
(−)

Di
(−)
ni

√
1 + (

(−)

h,1 )2 + (
(−)

h,2 )2,

r
B :=

(+)

B3 −
(+)

Bγ

(+)

h,γ + (−1)r
[
−

(−)

B3 +
(−)

Bγ

(−)

hγ

]

=
(+)

Bi
(+)
ni

√
1 + (

(+)

h,1 )2 + (
(+)

h,2 )2 +
(−)

Bi
(−)
ni

√
1 + (

(−)

h,1 )2 + (
(−)

h,2 )2;

(ii) from (2.6), using (2.19), it follows that

eijr =
1
2

(
uir,j + ujr,i

)
+

1
2

∞∑
s=r

r
bisujs +

1
2

∞∑
s=r

r
bjsuis, i, j = 1, 3, r = 0, 1, · · · , (2.25)

by virtue of
vir := h−r−1uir,
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we have

eijr =
1
2
hr+1

(
vir,j + vjr,i

)
+

1
2

∞∑
s=r+1

hs+1
( r
bisvjs +

r
bjsvis

)
,

i, j = 1, 3, r = 0, 1, · · · .

(2.26)

(iii) from (2.7), taking into account (2.19) for j = γ and j = 3, it follows that

Xijr = Eijkleklr + E∗ijklėklr + b̃ijϕr + b∗ijϕ̇r + dijγ

(
ϕr,γ +

∞∑
s=r

r
bγsϕs

)
−dij3

∞∑
s=r+1

r
aγsϕs + d∗ijγ

(
ϕ̇r,γ +

∞∑
s=r

r
bγsϕ̇s

)
− d∗ij3

∞∑
s=r+1

r
a3sϕ̇s

+pγij(χr,γ +
∞∑

s=r

r
bγsχs)− p3ij

∞∑
s=r+1

r
a3sχs + p∗γij

(
χ̇r,γ +

∞∑
s=r

r
bγsχ̇s

)
−p∗3ij

∞∑
s=r+1

r
a3sχ̇s + qγij(ηr,γ +

∞∑
s=r

r
bγsηs)− q3ij

∞∑
s=r+1

r
a3sηs

+q∗γij(η̇r,γ +
∞∑

s=r

r
bγsη̇s)− q∗3ij

∞∑
s=r+1

r
a3sη̇s, i, j = 1, 3, r = 0, 1, · · · . (2.27)

Therefore, by virtue of (2.25),

Xijr =
1
2
Eijkl

(
ukr,l + ulr,k

)
+

1
2
Eijkl

∞∑
s=r

( r
bksuls +

r
blsuks

)

+
1
2
E∗ijkl

(
u̇kr,l + u̇lr,k

)
+

1
2
E∗ijkl

∞∑
s=r

( r
bksu̇ls +

r
blsu̇ks

)

+b̃ijϕr + b∗ijϕ̇r + dijγ

(
ϕr,γ +

∞∑
s=r

r
bγsϕs

)
−dij3

∞∑
s=r+1

r
aγsϕs + d∗ijγ

(
ϕ̇r,γ +

∞∑
s=r

r
bγsϕ̇s

)
− d∗ij3

∞∑
s=r+1

r
a3sϕ̇s

+pγij

(
χr,γ +

∞∑
s=r

r
bγsχs

)
− p3ij

∞∑
s=r+1

r
a3sχs + p∗γij

(
χ̇r,γ +

∞∑
s=r

r
bγsχ̇s

)
−p∗3ij

∞∑
s=r+1

r
a3sχ̇s + qγij

(
ηr,γ +

∞∑
s=r

r
bγsηs

)
− q3ij

∞∑
s=r+1

r
a3sηs

+q∗γij(η̇r,γ +
∞∑

s=r

r
bγsη̇s)− q∗3ij

∞∑
s=r+1

r
a3sη̇s, i, j = 1, 3, r = 0, 1, · · · . (2.28)

Let
vkr :=

ukr

hr+1
, ψr :=

ϕr

hr+1
, χ̃r :=

χr

hr+1
, η̃r :=

ηr

hr+1
. (2.29)
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Substituting (2.26) into (2.27), and taking into account (2.29), it follows that

Xijr =
1
2
Eijklh

r+1
(
vkr,l + vlr,k

)
+

1
2
Eijkl

∞∑
s=r+1

hs+1
( r
bksvls +

r
blsvks

)

+
1
2
E∗ijklh

r+1
(
v̇kr,l + v̇lr,k

)
+

1
2
E∗ijkl

∞∑
s=r+1

hs+1
( r
bksv̇ls +

r
blsv̇ks

)

+b̃ijhr+1ψr + b∗ijh
r+1ψ̇r + dijγh

r+1ψr,γ + dijk

∞∑
s=r+1

hs+1
r
bksψs + d∗ijγh

r+1ψ̇r,γ

+d∗ijk
∞∑

s=r+1

hs+1
r
bksψ̇s + pγijh

r+1χ̃r,γ + pkij

∞∑
s=r+1

hs+1
r
bksχ̃s

+p∗γijh
r+1 ˙̃χr,γ + p∗kij

∞∑
s=r+1

hs+1
r
bks

˙̃χs + qγijh
r+1η̃r,γ + qkij

∞∑
s=r+1

hs+1
r
bksη̃s

+q∗γijh
r+1 ˙̃ηr,γ + q∗kij

∞∑
s=r+1

hs+1
r
bks

˙̃ηs, i, j = 1, 3, r = 0, 1, · · · (2.30)

(because of

(hr+1χ̃r),γ − hr+1(r + 1)
h,α

h
χ̃r = hr+1χ̃r,γ ,

and the similar formulas for ψ and η̃).
Analogously, from (2.8) we have

Hjr =
1
2
dklj(ukr,l + ulr,k) +

1
2
dklj

∞∑
s=r

(
r
bksuls +

r
blsuks)

+
1
2
d∗klj(ukr,l + ulr,k) +

1
2
d∗klj

∞∑
s=r

(
r
bksuls +

r
blsuks) + djϕr + d∗j ϕ̇r

+α̃jβ

[
ϕr,β +

r∑
s=0

r
aβsϕs −

(+)
ϕ

(+)

h,β + (−1)r
(−)
ϕ

(−)

h,β

]
+α̃j3

[ r∑
s=0

r
a3sϕs +

(+)
ϕ − (−1)r

(−)
ϕ
]

+α∗jβ
[
ϕ̇r,β +

r∑
s=0

r
aβsϕ̇s −

(+)

ϕ̇
(+)

h,α − (−1)r
(−)

ϕ̇
(−)

h,α

]
+α∗j3

[ r∑
s=0

r
a3sϕ̇s +

(+)

ϕ̇ − (−1)r
(−)

ϕ̇
]
, j = 1, 3,

and substituting here the corresponding Fourier-Legendre expansions of ϕ on the upper and
lower face surfaces

(±)
ϕ =

∞∑
s=0

(±1)s(2s+ 1)
2h

ϕs,
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we get

Hjr =
1
2
dklj(ukr,l + ulr,k) +

1
2
dklj

∞∑
s=r

(
r
bksuls +

r
blsuks)

+
1
2
d∗klj(ukr,l + ulr,k) +

1
2
d∗klj

∞∑
s=r

(
r
bksuls +

r
blsuks) + djϕr + d∗j ϕ̇r

+α̃jk

(
ϕr,k +

∞∑
s=r

r
bksϕs

)
+ α∗jk

(
ϕ̇r,k +

∞∑
s=r

r
bksϕ̇s

)
, j = 1, 3, r = 0, 1, · · · , (2.31)

i.e. (see (2.29))

Hjr =
1
2
dkljh

r+1(vkr,l + vlr,k) +
1
2
dklj

∞∑
s=r+1

hs+1(
r
bksvhs +

r
blsvks)

+
1
2
d∗kljh

r+1(v̇kr,l + v̇lr,k) +
1
2
d∗klj

∞∑
s=r+1

hs+1(
r
bksv̇hs +

r
blsv̇ks)djh

r+1ψr + d∗jh
r+1ψ̇r

+α̃ji

(
hr+1ψr,i +

∞∑
s=r+1

hs+1
r
bisψs

)
+ α∗ji

(
hr+1ψ̇r,i +

∞∑
s=r+1

hs+1
r
bisψ̇s

)
, (2.32)

j = 1, 3, r = 0, 1 · · · .

From (2.9), on account of combined (2.19), (2.20), evidently, it follows that

H0r = −di(ϕr,i +
∞∑

s=r

r
bisϕs)− b̃ijeijr − ξ̃ϕr

−d∗(ϕ̇r,i +
∞∑

s=r

r
bisϕ̇s)− b∗ij ėijr − ξ∗ϕ̇r, r = 0, 1, · · ·

and, in view of (2.22),

H0r = −di(ϕr,i +
∞∑

s=r

r
bisϕs)

−b̃ij
[1
2

(
uir,j + ujr,i

)
+

1
2

∞∑
s=r

r
bisujs +

1
2

∞∑
s=r

r
bjsuis

]
−ξ̃ϕr − d∗(ϕ̇r,i +

∞∑
s=r

r
bisϕ̇s)

−b∗ij
[1
2

(
u̇ir,j + u̇jr,i

)
+

1
2

∞∑
s=r

r
bisu̇js +

1
2

∞∑
s=r

r
bjsu̇is

]
− ξ∗ϕ̇r, (2.33)

while, by virtue of (2.26) and (2.29),
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H0r = −b̃ij
[1
2
hr+1

(
vir,j + vjr,i

)
+

1
2

∞∑
s=r+1

hs+1
( r
bisvjs +

r
bjsvis

)]
−ξ̃hr+1ψr − di

(
hr+1ψr,i +

∞∑
s=r+1

r
bisψs

)
−b∗ij

[1
2
hr+1

(
v̇ir,j + v̇jr,i

)
+

1
2

∞∑
s=r+1

hs+1
( r
bisv̇js +

r
bjsv̇is

)]
−ξ∗hr+1ψ̇r − d∗i

(
hr+1ψ̇r,i +

∞∑
s=r+1

r
bisψ̇s

)
, r = 0, 1, · · · . (2.34)

Similarly, from (2.10) it follows

Djr = pjkleklr + p∗jklėklr − ςjγ

(
χr,γ +

∞∑
s=r

r
bγsχs

)
+ ςj3

∞∑
s=r+1

r
a3sχs

−ãjγ

(
ηr,γ +

∞∑
s=r

r
bγsηs

)
+ ãj3

∞∑
s=r+1

r
a3sηs, j = 1, 3, r = 0, 1, · · · ,

i.e., in view of (2.25),

Djr =
1
2
pjkl(ukr,l + ulr,k) +

1
2
pjkl

∞∑
s=r

(
r
bksuls +

r
blsuks)

+
1
2
p∗jkl(u̇kr,l + u̇lr,k) +

1
2
p∗jkl

∞∑
s=r

(
r
bksu̇ls +

r
blsu̇ks)

−ςjγ
(
χr,γ +

∞∑
s=r

r
bγsχs

)
+ ςj3

∞∑
s=r+1

r
a3sχs

−ãjγ

(
ηr,γ +

∞∑
s=r

r
bγsηs

)
+ ãj3

∞∑
s=r+1

r
a3sηs, j = 1, 3, r = 0, 1, · · · , (2.35)

while by virtue of (2.26) and (2.29), we have

Djr =
1
2
pjklh

r+1(vkr,l + vlr,k) +
1
2
pjkl

∞∑
s=r+1

hs+1(
r
bksvls +

r
blsvks)

+
1
2
p∗jklh

r+1(v̇kr,l + v̇lr,k) +
1
2
p∗jkl

∞∑
s=r+1

hs+1(
r
bksv̇ls +

r
blsv̇ks)

−ςjγ
(
hr+1χ̃r,γ +

∞∑
s=r+1

hs+1
r
bγsχ̃s

)
+ ςj3

∞∑
s=r+1

hs+1 r
a3sχ̃s

−ãjγ

(
hr+1η̃r,γ +

∞∑
s=r+1

hs+1
r
bγsη̃s

)
+ ãj3

∞∑
s=r+1

hs+1 r
a3sη̃s, (2.36)

j = 1, 3, r = 0, 1, · · · .
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In the same way from (2.11) we get

Bjr =
1
2
qjkl(ukr,l + ulr,k) +

1
2
qjkl

∞∑
s=r

(
r
bksuls +

r
blsuks)

+
1
2
q∗jkl(u̇kr,l + u̇lr,k) +

1
2
q∗jkl

∞∑
s=r

(
r
bksu̇ls +

r
blsu̇ks)

−ãjγ

(
χr,γ +

∞∑
s=r

r
bγsχs

)
+ ãj3

∞∑
s=r+1

r
a3sχs

−ξjγ
(
ηr,γ +

∞∑
s=r

r
bγsηs

)
+ ξj3

∞∑
s=r+1

r
a3sηs, j = 1, 3, r = 0, 1, · · · , (2.37)

i.e.

Bjr =
1
2
qjklh

r+1(vkr,l + vlr,k) +
1
2
qjkl

∞∑
s=r+1

hs+1(
r
bksvls +

r
blsvks)

+
1
2
q∗jklh

r+1(v̇kr,l + v̇lr,k) +
1
2
q∗jkl

∞∑
s=r+1

hs+1(
r
bksv̇ls +

r
blsv̇ks)

−ãjγ

(
hr+1χ̃r,γ +

∞∑
s=r+1

hs+1
r
bγsχ̃s

)
+ ãj3

∞∑
s=r+1

hs+1 r
a3sχ̃s

−ξjγ
(
hr+1η̃r,γ +

∞∑
s=r+1

hs+1
r
bγsη̃s

)
+ ξj3

∞∑
s=r+1

hs+1 r
a3sη̃s, (2.38)

j = 1, 3, r = 0, 1, · · · ;

Substituting (2.30) into (2.21); (2.32) and (2.34) into (2.22); (2.36) into (2.23); (2.38) into
(2.24) we get an infinity system that after truncation it gives the governing system of the Nth
approximation with respect to

vkr, ψr, χ̃r, η̃r, k = 1, 3, r = 0, N :

1
2

(
Eαikδh

2r+1vkr,δ

)
,α +

1
2

(
Eαiγlh

2r+1vlr,γ

)
,α +

1
2

(
Eαikl

N∑
s=r+1

r
bksh

r+s+1vls

)
,α

+
1
2

(
Eαikl

N∑
s=r+1

r
blsh

r+s+1vks

)
,α +

1
2

(
E∗αikδh

2r+1v̇kr,δ

)
,α +

1
2

(
E∗αiγlh

2r+1v̇lr,γ

)
,α

+
1
2

(
E∗αikl

N∑
s=r+1

r
bksh

r+s+1v̇ls

)
,α +

1
2

(
E∗αikl

N∑
s=r+1

r
blsh

r+s+1v̇ks

)
,α +

(
b̃αih

2r+1ψr

)
,α

+
(
b∗αih

2r+1ψ̇r

)
,α +

(
dαiγh

2r+1ψr,γ

)
,α +

(
dαik

N∑
s=r+1

r
bksh

r+s+1ψs

)
,α

+
(
d∗αiγh

2r+1ψ̇r,γ

)
,α +

(
d∗αik

N∑
s=r+1

r
bksh

r+s+1ψ̇s

)
,α
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+
(
pγαih

2r+1χ̃r,γ

)
,α +

(
pkαi

N∑
s=r+1

r
bksh

r+s+1χ̃s

)
,α

+
(
p∗γαih

2r+1 ˙̃χr,γ

)
,α +

(
p∗kαi

N∑
s=r+1

r
bksh

r+s+1 ˙̃χs

)
,α

+
(
qγαih

2r+1η̃r,γ

)
,α +

(
qkαi

N∑
s=r+1

r
bksh

r+s+1η̃s

)
,α

+
(
q∗γαih

2r+1 ˙̃ηr,γ

)
,α +

(
q∗kαi

N∑
s=r+1

r
bksh

r+s+1 ˙̃ηs

)
,α

+
r∑

s=0

r
ajs

[1
2
Ejiklh

r+s+1
(
vks,l + vls,k

)
+

1
2
Ejikl

N∑
s′=s+1

hr+s′+1
( s
bks′vls′ +

s
bls′vks′

)

+
1
2
E∗jiklh

r+s+1
(
v̇ks,l + v̇ls,k

)
+

1
2
E∗jikl

N∑
s′=s+1

hr+s′+1
( s
bks′ v̇ls′ +

s
bls′ v̇ks′

)

+b̃ijhr+s+1ψs + b∗ijh
r+s+1ψ̇s + djiγh

r+s+1ψs,γ + djik

N∑
s′=s+1

s
bks′h

r+s′+1ψs′

+d∗jiγh
r+s+1ψ̇s,γ + d∗jik

N∑
s′=s+1

s
bks′h

r+s′+1ψ̇s′ + pγjih
r+s+1χ̃s,γ

+pkji

N∑
s′=s+1

s
bks′h

r+s′+1χ̃s′ + p∗γjih
r+s+1 ˙̃χs,γ + p∗kji

N∑
s′=s+1

s
bks′h

r+s′+1 ˙̃χs′

+qγjih
r+s+1η̃s,γ + qkji

N∑
s′=s+1

s
bks′h

r+s′+1η̃s′ + q∗γjih
r+s+1 ˙̃ηs,γ

+q∗kji

N∑
s′=s+1

s
bks′h

r+s′+1 ˙̃ηs′

]
+ hr

r
Xi = ρhr ∂

2hr+1vir

∂t2
, (2.39)

i = 1, 3, r = 0, N,

1
2

(
dklαh

2r+1vkr,l

)
,α +

1
2

(
dklαh

2r+1vlr,k

)
,α +

1
2

(
dklα

N∑
s=r+1

r
bksh

r+s+1vls

)
,α

+
1
2

(
dklα

N∑
s=r+1

r
blsh

r+s+1vks

)
,α +

1
2

(
d∗klαh

2r+1v̇kr,l

)
,α +

1
2

(
d∗klαh

2r+1v̇lr,k

)
,α

+
1
2

(
d∗klα

N∑
s=r+1

r
bksh

r+s+1v̇ls

)
,α +

1
2

(
d∗klα

N∑
s=r+1

r
blsh

r+s+1v̇ks

)
,α



Vol. 26, 2025 19

+
(
dαh

2r+1ψr

)
,α +

(
d∗αh

2r+1ψ̇r

)
,α +

(
α̃αkh

2r+1ψr,k

)
,,α

+
(
α̃αk

N∑
s=r+1

r
bksh

r+s+1ψs

)
,α +

(
α∗αkh

2r+1ψ̇r,k

)
,α +

(
α∗αk

N∑
s=r+1

r
bksh

r+s+1ψ̇s

)
,α

+
r∑

s=0

r
ais

[1
2
dklih

r+s+1
(
vks,l + vls,k

)
+

1
2
dkli

N∑
s′=s+1

hr+s′+1
( s
bks′vls′ +

s
bls′vks′

)

+
1
2
d∗klih

r+s+1
(
v̇ks,l + v̇ls,k

)
+

1
2
d∗kli

N∑
s′=s+1

hr+s′+1
( s
bks′ v̇ls′ +

s
bls′ v̇ks′

)

+dih
r+s+1ψs + d∗ih

r+s+1ψ̇s + α̃ik

(
hr+s+1ψs,k +

N∑
s′=s+1

s
bks′h

r+s′+1ψs′

)

+α∗ik
(
hr+s+1ψ̇s,k +

N∑
s′=s+1

s
bks′h

r+s′+1ψ̇s′

)]

−b̃ij
[1
2
h2r+1

(
vir,j + vjr,i

)
+

1
2

N∑
s=r+1

r
bish

r+s+1vjs +
1
2

N∑
s=r+1

r
bjsh

r+s+1vis

]

−ξ̃h2r+1ψr − di

(
h2r+1ψr,i +

N∑
s=r+1

r
bish

r+s+1ψs

)

−b∗ij
[1
2
h2r+1

(
v̇ir,j + v̇jr,i

)
+

1
2

N∑
s=r+1

r
bish

r+s+1v̇js +
1
2

N∑
s=r+1

r
bjsh

r+s+1v̇is

]

−ξ∗h2r+1ψ̇r − d∗i

(
h2r+1ψ̇r,i +

N∑
s=r+1

r
bish

r+s+1ψ̇s

)
+hr

r
H = ρkhr ∂

2hr+1ψr

∂t2
, r = 0, N, (2.40)

1
2

(
pαklh

2r+1vkr,l

)
,α +

1
2

(
pαklh

2r+1vlr,k

)
,α +

1
2

(
pαkl

N∑
s=r+1

r
bksh

r+s+1vls

)
,α

+
1
2

(
pαkl

N∑
s=r+1

r
blsh

r+s+1vks

)
,α +

1
2

(
p∗αklh

2r+1v̇kr,l

)
,α +

1
2

(
p∗αklh

2r+1v̇lr,k

)
,α

+
1
2

(
p∗αkl

N∑
s=r+1

r
bksh

r+s+1v̇ls

)
,α +

1
2

(
p∗αkl

N∑
s=r+1

r
blsh

r+s+1v̇ks

)
,α

−
(
ςαγh

2r+1χ̃r,γ

)
,α−

(
ςαk

N∑
s=r+1

r
bksh

r+s+1χ̃s

)
,α

−
(
ãαγh

2r+1η̃r,γ

)
,α−

(
ãαk

N∑
s=r+1

r
bksh

r+s+1η̃s

)
,α

+
r∑

s=0

r
ais

[1
2
hr+s+1pikl(vks,l + vls,k) +

1
2
pikl

N∑
s′=s+1

hr+s′+1(
s
bks′vls′ +

s
bls′vks′)
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+
1
2
p∗iklh

r+s+1(v̇ks,l + v̇ls,k) +
1
2
p∗ikl

N∑
s′=s+1

hr+s′+1(
s
bks′ v̇ls′ +

s
bls′ v̇ks′)

−ςiγhr+s+1χ̃s,γ − ςik
∑N

s′=s+1

s
bks′h

r+s′+1χ̃s′

+ãiγh
r+s+1η̃s,γ + ãik

N∑
s′=s+1

s
bks′h

r+s′+1η̃s′

]
+ hr

r
D = hrfer, r = 0, N. (2.41)

1
2

(
qαklh

2r+1vkr,l

)
,α +

1
2

(
qαklh

2r+1vlr,k

)
,α +

1
2

(
qαkl

N∑
s=r+1

r
bksh

r+s+1vls

)
,α

+
1
2

(
qαkl

N∑
s=r+1

r
blsh

r+s+1vks)
)
,α +

1
2

(
q∗αklh

2r+1v̇kr,l

)
,α +

1
2

(
q∗αklh

2r+1v̇lr,k

)
,α

+
1
2

(
q∗αkl

N∑
s=r+1

r
bksh

r+s+1v̇ls

)
,α +

1
2

(
q∗αkl

N∑
s=r+1

r
blsh

r+s+1v̇ks)
)
,α

−
(
ãαγh

2r+1χ̃r,γ

)
,α−

(
ãαk

N∑
s=r+1

r
bksh

r+s+1χ̃s

)
,α

−
(
ξαγh

2r+1η̃r,γ

)
,α−

(
ξαk

N∑
s=r+1

r
bksh

r+s+1η̃s

)
,α

+
r∑

s=0

r
ais

[1
2
qiklh

r+s+1(vks,l + vls,k) +
1
2
qikl

N∑
s′=s+1

hr+s′+1(
s
bks′vls′ +

s
bls′vks′)

+
1
2
q∗iklh

r+s+1(v̇ks,l + v̇ls,k) +
1
2
q∗ikl

N∑
s′=s+1

hr+s′+1(
s
bks′ v̇ls′ +

s
bls′ v̇ks′)

−ãiγh
r+s+1χ̃s,γ − ãik

N∑
s′=s+1

s
bks′h

r+s′+1χ̃s′

−ξiγhr+s+1η̃s,γ − ξik

N∑
s′=s+1

s
bks′h

r+s′+1η̃s′ ] + hr
r
B = 0, r = 0, N. (2.42)

In the Nth approximation (hierarchical model):

(ui, ϕ, χ, η)(x1, x2, x3, t) ∼=
N∑

r=0

1
h

(
r +

1
2

)
hr
(

N
vir,

N
ψr,

N
χ̃r,

N
η̃r

)
(x1, x2, x3, t)Pr(ax3 − b),

where
(

N
vir,

N
ψr,

N
χ̃r,

N
η̃r

)
is a solution of the above system (2.39)-(2.42).

2.1.2 N = 0 approximation

The governing system in N = 0 approximations has the form (see also [6], page 42), as it directly
follows from Subsection 2.1.1 for N = 0,
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Xαj0,α +
0
Xj = ρ

∂2hvj0

∂t2
, j = 1, 3, (2.43)

Hα0,α +H00 +
0
H = ρk

∂2hψ0

∂t2
, (2.44)

Dα0,α +
0
D = fe0, (2.45)

Bα0,α +
0
B = 0, (2.46)

vj0 =
uj0

h
, ψ0 =

ϕ0

h
;

Xij0 =
1
2
Eijklh

(
vk0,l + vl0,k

)
+

1
2
E∗ijklh

(
v̇k0,l + v̇l0,k

)
+b̃ijhψ0 + b∗ijhψ̇0 + dijγhψ0,γ + d∗ijγhψ̇0,γ + pγijhχ̃r,γ

+p∗γijh
˙̃χ0,γ + qγijhη̃0,γ + q∗γijh

˙̃η0,γ , i, j = 1, 3, (2.47)

χ̃0 :=
χ0

h
, η̃0 :=

η0

h
;

Hj0 =
1
2
dkljh(vk0,l + vl0,k) +

1
2
d∗kljh(v̇k0,l + v̇l0,k) + djhψ0 + d∗jhψ̇0

+α̃jihψ0,i + α∗jihψ̇0,i, j = 1, 3, (2.48)

H00 =−1
2
b̃ijh

(
vi0,j + vj0,i

)
−ξ̃hψ0 − dihψ0,i−

1
2
b∗ijh

(
v̇i0,j + v̇j0,i

)
−ξ∗hψ̇0 − d∗ihψ̇0,i; (2.49)

Dj0 =
1
2
pjklh(vk0,l + vl0,k) +

1
2
p∗jklh(v̇k0,l + v̇l0,k) + ςjγhχ̃0,γ + ãjγhη̃0,γ , j = 1, 3; (2.50)

Bj0 =
1
2
qjklh(vk0,l + vl0,k) +

1
2
q∗jklh(v̇k0,l + v̇l0,k) + ãjγhχ̃0,γ + ξjγhη̃0,γ , j = 1, 3; (2.51)

eij0 =
1
2
h
(
vi0,j + vj0,i

)
, i, j = 1, 3, (2.52)

Substituting (2.47)-(2.51) into (2.43)-(2.46), respectively, we obtain the governing system of
equations with respect to vi0, ψ0, α̃0, η̃0:

1
2

(
Eαikδhvk0,δ

)
,α +

1
2

(
Eαiγlhvl0,γ

)
,α +

1
2

(
E∗αikδhv̇k0,δ

)
,α +

1
2

(
E∗αiγlhv̇l0,γ

)
,α

+b̃αihψ0,α +
(
b̃αih

)
,α ψ0 + b∗αihψ̇0,α +

(
b∗αih

)
,α ψ̇0 +

(
dαiγhψ0,γ

)
,α

+
(
d∗αiγhψ̇0,γ

)
,α +

(
pγαihχ̃0,γ

)
,α +

(
p∗γαih

˙̃χ0,γ

)
,α +

(
qγαihη̃0,γ

)
,α

+
(
q∗γαih ˙̃η0,γ

)
,α +

0
Xi = ρ

∂2hvi0

∂t2
, i = 1, 3, (2.53)

0
Xi :=

(+)

X3i −
(+)

Xαi

(+)

h ,α−
(−)

X3i +
(−)

Xαi

(+)

h ,α +Φi0 = Q(+)
n i
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1
2

(
dkδαhvk0,δ

)
,α +

1
2

(
dγlαhvl0,γ

)
,α +

1
2

(
d∗kδαhv̇k0,δ

)
,α +

1
2

(
d∗γlαhv̇l0,γ

)
,α

+
(
dαh

)
,α ψ0 +

(
d∗αh

)
,α ψ̇0 +

(
α̃αδhψ0,δ

)
,α +

(
α∗αδhψ̇0,δ

)
,α−b̃iαhvi0,α

−ξ̃hψ0 − b∗iαhv̇i0,α − ξ∗hψ̇0 +
0
H = k

∂2hψ0

∂t2
, (2.54)

1
2

(
pαkδhvk0,δ

)
,α +

1
2

(
pαγlhvl0,γ

)
,α +

1
2

(
p∗αkδhv̇k0,δ

)
,α

+
1
2

(
p∗αγlhv̇l0,γ

)
,α +

(
ςαγhχ̃0,γ

)
,α +

(
ãαγhη̃0,γ

)
,α +

0
D = fe0, (2.55)

1
2

(
qαkδhvk0,δ

)
,α +

1
2

(
qαγlhvl0,γ

)
,α +

1
2

(
q∗αkδhv̇k0,δ

)
,α

+
1
2

(
q∗αγlhv̇l0,γ

)
,α +

(
ãαγhχ̃0,γ

)
,α +

(
ξαγhη̃0,γ

)
,α +

0
B = 0. (2.56)

Similarly, we may conctruct the governing system for the Nth approximation with respect
to vir, ψr, ξ̃r, η̃r, r = 0, N , i = 1, 3 (see [6], pp. 31-42 for details).

2.2 N = 0 approximation for porous isotropic elastic prismatic shells

In the case under consideration, assuming the constitutive coefficients λ := E1122 = E1133 and
µ := 1

2(E1111 −E1122) (the Lamé constants), α̃, b̃, and ξ̃ to be constantsi from (2.53)-(2.56) we
get the following governing system (see also [6], pages 66, 67)

µ
[
(hvα0,β),α + (hvβ0,α),α

]
+ λ(hvγ0,γ),β + b̃(hψ0),β +

0
Xβ = ρhv̈β0, β = 1, 2; (2.57)

µ(hv30,α),α +
0
X3 = ρhv̈30; (2.58)

α̃(hψ0,α),α − b̃hvγ0,γ − ξ̃hψ0 +
0
H = ρhψ̈0 −F0. (2.59)

BCs for the weighted displacements and the weighted volume fraction are non-classical in
the case of cusped prismatic shells. Namely, we are not always able to prescribe them at cusped
edges.

Let ω be a domain bounded by a sufficiently smooth arc (∂ω \ γ0) lying in the half-plane
x2 > 0 and a segment γ0 of the x1−axis (x2 = 0).

If the thickness looks like

2h(x1, x2) = h0x
κ
2 , h0, κ = const > 0, (2.60)

then we can prescribe the displacements and volume fraction at the cusped edge γ0 if κ < 1,
while we cannot do it if κ ≥ 1.

Let us show it for the particular case of deformation when

vα0 ≡ 0, α = 1, 2; v30 6≡ 0.

iClearly, E1122 ≡ E1133 = λ, E1111 = λ + 2µ. Other elastic coefficients are equal to zero.
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Then in the static case, taking into account (2.60), from (2.58), (2.59) we get

x2v30,αα + κv30,2 = 2(µh0)−1x1−κ
2

◦
X3, (2.61)

x2ψ0,αα + κψ0,2 − ξα−1x2ψ0 = −2(α̃h0)−1x1−κ
2

( ◦
H + F0

)
, (2.62)

respectively.
Problem D (Dirichlet Problem: Find solutions

v30, ψ0 ∈ C2(ω) ∩ C(ω̄)

of (2.61), (2.62) by their values prescribed on ∂ω)

and

Problem E (Keldysh Problem: Find bounded solutions

v30, ψ0 ∈ C2(ω) ∩ C(ω ∪ (∂ω \ γ0))

of (2.61), (2.62) by their values prescribed only on the arc ∂ω \ γ0)

are uniquely solvable for equations (2.61), (2.62) by κ < 1 and κ ≥ 1, correspondingly. It follows
from

Theorem 2.1. (Jaiani, see [7], Section 3.9) If the coefficients aα, α = 1, 2, and c of the equation

xκα
2 u,αα +aα(x1, x2)u,α +c(x1, x2)u = 0, c ≤ 0, κα = const ≥ 0, α = 1, 2,

are analytic in ω, then
(i) if either κ2 < 1, or κ2 ≥ 1,

a2(x1, x2) < xκ2−1
2 (2.63)

in ωδ for some δ = const > 0, where

ωδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem (Problem D, u ∈ C2(ω) ∩ C(ω̄)) is well-posed;
(ii) if κ2 ≥ 1,

a2(x1, x2) ≥ xκ2−1
2 (2.64)

in ωδ and a1(x1, x2) = O(xκ1
2 ), x2 → 0+ (O is the Landau symbol), the Keldysh problem

(Problem E, bounded u ∈ C2(ω) ∩ C(ω̄ \ γ0)) is well-posed.

Indeed, from (2.63) and (2.64), it follows a2(x1, x2) = κ < 1 for Problem D and a2(x1, x2) =
κ ≥ 1 for Problem E, respectively, since κ1 = κ2 = 1, a1 ≡ 0; in addition for (2.62) c =
−ξα−1x2 < 0.
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2.3 Transversely isotropic solids

Let us now consider the transversely isotropic elastic piezoelectric material in the case when
the poling axis coincides with one of the material symmetry axes [22]. A material behavior is
said to be transversely isotropic if it is invariant with respect to an arbitrary rotation about a
given axis. This material behavior is of special importance in the modelling of fibre-reinforced
composite materials with a coordinate axis in the fibre direction and assumed isotropic in cross-
sections orthogonal to fibre direction [23] (in our case to poling axis as well, since in the case
under consideration they coincide). The transverse isotropic model is also suitable for biological
applications because it adequately describes the elastic properties of bundled fibers aligned in
one direction (see [24], [25]).

It is well-known [22] that the electric field that develops in piezoelectrics can be assumed
to be quasi-static because the velocity of the elastic waves is much smaller than the velocity
of electromagnetic waves. Therefore, the magnetic field due to the elastic waves is negligible
B ≈ 0. This fact implies that

∂B
∂t

≈ 0.

So one of Maxwell’s equations of electrodynamics becomes

rotE =
∂B
∂t

≈ 0

and, as it was already assumed,

E = −gradχ.

Consequently, considering transversely isotropic piezoelectric continuum, it will be based on the
governing equations of elastodynamics in the care of small deformations and quasi-electrostatic
fields. Note that piezoelectric materials show in most cases a crystal structure with a symmetry
of hexagonal 6 mm class. In the case when the poling axis coincides with one of the material
symmetry axes these materials become transversely isotropic.

Restricting to the case of time-harmonic motion with frequency o, i.e., all the sought quan-
tities, s.c. free members of governing equations, and boundary data are represented as the
products of eiot and of the same quantities (to avoid redundant indices and symbols we leave
the same notation) depending only on the space variables, from the governing equations of
dynamics (2.3), (2.5), (2.6), (2.7), (2.8) we get the following governing equations

Xij,j + ρo2ui = −Φi, i = 1, 3; (2.65)
Dj,j = fe; (2.66)

eij =
1
2
(ui,j + uj,i), i, j = 1, 3;

Ei = −χ,i, i = 1, 3;
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

X11

X22

X33

X23

X31

X12

D1

D2

D3


= C



e11
e22
e33
2e23
2e31
2e12
E1

E2

E3


(2.67)

where (see [22])

C :=
E1111 E1122 E1133 0 0 0 0 0 p311
E1122 E1111 E1133 0 0 0 0 0 p311
E1133 E1133 E3333 0 0 0 0 0 p333

0 0 0 E2323 0 0 0 p113 0
0 0 0 0 E2323 0 p113 0 0

0 0 0 0 0 1
2 (E1111 − E1122) 0 0 0

0 0 0 0 p113 0 −ς11 0 0
0 0 0 p113 0 0 0 −ς11 0

p311 p311 p333 0 0 0 0 0 −ς33

 (2.68)

From (2.67), (2.68) we have

X11 = E1111e11 + E1122e22 + E1133e33 − p311E3,

X22 = E1122e11 + E1111e22 + E1133e33 − p311E3,

X33 = E1133e11 + E1133e22 + E3333e33 − p333E3,

X23 = 2E2323e23 − p113E2, X31 = 2E2323e31 − p113E1,

X12 = (E1111 − E1122)e12,
D1 = 2p113e13 + ς11E1, D2 = 2p113e23 + ς11E2,

D3 = p311e11 + p311e22 + p333e33 + ς33E3,

i.e.,

X11 = E1111u1,1 + E1122u2,2 + E1133u3,3 − p311E3,

X22 = E1122u1,1 + E1111u2,2 + E1133u3,3 − p311E3,

X33 = E1133u1,1 + E1133u2,2 + E3333u3,3 − p333E3,

X23 = E2323(u2,3 + u3,2)− p113E2, X31 = E2323(u3,1 + u1,3)− p113E1, (2.69)

X12 =
1
2
(E1111 − E1122)(u1,2 + u2,1),

D1 = p113(u3,1 + u1,3) + ς11E1, D2 = p113(u2,3 + u3,2) + ς11E2,

D3 = p311u1,1 + p311u2,2 + p333u3,3 + ς33E3.

Conditions of Anti-plane Piezoelectric State [22] have the form

1. u1 ≡ 0, u2 ≡ 0, u3 6≡ 0;
2. X13 6≡ 0, X23 6≡ 0; Xαβ ≡ 0, α, β = 1, 2; X33 ≡ 0;
3. e13 6≡ 0, e23 6≡ 0; eαβ ≡ 0, α, β = 1, 2; e33 ≡ 0; (2.70)
4. E1 6≡ 0, E2 6≡ 0, E3 ≡ 0;
5. D1 6≡ 0, D2 6≡ 0, D3 ≡ 0.
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Taking into account (2.70), from the first three relations of (2.69) we have

u3,3 ≡ 0, u3 = u3(x1, x2);

the fourth and fifth relations of (2.69) give

X23 = E2323u3,2 − p113E2, (2.71)
X31 = E2323u3,1 − p113E1, (2.72)

respectively;
the sixth of (2.69) is identically fulfilled;
the seventh and eighth relations of (2.69) give

D1 = p113u3,1 + ς11E1, (2.73)
D2 = p113u3,2 + ς11E2. (2.74)

respectively;
the ninth of (2.69) is identically fulfilled.

From the first two of (2.65) it follows that

Φα ≡ 0, α = 1, 2, (2.75)

the third of (2.65) will have the form

X31,1 +X32,2 + ρo2u3 = −Φ3; (2.76)

while (2.66) will have the form
D1,1 +D2,2 = fe. (2.77)

Substituting (2.71) and (2.72) into (2.76) and (2.73) and (2.74) into (2.77) we get

(E2323u3,1),1 +(E2323u3,2),2−(p113E1),1−(p113E2),2 +ρo2u3 = −Φ3,

and
(p113u3,1),1 +(p113u3,2),2 +(ς11E1),1 +(ς11E2),2 = fe,

respectively.
Taking into account

Eα = −χ,α , α = 1, 2.

We obtain the following governing equations in the anti-plane piezoelectric state

(E2323u3,1),1 + (E2323u3,2),2 + (p113χ,1),1 + (p113χ,2),2 + ρo2u3 = −Φ3,

(p113u3,1),1 + (p113u3,2),2 − (ς11χ,1),1 − (ς11χ,2),2 = fe,

i.e.,

(E2323u3,α),α + (p113χ,α),α + ρo2u3 = −Φ3, (2.78)
(p113u3,α),α − (ς11χ,α),α = fe. (2.79)
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Let the plane domain of interest have the form given in subsection 2.2 and let

E2323 = E0x
κ1
2 , E0 = const > 0, κ1 = const ≥ 0;

p113 = p0x
κ2
2 , p0 = const > 0, κ2 = const ≥ 0;

ς11 = ς0x
κ3
2 , ς0 = const > 0, κ3 = const ≥ 0,

then (2.78) and (2.79) take the forms

E0(xκ1
2 u3,α),α + p0(xκ2

2
χ,α),α + ρo2u3 = −Φ3, (2.80)

and
p0(xκ2

2 u3,α),α − ς0(xκ3
2
χ,α),α = fe, (2.81)

respectively.
Case 1. κi = κ = const ≥ 0, i = 1, 3.
After some actions, from (2.80) and (2.81) we get

(ς0E0 + p2
0)(x

κ
2u3,α),α + ς0ρo

2u3 = −ς0Φ3 + p0fe, (2.82)

and
(p2

0 + ς0E0)(xκ
2
χ,α),α + p0ρo

2u3 = −p0Φ3 − E0fe. (2.83)

(2.82) and (2.83) we rewrite as

x2u3,αα + κu3,2 + ς0(ς0E0 + p2
0)
−1x1−κ

2 ρo2u3

= (ς0E0 + p2
0)
−1x1−κ

2 (−ς0Φ3 + p0fe), (2.84)

and

x2χ,αα + κχ,2 + p0(ς0E0 + p2
0)
−1x1−κ

2 ρo2u3

= (ς0E0 + p2
0)
−1x1−κ

2 (−p0Φ3 − E0fe), (2.85)

respectively.
In the static case o = 0 and from (2.84), (2.85) we obtain separate equations

x2u3,αα + κu3,2 = (ς0E0 + p2
0)
−1x1−κ

2 (−ς0Φ3 + p0fe) (2.86)
x2χ,αα + κχ,2 = (ς0E0 + p2

0)
−1x1−κ

2 (−p0Φ3 − E0fe), (2.87)

with respect to u3 and χ, correspondingly.

Theorem 2.2. The values of u3 and χ should be prescribed on the entire boundary (Problem D)
for κ < 1, while on the part of the boundary, where x2 = 0, should be freed at all of boundary
conditions (Problem E) for κ ≥ 1. Both problems are uniquely solvable in the classical sense.

Proof. Indeed, for κ < 1 and κ ≥ 1, correspondingly, (2.63) and (2.64) are fulfilled, which proves
the theorem.

Remark 2.3. If ω̄ is a stripe {−∞ < x1 < +∞, 0 ≤ x2 ≤ L = const} and all the quantities
depend only on x2 (it means that we consider cylindrical strain) then in the static case (o = 0)
from (2.82) and (2.83) we obtain

(xκ
2u3,2),2 = (ς0E0 + p2

0)
−1(−ς0Φ3 + p0fe)
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and
(xκ

2
χ,2),2 = (ς0E0 + p2

0)
−1(−p0Φ3 − E0fe),

respectively. Their general solutions have the forms

u3(x2) = (ς0E0 + p2
0)
−1

∫ x2

L

dτ

τκ

∫ ξ

L
[−ς0Φ3(t) + p0fe(t)]dt+ c12

+c11

{
(1− κ)−1(x1−κ

2 − L1−κ) for κ 6= 1,
lnx2 − lnL for κ = 1

and

χ(x2) = (ς0E0 + p2
0)
−1

∫ x2

L

dτ

τκ

∫ ξ

L
[−p0Φ3(t)− E0fe(t)]dt+ c22

+c21

{
(1− κ)−1(x1−κ

2 − L1−κ) for κ 6= 1,
lnx2 − lnL for κ = 1.

In the case under consideration BCs look like

u3(0) = c10, χ(0) = c20; u3(L) = c1L, χ(L) = c2L (Problem D);
u3(x2) = O(1), χ(x2) = O(1), x2 → 0+; u3(L) = c1L, χ(L) = c2L (Problem E).

From these BCs we easily calculate constants

cαβ , α, β = 1, 2, for κ < 1 (Problem D)

and
cα2 , α = 1, 2, for κ ≥ 1 (Problem E),

in the last case cα1 = 0, α = 1, 2, (otherwise solutions will be unbounded) and some restrictions
on Φ3(x2), fe(x2) are required as well.

Case 2. κ2 = κ3 = κ = const ≥ 0.
After some actions, from (2.80) and (2.81) we get

((p2
0x

κ
2 + ς0E0x

κ1
2 )u3,α),α + ς0ρo

2u3 = −ς0Φ3 + p0fe, (2.88)
ς0(xκ

2
χ,α),α = p0(xκ

2u3,α),α − fe. (2.89)

So, for κ1 = 0 and any κ ≥ 0, equation (2.88) is not a degenerate one, while equation (2.89)
is a degenerate one. If o = 0, i.e., we deal with the static case and from (2.88), (2.89) we arrive
at the system

((p2
0x

κ
2 + ς0E0)u3,α),α = −ς0Φ3 + p0fe, (2.90)

ς0(xκ
2
χ,α),α = p0(xκ

2u3,α),α−fe. (2.91)

As (2.90) is not a degenerate equation, the values of u3 should be prescribed on the entire
boundary (Problem D), while, according to Theorem 2.1, the values of χ should be prescribed
on the entire boundary (Problem D) for 0 ≤ κ < 1 and the part where x2 = 0 should be freed
of BCs (Problem E) for κ ≥ 1. It will be clear if we rewrite (2.91) in the following form

x2χ,αα +κχ,2 = ς−1
0 [p0(xκ

2u3,α),α−fe]x1−κ
2 .

Indeed, for κ < 1 and κ ≥ 1, correspondingly, (2.63) and (2.64) are realized. So we have proved
the following
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Theorem 2.4. Problem D for equation (2.90) for all κ ≥ 0 is uniquely solvable in the classical
sense. Problem D for 0 ≤ κ < 1 and Problem E for κ ≥ 1 for equation (2.91) are uniquele
solvable in the classical sense. In other words Problem D for system (2.90), (2.91) has a unique
classical solution, while Problem E has a unique classical solution for κ ≥ 1.

Remark 2.5. Similarly to Case 1 we solve BVPs in the explicit form in the case of cylindrical
strain.

2.4 Conclusions

1. Differential hierarchical models for piezoelectric nonhomogeneous viscoelastic Kelvin-Voigt
prismatic shells with voids are constructed. The ways of investigation of boundary value prob-
lems and initial boundary value problems, including the case of cusped prismatic shells are
indicated and some preliminary results are presented.

2. It is shown that in the case of hierarchical models of cusped prismatic shells, depending on
the character of vanishing of the thickness at the lateral boundary of the prismatic shell, for well-
posedness of the boundary value and initial boundary value problems the setting of boundary
conditions is nonclassical, in general. Namely, in the case of nonclassical setting of boundary
conditions they should be either weighted ones or the cusped edge should be freed from boundary
conditions. In other words, at cusped edges: in the case of piezoelectric viscoelastic materials
the displacements, volume fraction, and electric potential cannot always be prescribed.

3. If either elastic, piezoelectric, and dielectric constitutive coefficients are independent of the
space points while the thickness of the prismatic shell vanishes in some way at some part of
the boundary of the prismatic shell or the thickness of the prismatic shell is constant while the
elastic, piezoelectric, and dielectric constitutive coefficients vanish in the same way at the same
part of the boundary of the prismatic shell, then peculiarities of setting the boundary conditions
for the displacement in the first case and those arising for the volume fraction function and the
electric potential in the second case coincide. The stress-strain states coincide as well.

4. Antiplane deformation of piezoelectric nonhomogeneous transversely isotropic materials in
the three-dimensional formulation and in N = 0 approximation is analysed. Some boundary
value problems are solved in explicit forms in concrete cases.

3 Hierarchical models for the thermoelastic deformation of chiral porous
prismatic shells

Applying I. Vekua’s dimension reduction method, the present paper is devoted to construction
of hierarchical models for thermoelastic deformation of chiral porous prismatic shells. Special
attention is paid to the case, when the prismatic shell considered as a 3D body occupies a
spatial angular domain and to the study of consequent mathematical and physical peculiarities,
since by dimension reduction the geometrical 3D singularity will be transferred to the BVPs for
governing singular partial differential equations and exclusiveness of well-posedeness of BVPs
will be needed to be investigated. For field equations we use the strain gradient theory (see [9],
chapter 14). Note that, in contrast to the case of chiral materials, the thermal field in chiral
cylinders produces torsional effects.
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The field equations of 3D model
i) geometric (kinematic) equations

eij =
1
2
(ui,j + uj,i), κijk = uk,ij ; (3.1)

ii) constitutive equations (relations)

Xij = λennδij + 2µeij + dϕδij + f(Eikmκjkm + Ejkmκikm)− bTδij (3.2)

µijk =
1
2
α1(κnniδjk + κnnjδik + 2κknnδij) + α2(κinnδjk + κjnnδik)

+2α3κnnkδij + β1δijϕ,k + β2(δikϕ,j + δjkϕ,i) + 2α4κijk

+α5(κkji + κkij) + f(Eiknejn + Ejknein);
Hi = β1κnni + 2β2κinn + α0ϕ,i, g = denn + ξϕ− β T ;

iii) equilibrium (motion) equations

Xji,j − µkji,kj + Φi = 0
(du
dt

)
Hi,j + g + l = 0(kϕ̈), i = 1, 3, (3.3)

where eij is the strain tensor and κijk is the strain gradient tensor, Φi are the volume force
vector components, Xij is the stress tensor, µijk is the dipolar stress tensor, ϕ is the change of
the volume fraction function from the matrix reference volume fraction, k is the equilibrated
inertia, Hi are the equilibrated stress vector components g, and l are the intrinsic and extrinsic
equilibrated volume forces, T is temperature change, δik is the Kroneker delta Eijk is the Levy-
Civita symbol, λ, µ and b are constitutive constants of the classical theory of thermoelasticity;
αi, i = 1, 5 and βj , j = 1, 2, are constitutive constants associated with the gradient terms,
d, α0, ξ and β are the constitutive constants linked to porosity and f is the constant associated
with chiral behavior

On the lateral boundary ΣL either the fractions or displacements are given:

Xni(x1, x2, x3)|ΣL
= Fi(x1, x2, x3), (3.4)

ui(x1, x2, x3)|ΣL
= ϕi(x1, x2, x3). (3.5)

This boundary conditions on ΣL can be replaced by ripermissible mixed triples of components
of ~Xn and ~u.

On the face surfaces
(±)

ΣF either stress or displacement vectors are prescribed:

~Xn(x1, x2,
(±)

h (x1, x2)) =
(±)

Xn(x1, x2), (3.6)

~ui(x1, x2,
(±)

h (x1, x2)) =
(±)
u (x1, x2), (x1, x2) ∈ ω, (3.7)

n being the unit vector of external normal to ∂Ω and F ≡ Xn the surface density of the surface
forces applied at the point x ∈ ∂Ω considered (more precisly exerted on a surface element
passing through x normal to n).

Herewith on
±∑

F we replace, correspondingly values of ~ui(x1, x2,
(±)

h (x1, x2)) in the case (3.6)

and Xn(x1, x2,
(±)

h (x1, x2)) in the case (3.7) by the values of the Fourier-Legendre expansions
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of ~ui(x1, x2, x3)) and Xn(x1, x2, x3) for x3 ∈ [
(−)

h (x1, x2),
(+)

h (x1, x2), on upper and lower face

surfaces
(±)

ΣF

x3 =
(+)

h (x1, x2), and x3 =
(−)

h (x1, x2)], (3.8)

respectively.

3.1 2D problem

Now, we reformulate BVP (3.1)-(3.4), (3.6) in terms of the mathematical moments:

(uir, Xijr ≡ τijr, eijr,κijkr, µijkr, gr, ϕr, Tr, vir, φir ≡ Xir, lr, Xnir,Hir) :=
(
r +

1
2

)
a

×

(+)

h (x1,x2)∫
(−)

h (x1,x2)

(ui, Xij ≡ τij , eij ,κijk, µijk, g, ϕ, T, vi, φi ≡ Xi, l,Xni,Hi)Pr(ax3 − b)dx3, (3.9)

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)
h(x1, x2)

,

i, j, k = 1, 3, r = 0, 1, 2, · · · , N, · · · .

Under the well-known restrictions (see e.g. [1]) the following Fourier-Legendre series

(ui, Xij ≡ τij , eij ,κijk, µijk, g, ϕ, T, vi, φi ≡ Xi, l,Xni,Hi) (x1, x2, x3, t)

=
∞∑

r=0

a(r +
1
2
) (uir, Xijr ≡ τijr, eij ,κijkr, µijkr, (3.10)

vir, φir ≡ Xir, lr, Xnir,Hir) (x1, x2, t)Pr(ax3 − b)

are convergent. The Nth, N = 0, 1, 2, · · · approximation of hierarchical models means that in
equations (relations) all the moments of the order greater than N equal zero and we get 4N +4

governing (basic) equations (relations) with respect to 4N +4 unknown moments
N
uir,

N
ϕr of the

order r ≤ N . Hence, in the formulas derived below in the infinite sums the limit “∞” should
be replaced by “N”.

In the Nth approximation, e.g.,

(ϕ, ui)(x1, x2, x3, t) ∼=
N∑

s=0

a

(
s+

1
2

)
(
N
ϕs,

N
uis)(x1, x2, t)Ps(ax3 − b), i = 1, 3. (3.11)

In particular, in the N = 0 (zeroth) approximation

(ϕ, ui)(x1, x2, x3, t) ∼=
1

2h(x1, x2)
(

0
ϕ0,

0
ui0)(x1, x2, t) =:

1
2
(

0
ψ0,

0
vi0)(x1, x2, t), (3.12)

N
ψr :=

r
ϕN

hr+1
(3.13)
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and in the N = 1 i.e. first approximation

(φ, ui(x1, x2, x3, t))

∼=
1

2h(x1, x2)
(

1
ϕ0,

1
ui0)(x1, x2, t)) +

3
2h2(x1, x2)

(
1
ϕ1,

1
ui1)(x1, x2, t)(x3 − h̃)

=:
1
2
(

1
ψ0,

1
vi0)(x1, x2, t) +

3
2
(x3 − h̃)(

1
ψ1,

1
vi0)(x1, x2, t). (3.14)

To this end we multiply (3.1)-(3.4), (3.6) by Pr(ax3 − b) and then integrate the obtained

with respect to the thickness variable x3 within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2). In this
way:

From (3.1)1 we get (see [6] formula (3.8) and also (3.25) below)

ejir =
1
2
(uir,j + ujr,i) +

1
2

∞∑
i=r

(
r
bjsuis +

r
bisujs), i, j = 1, 3, r = 0, 1, · · · , (3.15)

where
r
bαs := −r

aαs, s 6= r, α = 1, 2, s, r = 0, 1, 2, · · · ; (3.16)

r
a
αs

:= (2s+ 1)

(+)

h ,α − (−1)r+s
(−)

h ,α

2h
, s 6= r, (3.17)

r
aαr := r

h, a

h
,

r
a
∗
αr := (2r + 1)

h, a

h
; (3.18)

r
bαr := ar

αr −
r
a
∗
αr = −(r + 1)

h, a

h
; (3.19)

r
a3s := −(2s+ 1)

1− (−1)s+r

2h
⇒ r
a3r = 0, (3.20)

r
b3s := −r

a3s ⇒
r
b3r = 0, (3.21)

i.e. {see [6], deduction of Formula (3.9)} from (3.15) it follows

ejir =
1
2
hr+1(vjr,i + vir,j) +

1
2

∞∑
s=r+1

hs+1
(r
bjsvis +

r
bisvjs

)
, (3.22)

i, j = 1, 3, r = 0, 1, . . . ,

Θr = eiir = hr+1vir,i +
∞∑

s=r+1

hs+1
r
bisvis, (3.23)

where
vir := h−r−1uir, i = 1, 3, r = 0, 1, . . . (3.24)

which are derived, when
(+)

f and
(−)

f are not known (prescribed) on the face surfaces,
(+)

ΣF and
(−)

ΣF .
The formulas (10.11) and (10.12) of [6], i.e. (2.90) and (2.91) of [7] which are derived, when

(+)

f and
(−)

f are not known (prescribed) on the face surfaces
(+)

ΣF and
(−)

ΣF . we may rewrite in the
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unified form as follows

(+)

h (x1,x2)∫
(−)

h (x1,x2)

f,jPr(ax3 − b)dx3 = fr,j +
∞∑

s=r

r
bjsfs. (3.25)

If
(+)

f and
(−)

f are known (prescribed) on the face surfaces
(+)

ΣF and
(−)

ΣF , the formulas (10.14),
(10.13) of [6] and (2.92), (2.93) of [7]) we may rewrite in the unified form as follows

(+)

h (x1,x2)∫
(−)

h (x1,x2)

f,jPr(ax3 − b)dx3 = fr,j +
r∑

s=0

r
aαsfs +

(+)

f
(+)
n j

(+)√ +
(−)

f
(−)
n j

(−)√
, (3.26)

(±)
n α = −

(±)

h ,α

(
(±)√
)−1

,

(±)
n 3 =

(
(±)√
)−1

,
(±)√ := ±

√
1 +

(
(±)

h ,1

)2

+
(

(±)

h ,2

)2

. (3.27)

Similarly, using twice (3.25), From (3.1)2 we get

κijkr :=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

κijkPr(ax3 − b|dx3) = ukr,ij +
∞∑

s=r

(r
bisuks,j +

r
bjsuks,i

)

+
∞∑

s=r

[
r
bis,juks +

r
bjs

∞∑
s′=s

s
bis′uks′

]
, i, j, k = 1, 3. (3.28)

Taking into account (3.24), from (3.28) we get

κjikr ≡ κijkr = (h
r+1
v kr),ij +

∞∑
s=r

[r
bis(hs+1vks),j +

r
bjs(hs+1vks),i

]

+
∞∑

s=r

r
bis,jh

s+1vks +
∞∑

s=r

[
r
bjs

∞∑
s′=s

s
bis′h

s′+1vks′

]
. (3.29)

Proof of (3.28) Clearly, using (3.25) more precisely, substituting there f by uk,i, from

κijk = uk,ij

we have

κijkr :=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

κijkPr(ax3 − b|dx3) =

(+)

h (x1x2)∫
(−)

h (x1x2)

uk,ijPr(ax3 − b)dx3
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=

(+)

h (x1x2)∫
(−)

h (x1x2)

(uk,i),j Pr(ax3 − b)dx3 = (uk,i)r,j +
∞∑

s=r

r
bjs(uk,i)s. (3.30)

Clearly, applying (3.10) for uk,iand bearing in mind Pr(ax3 − b)
∣∣∣
x3=

(±)

h (x1x2)
= Ps(±1) = (±1)s,

we obtain

(±)
u

k,l
=

∞∑
s=0

(
s+

1
2

)
(uk,i)s(±1)s =

∞∑
s=0

(±)s(2s+ 1)
2h

(uk, i)s.

The last formula had been taken into account by us while deriving (3.30).
Now, using once more (3.25), replacing there f by uk, we get

(uk,i)r :=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

uk,iPr(ax3 − b)dx3,= ukr,i +
∞∑

s=r

r
bisuks, (3.31)

clearly, here we have used

(±)
uk = uk(x1, x2,

(±)

h (x1, x2)) =
∞∑

s=0

(±1)s(2s+ 1)
2h

ψks.

Hence, if we substitute (3.31) into (3.30), we obtain

κijkr = ukr,ij +
∞∑

s=r

(
r
bis,juks +

r
bisuks,j) +

∞∑
s=r

[
r
bjs(uks,i +

∞∑
s′=s

s
bis′uk,s′)]. (3.32)

From (3.32) it follows (3.28), when we have in the sum with the summation index s the limit r
to replace by s, in practical use we consider useful summation index s to replace by s′ it was
easy for us in order to avoid confusing tremendous variety of letters as indices.

Further, from (3.2) we get [see (3.22)]

Xjir = λennrδij + 2µeijr + dϕrδij + f(Eikmκjkmr + Ejkmκikmr)− bTrδij , (3.33)
i, j = 1, 3, r = 0, 1, 2, · · · ,

µjikr =
1
2
α1(κnnirδjk + κnnjrδik + 2κknnrδij) + α2(κinnrδjk + κjnnrδik)ii

iiwhere

Eikmκjkmr = E123κj23 + E132κj32 + E213κj13 + E231κj31 + E312κj12 + E321κj21

= κj23 − κj32 − κj13 + κj31 + κj12 − κj21,

Ejkmκikmr = E123κi23 − E132κi32 − E213κi13 + E231κi31 + E312κi12 − E321κi21

= κi23 − κi32 + κj31 − κi13 + κi12 − κj21.
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+2α3κnnkrδij + β1δij(ϕr,k +
∞∑

s=r

r
bksϕs) + β2

[
δik

(
ϕr,j +

∞∑
s=r

r
bjsϕs

)

+δjk

(
ϕr,i +

∞∑
s=r

r
bisϕs

)]
+ 2α4κijkr + α5(κkjir + κkijr)

+f(Eiknejnr + Ejkneinr), i, j, k = 1, 3, r = 0, 1, 2, · · · , (3.34)

Hir = β1κnnir + 2β2κinnr + α0

(
ϕr,i +

∞∑
s=r

r
bisϕs,

)
, i = 1, 3, r = 0, 1, 2, · · · , (3.35)

gr = dennr + ξϕr − βTr, r = 0, 1, 2, · · · . (3.36)

From (3.3) we have [see (3.28) and (3.29)]

Xαir,α +
r∑

s=0

r
ajsXjis +

r
Xi −

(+)

h (x1,x2)∫
(−)

h (x1,x2)

µkji,kjPr(ax3 − b)dx3 = 0
(
ρ
∂2uir

dt2

)
, (3.37)

i = 1, 3, r = 0, 1, 2, · · · ,

r
Xi := X(+)

n i

(+)√ + (−1)rX(−)
n i

(−)√ [see (3.27)], i = 1, 3, r = 0, 1, 2, · · · , (3.38)

Hαr,α +
∞∑

s=r

r
bjsHjs + gr + lr = 0 (k

..
ϕr), r = 0, 1, 2, · · · . (3.39)

From (3.4) we obtain
Xnir|∂ω = Fir, i = 1, 3, r = 0, 1, 2 · · · , (3.40)

now, we prove

(µkji,kj)r :=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

µkji,kjPr(ax3 − b)dx3 = (µkji)r,kj +
r
M i, (3.41)

i = 1, 3, r = 0, 1, 2, · · · ,

where

r
M i :=

∞∑
s=r

[(
r
bks),j(µkji)s +

r
bks(µkji)s,j ] +

∞∑
s=r

r
bjs[(µkji)s,k +

∞∑
s′=r

r
bks′(µkji)s′ ], (3.42)

i = 1, 3, r = 0, 1, 2, · · · .
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Indeed, using (3.25), for f = µkji,k,

(µkji,kj)r :=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

µkji,kjPr(ax3 − b)dx3

=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

(µkji,k),J Pr(ax3 − b)dx3 = (µkji,k)r,j +
∞∑

s=r

r
bjs(µkji,k)s, (3.43)

i = 1, 3, r = 0, 1, 2, · · · ,

provided on face surfaces µkji,k are not prescribed and we apply (see (3.10))

(±)
µ kji,k =

∞∑
s=0

a

(
s+

1
2

)
(µkj,i,k)s(±1)s, i, j = 1, 3,

similarly, we obtain for f = µkji

(µkji,k)r :=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

(µkji,k)Pr(ax3 − b)dx3 (3.44)

=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

(µkji),k Pr(ax3 − b)dx3 = (µkji)r,k +
∞∑

s=r

r
bks(µkji)s,

i, j = 1, 3, r = 0, 1, 2, · · · ,

provided on face surfaces f = µkji, are not prescribed and we apply

(±)
µ kji =

∞∑
s=0

a

(
s+

1
2

)
(±1)s(µkji)s.

If we substitute (3.44) into (3.43) we get

(µkji,kj)r := (µkji)r,kj +
∞∑

s=r

[(r
bks

)
,j (µkji)s +

r
bks(µkji)s,j

]
+

∞∑
s=r

r
bjs

[
(µkji)s,k +

∞∑
s′=s

s
bks′(µkji)s′

]
, i = 1, 3, r = 0, 1, 2, · · · . (3.45)

So we have proved (3.41). Q.E.D
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Substituting (3.41) into (3.37), we derive

Xαir,α +
r∑

j=0

r
ajsXjis +

r
Xi − (µγαi)r,γα −

r
M i = 0

(
ρ
∂2uir

∂t2

)
, (3.46)

i = 1, 3, r = 0, 1, 2, · · · .

Substituting (3.22), (3.23) and (3.29) into (3.33)-(3.35), (3.36) and then the obtained into
(3.46). (3.39) we arrive at the infinite governing system from which we easily derive the gov-
erning systems of hierarchical models as it was explained at the beginning of Section 3.

For the sake of transparency we restict ourselve to the zeroth approximation in the next
section.

3.2 The zeroth (N=0) aproximation

Since the moments are independent x3, their derivatives with respect to x3 are equal to zero

and, consequently, in the zeroth approximation N = 0, r = 0, s = 0, s = 0,
0∑
1

(· · · ) ≡ 0 iii,

bearing in mind (3.21), (3.12), i.e.,
0
b30 = 0,

0
bα0 = −h,α

h from (3.15), and (3.28), we obtain

0
eαβ0 =

1
2

(
0
uα0,β +

0
uβ0,α

)
− 1

2h

(
h,α

0
uβ,0 + h,β

0
u

α0

)
=

1
2
h
(

0
vα0,β +

0
vβ0,α

)
, α, β = 1, 2; (3.47)

0
e3β0 =

1
2

(
0
u30,β −

h,β
h

0
uα0

)
=

1
2
h

0
v30,β , β = 1, 2;

eα30 =
1
2

(
0
u30,α −

h,α
h

0
uβ0

)
=

1
2
h

0
v30,α, α = 1, 2;

0
e330 = 0

and

καβk0 = uk0,αβ −
h,β

h
uk0,α −

h,α

h
uk0,β −

(
h,α

h

)
,β

uk0 +
h,β

h

(
h,α

h

)
uk0, (3.48)

α, β = 1, 2; k = 1, 3;

κ33k0 = 0, κα3k0 =
(
−h,α

h

)
,3

uk0 = 0, κ3βk0 = 0, α, β = 1, 2, k = 1, 3. (3.49)

In the zero approximation see (3.11) and (3.12) from (3.33) we derive

0
Xji0 = λenn0δij + 2µeji0 + dϕ0δij + f(Eikmκjkm0 + Ejkmκikm0)

−bT0δij i, j = 1, 3. (3.50)

iiisince in the zeroth approximation in (3.15) and (3.12)

∞∑
s=0

=
0

bj0ui0 +
0

bi0uj0 and (ϕ, ui) ≈
∞∑

s=0

(· · · ) = a
1

2
(ϕ0, ui0),

respectively, and subsums
∞∑

s=1

(· · · ) ≡ 0 there and in what follows, in the zeroth approximation
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From (3.47) and (3.49) in terms of vk0[see (3.24)] it follows:

0
eαβ0 =

1
2
h (vβ0,α + vα0,β) ,

0
e3β0 =

1
2h
hvβ0,α,

0
eβ30 =

1
2h
hv30,β , α, β = 1, 2;

0
e330 = 0, (3.51)

καβk0 = (hvk0),αβ −
h,α

h
(hvk0),β −

h,β

h
(hvk0),α −

(
h,α

h

)
,β

hvk0 +
h,βh,α

h
vk0

= (h,αvk0 + hvk0,α),β −
h,αh,β

h
vk0 − h,αvk0,β −

(
h,α

h

)
,β

hvk0 + h,β

= h,αβvk0 + h,αvk0,β + h,βvk0,α + h,αvk0,αβ − h,βvk0,α −
h,αh,β

h
vk0 − h,αvk0,β

−
(
h,α

h

)
,β

hvk0 =

[
h,αβ −

h,αh,β

h
−
(
h,α

h

)
,β

]
vk0 + hvk0,α,β, (3.52)

α, β = 1, 2, k = 1, 3

[see also (3.22), (3.23), and (3.29) for r = 0 ].
From (3.34), (3.35), (3.36), (3.46), (3.39) for r = 0, bearing in mind (3.49), (3.23), (3.18)-

(3.21), we obtain

µjik0 =
1
2
α1(κnni0δjk + κnnj0δik + 2κknn0δji) (3.53)

+α2(κinn0δjk + κjnn0δik) + 2α3κnnk0δji + β1δij

[
(hψ0),k +

0
bk0hψs

]
+β2

[
δik

(
(hψ0),j −

0
bj0hψ0

)
+ δjk

(
(hψ0),i−

0
bi0hψ0

)]
+2α4κijk0 + α5(κkji0 + κkij0) + f

(
Eiknejn0 + Ejknein0

)
, i, j, k = 1, 3;

Hi0 = β1κγγi0 + 2β2κinn0 + α
[
(hψ0),i +

0
bi0hψ0

]
, i = 1, 3, (3.54)

g0 = dhvγ0,γ + ξhψ0 − βT0, (3.55)

Xαi0,α − (µγji)0,γj +
0
Xi −

0
M i = 0

(
ρ
∂2hvir

∂t2

)
, i = 1, 3, (3.56)

Hα0,α −
h,γ
h
Hγ0 + g0 + l0 = 0 (khψ0). (3.57)

Substituting (3.50), (3.53)-(3.55) into (3.56), (3.57) we arrive at the governing system of the
N = 0 approximation which we investigate for the case

h(x1, x2) = h0x
κ
2 , h0 = const > 0 κ = const ≥ 0,

applying the approach developed in [6], we prove the following expected result:
in the case of the cusped (i.e. κ > 0) prismatic shell the cusped edge i.e., where the thickness
vanishes (2h(x1, 0) = 0) the edge may be fixed only if

0 < κ < 1,
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in other words, the Dirichlet type problem, when desired displacement may be prescribed on
the entire lateral boundary of the prismatic shell under consideration, is well-posed, while when

κ ≥ 1

it is not the case, the cusped edge cannot be fixed and boundary condition should be replaced
by the demand of boundedness of the displacement near the cusped edge, in other words, the
Keldysh type boundary value problem is well-posed. Note that the vertical displacement is
not affected by chirality, since in (3.16) κα3k0 = 0, κ3βk0 = ν (see (3.15)) and, therefore,
f · (E3kmκ3km0 + E3kmκ3km0) = 0, but it is not the case in other approximations.

3.3 Conclusion

Applying I. Vekua’s dimension reduction method, hierarchical models (approximations) for
thermoelastic chiral porous prismatic shells have been constructed. In theN = 0 approximation,
using the approach developed in [6] we have proved for the case

h(x1, x2) = h0x
κ
2 , h0 = const > 0 κ = const ≥ 0,

the following expected result: in the case of the cusped (i.e. κ > 0) prismatic shell the cusped
edge i.e., where the thickness vanishes (2h(x1, 0) = 0) the edge may be fixed only if

0 < κ < 1,

in other words the Dirichlet type problem, when desired displacement may be prescribed on the
entire lateral boundary of the prismatic shell under consideration, is well-posed, while when

κ ≥ 1

it is not the case, the cusped edge cannot be fixed and boundary condition should be replaced
by the demand of boundedness of the displacement near the cusped edge (or should be posed a
weighted boundary condition).

In the Nth approximation as it follows from the note at the end of the preface of Section 2,
bearing in mind that

h2r+1 = h0x
κ(2r+1)
2

in the case under consideration the Dirichlet problem is well-posed when

κ(2r + 1) < 1, r = 0, N, i.e. κ ≤ 1
2N + 1

,

while the Keldysh problem is well-posed when

κ(2r + 1) ≥ 1, r = 0, N, i.e. κ ≥ 1.

As N → +∞, i.e. for the infinite system, i.e. 3D problem we get κ = 0.
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4 The hierarchical models for fluids

Let us recall the governing equations of the Newtonian viscous fluid (see e.g., [26], Ch. 2
Conservation of mass and Momentum, Ch. 6 Viscosity and the Navier-Stokes equations and
[27] Ch 1, §1 Classical fluids and Navier-Stokes system):

As it is well known, motion of the Newtonian fluid is characterized by the following equations

ρ
dvi(x1, x2, x3, t)

dt
= σji,j(x1, x2, x3, t) + Φi(x1, x2, x3, t), i = 1, 3, (4.1)

σji = −δjip+ λδjiθ(v) + 2µεji(v), i, j = 1, 3, (4.2)

εji(v) :=
1
2

(
vj,i + vi,j

)
, i, j = 1, 3, (4.3)

θ := εii = vk,k =: divv, (4.4)

λ := µ′ − 2
3
µ

where v := (v1, v2, v3) is a strain velocity vector, σij is a stress tensor, εij(v) is a velocity (rate)
tensor, p is a pressure, Φi, i = 1, 3, are components of the volume force, µ′ and µ are the second
viscosity and the viscosity respectively, ρ is a density of the fluid. Throughout the paper we
use, on the one hand Einstein’s summation convention on repeated indices, bar under one of
the repeated indices means that we do not sum. Latin indices run values 1,2,3, while Greek
indices run values 1,2 and on the other hand, the simplified notation for the partial derivative
e.g.,

∂σji

∂xj
=: σji,j .

As well-known an incompressible fluid is defined as the fluid whose volume or density doesn’t
change with pressure (see e.g. [25], p. 6 and p. 17). In reality, rigorous incompressible fluid
doesn’t exist.

In the case of incompressible barotropic fluids, to the system (4.1)-(4.3) we add the equation

divv = 0, (4.5)

which expresses the fact that the velocity of change of cubical dilatation of each parcel of moving
fluid is unchangeable (constant) during moving.

In general, for compressible fluids the continuity equation has the form

dρ

dt
+ ρdivv = 0iv (4.6)

[this last equation can also be written as

∂ρ

∂t
+ div(ρv) = 0]

clearly, for ρ = const from (4.6) we get again (4.5), and the state equation

χ(ρ, p) = 0, (4.7)
ivWhen ρ = ρ(x1, x2) then (4.6) has the form

∂ρ

∂t
+ ρ,γ vγ + ρ(x1, x2)vk,k = 0
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where χ is a certain function defining the state equation.
In the prismatic and standard shell-like, bar-like, and canal- like domains two type of hier-

archical models are constructed (for details see [10]):
(i) when on the face surfaces of the fluids container stresses are prescribed;
(ii) when on the face surfaces velocities are prescribed.

4.1 Mathematical moments

Here we follow Section 10 of [6] v.
Let f(x1, x2, x3) be a given function on Ω having integrable partial derivatives, let fr denote

its r-th order moment, defined as follows

fr(x1, x2) :=

(+)

h (x1, x2)∫
(−)

h (x1, x2)

f(x1, x2, x3)Pr(ax3 − b)dx3, (4.8)

where (see also Subsection 2.1 of [10] and Section 2.3 of [7])

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)
h(x1, x2)

,

2h(x1, x2) =
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0,

2h̃(x1, x2) =
(+)

h (x1, x2) +
(−)

h (x1, x2) > 0,

and

Pr(τ) =
1

2rr!
dr(τ2 − 1)r

dτ r
, r = 0, 1, · · · ,

are the r-th order Legendre polynomials with the orthogonality property

+1∫
−1

Pm(τ)Pn(τ)dτ =
2

2m+ 1
δmn.

From here, substituting

τ = ax3 − b =
2

(+)

h (x1, x2)−
(−)

h (x1, x2)
x3 −

(+)

h (x1, x2) +
(−)

h (x1, x2)
(+)

h (x1, x2)−
(−)

h (x1, x2)
,

we have

(
m+

1
2

)
a

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pm(ax3 − b)Pn(ax3 − b)dx3 = δmn.

vwhere I. Vekua’s dimension reduction method is reformulated and presented in the unified form, that for-
mulas for arbitrary functions independent of physical meaning, allow to construct easily for any physical model
containing the thickness (or something like that) the Vekua-Babushka and Schwab type [20]. Hierarchical models
which are suitable for use of the (p-version of the finite the element method as it is indicated in Douge at. al.
[19]
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Using the well-known formulas of integration by parts (with respect to x3) and differentiation
with respect to a parameter of integrals depending on parameters (xα), taking into account
Pr(1) = 1, Pr(−1) = (−1)r, we deduce

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α −
(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α

−

(+)

h (x1, x2)∫
(−)

h (x1, x2)

P ′r(ax3 − b)(a,α x3 − b,α )fdx3, α = 1, 2, (4.9)

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 = −a

(+)

h (x1, x2)∫
(−)

h (x1, x2)

P ′r(ax3 − b)fdx3 +
(+)

f − (−1)r
(−)

f , (4.10)

where superscript prime means differentiation with respect to the argument ax3− b, subscripts
preceded by a comma mean partial derivatives with respect to the corresponding variables,
(±)

f := f [x1, x2,
(±)

h (x1, x2)]. Applying the following relations from the theory of the Legendre
polynomials (see [1] p. 197, [3] p. 27, [2] pp. 22, 23 and [18], p. 299 or p. 338, 339 of the second
edition)

P ′r(τ) =
r∑

s=0

(2s+ 1)
1− (−1)r+s

2
Ps(τ)vi, (4.11)

τP ′r(τ) = rPr(τ) + P ′r−1(τ) = rPr(τ) +
r−1∑
s=0

(2s+ 1)
1 + (−1)r+s

2
Ps(τ)vii (4.12)

and, in view of
a,α
a

= (ln a),α = −h,α
h
,

a,α
a
b = h̃a,α , b,α = (h̃a),α , it is easily seen that

P ′r(ax3 − b)(a,α x3 − b,α ) viii =
a,α
a

(ax3 − b)P ′r(ax3 − b) + (
a,α
a
b− b,α )P ′r(ax3 − b)

= −h,α h−1(ax3 − b)P ′r(ax3 − b)− h̃,α h
−1P ′r(ax3 − b)

= − r
aαr Pr(ax3 − b)−

r−1∑
s=0

r
aαs Ps(ax3 − b) = −

r∑
s=0

r
aαsPs(ax3 − b), (4.13)

vion the top of the symbol
∑

both r − 1 and r are true since the last term equals zero.
viion the top of the symbol

∑
both r − 2 and r − 1 are true since the last term equals zero.

viiiClearly,

a,α x3 − b,α =
a,α
a

ax3 − b,α =
a,α
a

ax3 −
a,α
a

b +
a,α
a

b− b,α =
a,α
a

(ax3 − b)− h̃,α
1

h

because of
a,α
a

b− b,α = a,α h̃− (h̃a),α = h̃a,α −h̃a,α − h̃,αa = −h̃,αa.



Vol. 26, 2025 43

where

r
aαr := r

h,α
h
,

r
aαs := (2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, s 6= r, (4.14)

in deed, taking into account (4.12) and (4.11),

−h,αh
−1(ax3 − b)P ′r(ax3 − b)− h̃,αh

−1P ′r(ax3 − b) = −rh,αh
−1Pr(ax3 − b)

= −h,αh
−1

r−1∑
s=0

(2s+ 1)
1 + (−1)r+s

2
Ps(ax3 − b)− h̃,αh

−1
r∑

s=0

(2s+ 1)
1− (−1)r+s

2
Ps(ax3 − b)

= −rh,α
h
Pr(ax3 − b)−

r−1∑
s=0

(2s+ 1)

[
h,α +(−1)r+sh,α

2h
+
h̃,α−(−1)r+sh̃,α

2h

]
Ps(ax3 − b)

= −rh,α
h
Pr(ax3 − b)−

r−1∑
s=0

(2s+ 1)
2h

 (+)

h ,α−
(−)

h ,α +
(+)

h ,α (−1)r+s −
(−)

h ,α (−1)r+s

2

+

(+)

h ,α +
(−)

h ,α−
(+)

h ,α (−1)r+s −
(−)

h ,α (−1)r+s

2

Ps(ax3 − b)

= −rh,α
h
Pr(ax3 − b)−

r−1∑
s=0

(2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

Ps(ax3 − b) = −
r∑

s=0

s
aαsPs(ax3 − b)

because of

h,α =

(+)

h ,α−
(−)

h ,α
2

, h̃,α =

(+)

h ,α +
(−)

h ,α
2

.

Now, by substituting (4.13) and (4.11) into (4.9) and (4.10), respectively, we obtain

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α +
r∑

s=0

r
aαs fs −

(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α, α = 1, 2, (4.15)

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =
r∑

s=0

r
a3s fs +

(+)

f − (−1)r
(−)

f , (4.16)

respectively. Here
r
a3s := −(2s+ 1)

1− (−1)s+r

2h
, (4.17)

clearly,
r
a3r = 0. (4.18)
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Remark 4.1. We may take down formulas (4.15) and (4.16) in the following unified form

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,j dx3 = fr,j +
r∑

s=0

r
ajs fs −

(+)

f
(+)

h ,j + (−1)r
(−)

f
(−)

h ,j , j = 1, 3,

provided we formally read
(±)

h,3 as −1 and vice versa, since moments are independent of x3, i.e.
fr,3 ≡ 0. A justification of this convention looks like as follows using equations of the upper and
lower face surfaces in the implicit form

(±)

F (x1, x2, x3) := x3 −
(±)

h (x1, x2) = 0,

the last formula we may rewrite as

(+)

h (x1,x2)∫
(−)

h (x1,x2)

Pr(ax3 − b)f,j dx3 = fr,j +
r∑

s=0

r
ajsfs −

(+)

f
(+)

F ,j +(−1)r
(−)

f
(−)

F ,J

because of

(±)
n,i =

(±)

F,i (x1, x2, x3)

±

√
(±)

F,21 +
(±)

F,22 +
(±)

F,23

⇒
(±)
n,α =

−
(±)

h,α(x1, x2)

±

√
(±)

F,21 +
(±)

F,22 +
(±)

F,23

, α = 1, 2;

(±)
n,3 =

1

±

√
(±)

F,21 +
(±)

F,22 +
(±)

F,23

.

Here (+) and (−) before root we take for the upper (a normal forms an acute angle with
the x3 -axis) and lower (a normal forms a blunt angle with the x3 -axis) sides, respectively.

Let the Fourier-Legendre expansion of f(·, ·, x3) ∈ C2(
(−)

h ,
(+)

h ) be

f(x1, x2, x3) =
∞∑

s=0

a
(
s+

1
2

)
fs(x1, x2)Ps(ax3 − b)

=
∞∑

s=0

(
s+

1
2

)
hsf̃s(x1, x2)Ps(ax3 − b),

f̃s(x1, x2) :=
fs(x1, x2)
hs+1(x1, x2)

, (4.19)

then, if
(±)

f are not known, using (4.19), we calculate them as follows

(±)

f := f(x1, x2,
(±)

h (x1, x2)) =
∞∑

s=0

a
(
s+

1
2

)
fs(±1)s =

∞∑
s=0

(±1)s(2s+ 1)
2h

fs, (4.20)
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whence, denoting
r

a∗3s := −r
a3s, bearing in mind (4.20), (4.17),

(+)

f − (−1)r
(−)

f =
∞∑

s=0

r

a∗3sfs, (4.21)

and, by virtue of (4.20), (4.14),

(+)

f
(+)

h ,α−(−1)r
(−)

f
(−)

h ,α =
∞∑

s=0

r

a∗3sfs, α = 1, 2, (4.22)

where, taking into account (4.18),

r

a∗3r = − r
a3r = 0,

r

a∗3s := − r
a3s;

r

a∗αs =
r
aαs, s 6= r,

r

a∗αr = (2r + 1)
h,α
h
. (4.23)

Substituting (4.22) and (4.21) into (4.15) and (4.16), respectively, we get

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α +
r∑

s=0

r
aαs fs −

∞∑
s=0

r

a∗αsfs = fr,α +
∞∑

s=r

r
bαsfs, α = 1, 2, (4.24)

and

(+)

h (x1,x2)∫
(−)

h (x1,x2)

Pr(ax3 − b)f,3 dx3 =
r∑

s=0

r
a3s fs −

∞∑
s=0

r
a3s fs = −

∞∑
s=r+1

r
a3s fs =

∞∑
s=r+1

r
b3sfs =

∞∑
s=r

r
b3sfs, (4.25)

respectively, where
r
bjs := −

r

a∗js, s > r;
r
bjs = 0, j = 1, 2, 3, s < r; (4.26)

from (4.14), (4.23), (4.18), (4.21) it follows that

r
bαr :=

r
aαr −

r

a∗αr = r
h,α

h
− (2r + 1)

h,α

h
= −(r + 1)

h,α
h
,

r
b3r :=

r
a3r −

r
a3r = 0. (4.27)

We may take down (4.24) and (4.25) in the unified form as follows (here
(±)

f are not known and
clearly (4.20), more precisely (4.21) and (4.22), are applied)

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,j dx3 = fr,j +
∞∑

s=r

r
bjsfs, j = 1, 3. (4.28)

If
(+)

f and
(−)

f are known (prescribed), then from (4.15) and (4.16), correspondingly, we obtain
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(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α +
r∑

s=0

r
aαs fs

+
(+)

f
(+)
n α

√
1 + (

(+)

h ,1)2 + (
(+)

h ,2)2 + (−1)r
(−)

f
(−)
n α

√
1 + (

(−)

h ,1)2 + (
(−)

h ,2)2 (4.29)

and
(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =
r∑

s=0

r
a3s fs

+
(+)

f
(+)
n 3

√
1 + (

(+)

h ,1)2 + (
(+)

h ,2)2 + (−1)r
(−)

f
(−)
n 3

√
1 + (

(−)

h ,1)2 + (
(−)

h ,2)2, (4.30)

since
(±)
n α = ∓

(±)

h ,α√
1+(

(±)

h ,1)2+(
(±)

h ,2)2

,
(±)
n 3 = ±1√

1+(
(±)

h ,1)2+(
(±)

h ,2)2

.

Remark 4.2. Evidently, (4.29), (4.30) we may rewrite in the unified form as (here
(±)

f are
known) [compare with (4.28)]

(+)

h (x1,x2)∫
(−)

h (x1,x2)

Pr(ax3 − b)f,jdx3 = fr,j +
r∑

s=0

r
ajsfs +

(+)

f
(+)
n j

√
1 +

((+)

h ,1

)2
+
((+)

h ,2

)2

+(−1)r
(−)

f
(−)
n j

√
1 +

((−)

h ,1

)2
+
((−)

h ,2

)2
, j = 1, 3, (4.31)

because of fr,3(x1, x2) ≡ 0, where
(+)
n and

(−)
n are the outward normals to the surfaces x3 =

(+)

h (x1, x2) and x3 =
(−)

h (x1, x2), respectively (see the end of Remark 4.1).

4.2 The first type hierarchical model

The basic relations of the N -th approximation in term of mathematical moments have the
following forms (see Subsection 3.1 of [10]

(h2r+1σ̃jir),j +
r−1∑
l=0

r
akl h

r+l+1σ̃kil + hr
r
Xi =

(+)

h∫
(−)

h

ρ
dvi

dt
Pr(ax3 − b)dx3, i = 1, 3. (4.32)

εjir =
1
2
hr+1

(
ṽjr,i + ṽir,j

)
+

1
2

∞∑
s=r+1

hs+1
( r
bis ṽjs +

r
bjs ṽis

)
, (4.33)

θr ≡ εk′k′r = hr+1ṽγr,γ +
∞∑

s=r+1

hs+1
r
bk′s ṽk′s, r = 0, 1, , N. (4.34)
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σjir = −δjipr(x1, x2, t) + λδjih
r+1ṽγr,γ + µhr+1(ṽjr,i + ṽir,j)+

∞∑
s=r+1

r
Bjik′sh

s+1ṽk′s,(4.35)

σ̃jir = −δjip̃r + λδjiṽγr,γ + µ(ṽjr,i + ṽir,j) +
∞∑

s=r+1

r
Bjik′sh

s−rṽk′s, (4.36)

−
(
hrpr

)
,i +
[
λh2r+1ṽγr,γ

]
,i +
[
µh2r+1(ṽjr,i + ṽir,j)

]
,j

+
∞∑

s=r+1

( r
Bjik′sh

r+s+1ṽk′s

)
,j +

r−1∑
l=0

r
akl

[
− δkiplh

r + λδkih
r+l+1ṽγl,γ (4.37)

+µhr+l+1(ṽkl,i + ṽil,k) +
∞∑

s=l+1

l
Bkik′sh

r+s+1ṽk′s

]
+ hr

r
Xi =

(+)

h∫
(−)

h

ρ
dvi

dt
Pr(ax3 − b)dx3,

i = β, 3, β = 1, 2, r = 0, 1, 2, ...,
q−1∑

q

(· · · ) = 0,

−
(
h2r+1p̃r

)
,β +

[
λh2r+1ṽγr,γ

]
,β +

[
µh2r+1(ṽαr,β + ṽβr,α)

]
,α

+
∞∑

s=r+1

( r
Bαβk′sh

r+s+1ṽk′s

)
,α

+
r−1∑
l=0

r
aβl

[
− p̃lh

r+l+1 + λhr+l+1ṽγl,γ

]
+

r−1∑
l=0

r
akl µh

r+l+1ṽkl,β +
r−1∑
l=0

r
aαl µh

r+s+1ṽβl,α +
r−1∑
l=0

r
akl

∞∑
s=l+1

l
Bkβk′sh

r+s+1ṽk′s

+hr
r
Xβ =

(+)

h∫
(−)

h

ρ
dvβ

dt
Pr(ax3 − b)dx3, r = 0, 1, 2, ...,

q−1∑
q

(· · · ) ≡ 0; (4.38)

[
µh2r+1ṽ3r,α

]
,α +

∞∑
s=r+1

( r
Bα3ksh

r+s+1ṽks

)
,α

+
r−1∑
l=0

r
a3l

[
− plh

r + λhr+l+1ṽγl,γ

]
+

r−1∑
l=0

r
aαl µh

r+l+1ṽ3l,α +
r−1∑
l=0

r
akl

∞∑
s=l+1

l
Bk3k′sh

r+s+1ṽk′s + hr
r
X3

=

(+)

h∫
(−)

h

ρ
dv3
dt
Pr(ax3 − b)dx3, , r = 0, 1, 2, ...,

q−1∑
q

(· · · ) ≡ 0; (4.39)

for i = β = 1, 2,

−(h2r+1
N

p̃r),β +
(
λh2r+1

N

ṽγr,γ

)
,β

+
(
µh2r+1

N

ṽαr,β

)
,α

+
(
µh2r+1

N

ṽβr,α

)
,α

+
N∑

s=r+1

( r
Bαβk′sh

r+s+1
N

ṽk′s

)
,α +

r−1∑
l=0

r
aβl

[
−

N
p lh

r + λhr+l+1
N

ṽγl,γ

]
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+
r−1∑
l=0

r
akl µh

r+l+1
N

ṽkl,β +
r−1∑
l=0

r
aαl µh

r+l+1
N

ṽβl,α +
r−1∑
l=0

r
akl

N∑
s=l+1

l
Bkβk′sh

r+s+1
N

ṽk′s

+hr
N
Xβ =

∫ (+)

h

(−)

h

ρ
dvβ

dt
Pr(ax3 − b)dx3, r = 0, N,

q−1∑
q

(· · · ) ≡ 0; (4.40)

for i = 3

(
µh2r+1

N

ṽ3r,α

)
,α

+
N∑

s=r+1

( r
Bα3k′sh

r+s+1
N

ṽk′s

)
,α

+
r−1∑
l=0

r
a3l

[
−

N
p lh

r + λhr+l+1
N

ṽγl,γ

]

+
r−1∑
l=0

r
aαl

[
µhr+l+1

N

ṽ3l,α

]
+

r−1∑
l=0

r
akl

N∑
s=l+1

l
Bk3k′sh

r+s+1
N

ṽk′s +hr
N
X3

=
∫ (+)

h

(−)

h

ρ
dv3
dt
Pr(ax3 − b)dx3, r = 0, N,

q−1∑
q

(· · · ) ≡ 0. (4.41)

In the N = 0 approximation r = 0, therefore

0∑
s=1

(· · · ) ≡ 0,
−1∑
l=0

(· · · ) ≡ 0

and, thus the governing system as it follows correspondingly from (4.40) and (4.41):

(h
0

p̃0),β +
[
λh

0

ṽγ0,γ

]
,β +

[
µh
(0

ṽα0,β +
0

ṽβ0,α

)]
,α +

0
Xβ = ρh

∂
0

ṽβ0

∂t
, β = 1, 2; ix (4.42)

(
µh

0

ṽ30,α

)
,α +

0
X3 = ρh

∂
0

ṽ30

∂t
, (4.43)

provided ρ = ρ(x1, x2) and we consider Stoke’s approximation.
We add to system (4.42), (4.43) the additional equation

vγ0,γ −
h,γ
h
vγ0 = 0, (4.44)

according to (4.5), (4.4), (4.24), (4.25), i.e., in terms of weighted moments

(h
0

ṽγ0),γ −h,γ
0

ṽγ0 = 0,

ixIn terms of
0
p0 moment for presure the first term in (4.42) looks like

0
p0,β .
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whence

0

ṽγ0,γ = 0. (4.45)

In the stationary case, bearing in mind (4.45), from (4.42) we obtain

(h
0

p̃0),β +(µh),α (
0

ṽα0,β +
0

ṽβ0,α) + µh
0

ṽβ0,αα +
0
Xβ = 0, β = 1, 2.

Differentiating the last with respect to xβ and then summing with respect to β we get

(h
0

p̃0),ββ +(µh),αβ (
0

ṽα0,β +
0

ṽβ0,α) + (µh),α
0

ṽα0,ββ + (µh),β
0

ṽβ0,αα +
0
Xβ,β = 0, β = 1, 2. (4.46)

Therefore, if µh = const we have

(h
0

p̃0),ββ = −
0
Xβ,β, β = 1, 2.

Further,

0

ṽβ0,αα = − 1
µh

[ 0
Xβ + (h

0

p̃0),β
]
, β = 1, 2,

0

ṽ30,αα = −
0
X3

µh
.

Remark 4.3. If h = const by virtue of (4.45), clearly, (4.42) takes the form

0

p̃0,β +
0

ṽβ0,αα + h−1
0
Xβ = ρ

∂
0

ṽβ0

∂t
, β = 1, 2,

differentiating the last with respect to xβ and then summing with respect to β we obtain

0

p̃0,ββ + h−1
0
Xβ,β =

[
ρ
∂

0

ṽβ0

∂t

]
,β = ρ,

β

∂
0

ṽβ0

∂t
.

4.3 The second type hierarchical model

In the N = 0 approximation we have (see Subsection 3.2 of [10]

−q0,β +
{
λ
[
(lnh),γ

0
wγ0 +

1
2

0
Ψl′l′

]}
,β +

{
µ
[
(

0
wα0,β +

0
wβ0,α) + (lnh),β

0
wα0

+(lnh),α
0
wβ0 + h−1

0
Ψαβ

]}
,α +

0
Y β = ρh−1∂vβ0

∂t
= ρ

∂wβ0

∂t
, β = 1, 2 (4.47){

µ
[

0
w30,α + (lnh),α

0
w30

]}
,α +h−1

0
Ψα3,α +

0
Y 3 = ρh−1∂v30

∂t
= ρ

∂w30

∂t
, (4.48)

(h
0
wγ0),γ +

0
V = 0, (4.49)
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where

r
Ψji := −

(+)
vj

(+)

h,i +(−1)r (−)
vj

(−)

h,i −
(+)
vi

(+)

h,j +(−1)r (−)
vi

(−)

h,j ,

r
Ψαβ := −

(+)
vα

(+)

h,β +(−1)r (−)
vα

(−)

h,β −
(+)
vβ

(+)

h,α +(−1)r (−)
vβ

(−)

h,α, (4.50)
r
Ψ3α ≡

r
Ψα3 :=

(+)
vα −(−1)r (−)

vα −
(+)
v3

(+)

h,α +(−1)r (−)
v3

(−)

h,α,
r
Ψ33 := 2[

(+)
v3 −(−1)r (−)

v3 ],

are known functions, since
(+)
vi ,

(−)
vi , i = 1, 2, 3 are prescribed on the face surfaces. Let them be

equal to zero in Subsection 4.4 for the sake of simplicity.
We may rewrite (4.50), according to the mentioned at the end of Remark 1, as follows

r
Ψji :=

(+)
vj

(+)

F,i +(−1)r (−)
vj (−

(−)

F,i) +
(+)
vi

(+)

F,j +(−1)r (−)
vi (−

(−)

F,j),
r
Ψα3 :=

(+)
vα +(−1)r (−)

vα (−1) +
(+)
v3 (−

(+)

h,α) + (−1)r (−)
v3

(−)

h,α

=
(+)
vα −(−1)r (−)

vα −
(+)
v3

(+)

h,α +(−1)r (−)
v3

(−)

h,α,

r
Ψ3α =

(+)
v3 (−

(+)

h,α) + (−1)r (−)
v3

(−)

h,α +
(+)
vα +(−1)r (−)

vα (−1)

= −
(+)
v3 (

(+)

h,α) + (−1)r (−)
v3

(−)

h,α +
(+)
vα −(−1)r (−)

vα ,
r
Ψ33 :=

(+)
v3 −(−1)r (−)

v3 +
(+)
v3 −(−1)r (−)

v3 = 2[
(+)
v3 −(−1)r (−)

v3 ],

because of

(±)

F,α = −
(±)

h,α,
(+)

F,3 = 1,

−
(±)

F,α =
(±)

h,α, −
(+)

F,3 = −1.

For the sake of transparency in Subsection 4.4 we give analysis of the the governing system
in the N=0 approximation.

4.4 Discussion of peculiarities of well-posedness of boundary conditions
for D3 angular domain Ω in N = 0 approximation

In the same manner we can construct hierarchical models when on one face surface either the
surface forces or neither the surface forces nor velocities are prescribed, while on the another
one the velocities are prescribed.

Hierarchical models in Eulerian coordinates for Newtonian viscous fluid in prismatic shell-
like domains (as container) are constructed. As is already clear, when the effects of viscosity
may be supposed to be negligible, we get hierarchical models for perfect fluids. Initial, contact,
and boundary value conditions from classical ones should be rewritten in the explained in the
present paper (see Subsubsection 2.1.1) way of passage to the moments. The governing equations
are the singular equations, in the case of angular 3D domains. On transparent examples it is
shown that by investigating well-posedness of BVPs, boundary conditions may be nonclassical,
in general.
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In order to illustrate it we analyse two concrete examples when geometry of angular 3D
domain is defined by

h(x1, x2) = h0x
κ
2 , κ ≥ 0, 0 ≤ x2 ≤ L, L1 < x1 < L2. (4.51)

L1 = −∞, L2 = +∞ are admissible as well.
In this case we have to do with the following two equations

x2
2

(
0
w30,11 +

0
w30,22

)
+ κx2

0
w30,2 − κ

0
w30 = 0 (4.52)

which it follows from (4.48) and from (4.43) it follows

x2

(0

ṽ30,11 +
0

ṽ30,22

)
+ κ

0

ṽ30,2 = 0 (4.53)

in the case when either velocities or stresses are known on the face surfaces, respectively.
Equations (4.52) and (4.53) are singular PDEs, in other words, PDEs with the order and

type degeneracy on the degeneracy line x2 = 0.
For equation (4.52) only the Keldysh Problem is well-posed and it’s only, when κ ≥ 1.
For equation (4.53) when κ < 1 the Dirichlet and when κ ≥ 1 the Keldysh BVPs are

well-posed.
We consider fluid flow in prismatic shell-like 3D domain when at the edge of the domain

tangent half-planes to the face surfaces create a dihedral angle with a line angle ϕ. It will be
observed that considering viscous flow near the fixed dihedral angle, replacing the boundary
condition velocity v = 0 on the edge by boundedness of velocity v in a neighborhood of the
edge for κ ≥ 1 i.e., ϕ ∈ [0, π[, in particular, of the mathematical cusp it means κ > 1, i.e.,
ϕ = 0, as it is in the case of the Keldysh problem. When the face surfaces smoothly merge each
into another through the cusped edge, it means for κ < 1 i.e., ϕ = π the Dirichlet problem is
well-posed and the boundary condition should be v = 0. These results are in a good accordance
with the viscous boundary layer concept, according to experimental results of J. Nikuradse.

A case of non-homogeneous viscosity is discussed as well.

5 Conclusions

For different materials: homogeneous, non-homogeneous, isotropic, anisotropic, piezoelectric,
viscoelastic, nanostructures, etc., the differential hierarchical models are constructed and pecu-
liarities caused by singularity of geometry of solid bodies and containers of fluids are discussed.

To this end I. Vekua’s dimension reduction method formalized in [6], [7] in an unified form,
which is directly applicable to any physical problem (model) containing the thickness as a
parametre, is utilized.

I. Vekua’s dimension reduction method for prismatic shells, i.e., in symmetric case for plates
of variable thickness, is generalized for prismatic bars (see [11]). A fluid contained in such
bar-like containers is considered in [12], [14].

By means of Vekua’s dimension reduction method and of his modifications two type hierar-
chical models are constructed:

• the first type models, when on the face surfaces stresses are prescribed, while displacements
for solids or velocities for fluids are calculated from values on the face surfaces of their
Fourier-Legandre series;
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• the second type models, when on the face surfaces displacements for solids or velocities
for fluids are prescribed, while stresses are calculated from values of their the Fourier-
Legandre series on the face surfaces.

During considering non-homogeneous materials constitutive coefficients should be either
independent of x3 or they may depend on x3 but peculiarities arising by that will depend on
the kind of vanishing of constitutive coefficients on the boundary of projection for the solid
body and that of container boundary in the case of the constant thickness for homogeneous
cases, while for the case of the variable thickness it will be depending on the kind of vanishing
of the product of the constitutive coefficient and the thickness.

Here it should be noted that
N
v kr and

N
ukr k = 1, 3, r = 0, 1, 2, ..., N, N = 0, 1, 2, ... mean

solutions of the governing system of the Nth approximation with respect to that unknowns,
while ukr and vkr mean the Fourier- Legendre coefficients up to the fector (τ + 1

2)
1
2h−

1
2 (i.e.

the mathematical moments of the unknown displacements uk, k = 1, 3), respectively and that
weighted ones (i.e. s.c. weighted moments given by (2.2)).

Note that (see [13] and for that of cusped prismatic shells see [14])

ukr = lim
N→∞

N
ukr, k = 1, 3.

Sometimes (mainly) in the literature the upper index N = 0, 1, 2, ..., indicating the order
of the approximation, for the sake of simplicity of notion, is omitted, and the reader should be
careful not to be confused.

I. Vekua’s approximated solution

N
uk =

N∑
r=0

a
(
r +

1
2

)
N
ukrPr(ax3 − b), k = 1, 3,

and the partial sum
N∑

r=0

a
(
r +

1
2

)
ukrPr(ax3 − b)

of the Fourier-Legendre series are different but the both tend to the exact solution u as N →∞.
It is also remarkable that I. Vekua (see [1] pp. 401-405) in the N = 1 approximation besides

classical normal, tangential, and transversal (intersecting) forces in other words, according to
I. Vekua, the zero order weighted mathematical moments and the first order mathematical
moments according I. Vekua, defined the additional first order mathematical moment called
by him as the splitting couple of forces which is nothing more then the equilibrated stress
vector that can be identified with singularities in classical linear clasticity known as double
force systems without physical moments equivalent to two oppositely directed forces at the
same point (see [15], p. 127). Singularities of this type were first discussed by Love [16].

One more thing, in some practical (enginering) models displacements are represented as
polynomials of order ≤ n but they may represented as some linear combinations of Legenre
polynomials (see [17], p. 529), in particular,

xn
3 = a0nPn(x3) + a1nP1(x3) + · · ·+ annPn(x3),

therefore models of such type are contained as particular cases in I. Vekua’s hierarchical models.
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Applying I. Vekua’s dimension reduction method, hierarchical models (approximations) for
thermoelastic chiral porous prismatic shells have been constructed. In theN = 0 approximation,
using the approach developed in [6, 7] we have proved for the case

h(x1, x2) = h0x
κ
2 , h0 = const > 0 κ = const ≥ 0,

the following expected result: in the case of the cusped (i.e. κ > 0) prismatic shell the cusped
edge i.e., where the thickness vanishes (2h(x1, 0) = 0) the edge may be fixed only if

0 < κ < 1,

in other words the Dirichlet type problem, when desired displacement may be prescribed on the
entire lateral boundary of the prismatic shell under consideration, is well-posed, while when

κ ≥ 1

it is not the case, the cusped edge cannot be fixed and boundary condition should be replaced
by the demand of boundedness of the displacement near the cusped edge, in other words, the
Keldysh type boundary value problem is well-posed. Note that the vertical displacement is
not affected by chirality, since in (3.16) κα3k0 = 0, κ3βk0 = ν (see (3.15)) and, therefore,
f · (E3kmκ3km0 + E3kmκ3km0) = 0, but it is not the case in other approximations.
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6 Appendix. Prismatic shell-like and bar-like 3D domains

First a few words about prismatic shells (see also [1], [3], [4]).
Let us consider prismatic shells (see, Figures 6.1 and etc., and also [1], [3], [4]), occupying

3D domain Ω with the projection ω (on the plane x3 = 0) and the face surfaces

x3 =
(+)

h (x1, x2) ∈ C2(ω) and x3 =
(−)

h (x1, x2) ∈ C2(ω), (x1, x2) ∈ ω.

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0, (x1, x2) ∈ ω, (1)

is the thickness of the prismatic shell. A part of ∂ω, where the thickness vanishes, i.e., 2h = 0, is
said to be a cusped edge. We shall call it a blunt edge, if in the symmetric case (see below) ∂Ω
contains it smoothly, otherwise, i.e., the points of the cusped edge are points of nonsmoothness
of ∂Ω, we shall call it a sharp edge (see Figures 6.2, 6.3). In the nonsymmetric case the cusp
edge we shall call blunt provided at least one tangent to a profile is orthogonal to the shell
projection (see Figures 6.6-6.12).

Let

2h̃(x1, x2) :=
(+)

h (x1, x2) +
(−)

h (x1, x2), (x1, x2) ∈ ω. (2)

In the case of the symmetric prismatic shell, i.e., when

(−)

h (x1, x2) = −
(+)

h (x1, x2),

evidently
2h̃(x1, x2) ≡ 0, (x1, x2) ∈ ω.

If
h(0) = 0 & 0 ≤ ∂h

∂ν
<∞ or

∫ ε

0

dν

h(ν)
= ∞

the cusped edge is sharp, in the N = 0 approximation (model) Problem E (Keldysh) is well-
posed,
in particular, if

h = h0x
κ
2 , h0, κ = const > 0, then 1 ≤ κ,

∫ ε

0

dx2

h(x2)
= ∞;

If
h(0) = 0, &

∂h

∂ν
= ∞, or

∫ ε

0

dν

h(ν)
<∞

the cusped edge is blunt, in the N = 0 approximation (model) Problem D is well-posed, in
particular, if

h = h0x
κ
2 , h0, κ = const > 0, κ < 1, then

∫ ε

0

dx2

h(x2)
<∞.

Distinctions between the prismatic shell of constant thickness and the standard shell of
constant thickness are shown in Figures 6.4, 6.5, where cross-sections of the prismatic shell of
constant thickness with its projection and of the standard shell of constant thickness with its
middle surface are given in red and green colors, respectively, with common parts in blue. In
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other words, the lateral boundary of the standard shell is orthogonal to the “middle surface” of
the shell, while the lateral boundary of the prismatic shell is orthogonal to the prismatic shell’s
projection on x3 = 0 (see [4]).

In particular, let ω be a domain bounded by a sufficiently smooth arc (∂ω \ γ0) lying in the
half -plane x2 > 0 and a segment γ0 of the x1−axis (x2 = 0). Let the thickness look like (see
Figures 6.2, 6.3)

2h(x1, x2) = 2h0x
κ
2 , h0, κ = const > 0, (3)

which corresponds to the case

(±)

h (x1, x2) =
(±)

h0x
κ
2 ,

(±)

h0 = const,
(+)

h0 >
(−)

h0 , 2h0 :=
(+)

h0 −
(−)

h0 .

In this case we have to do with a blunt edge for κ < 1 and with a sharp edge for κ ≥ 1,
respectively.

In Figures 6.6-6.20 (ϕ̂ is the angle at the cusp between tangents
(+)

T and
(−)

T , ν is an inward
normal at O to ∂ω) we show some characteristic (typical) profiles (cross-sections) of cusped
prismatic shells.

Let
2h(x1, x2, t) = 2h0t

κ,

then we will have a time dependent reverse thinning (i.e. blunting) with respect to t with the
above described geometry in the Cartesian frame 0tx3.

In this case we have to do with singular hyperbolic equations and systems, in the principal
part of which it plays a crucial ole a member ∂2

∂t2
[tκv30(t)]. Supposing unknown functions

depending only on time we arrive at

∂2

∂t2

[
tκv30(t)

]
= 0

v30(t) = c1t
1−κ + c2t

−κ; v30(t) = c1t
1−κ, c2 = 0; v̇30(t) = c1(1− κ)t−κ

κ < 1 :
v30(0) = 0

either
lim
t→0

tκv̇30(t) = c1(1− κ) = m, c1 =
m

1− κ
or

v̇30(t) is bounded, i.e., m = 0

κ 6= 1, c2 = 0 : either
lim
t→0

tκ−1v30(t) = c1 = m,

or
v30(t) is bounded, i.e., m = 0

either
lim
t→0

tκv30(t) = c1(1− κ) = m,

or
v̇30(t) is bounded, i.e., m = 0.
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Figure 6.1: A prismatic shell of constant thickness. ∂Ω is a Lipschitz boundary

Figure 6.2: A sharp cusped prismatic
shell with a semicircle projection. ∂Ω
is a Lipschitz boundary

Figure 6.3: A cusped plate with sharp
γ1 and blunt γ2 edges, γ0 := γ1 ∪ γ2.
∂Ω is a non-Lipschitz boundary

Figure 6.4: Comparison of cross-
sections of prismatic and standard
shells

Figure 6.5: Cross-sections of a pris-
matic (left) and a standard shell with
the same mid-surface

Figure 6.6: A cross-section of a
blunt cusped prismatic shell (ϕ̂ =
π
2 ). It has a Lipschitz boundary

Figure 6.7: A cross-section of a
blunt cusped prismatic shell (ϕ̂ ∈
]0, π

2 [). It has a Lipschitz boundary

Figure 6.8: A cross-section of a
blunt cusped prismatic shell (ϕ̂ =
0). It has a non-Lipschitz boundary

Figure 6.9: A cross-section of a
blunt cusped plate (ϕ̂ = π). It has
a Lipschitz boundary
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Figure 6.10: A cross-section of a blunt
cusped prismatic shell (ϕ̂ = π

2 ). It has
a Lipschitz boundary

Figure 6.11: A cross-section of a blunt
cusped prismatic shell (ϕ̂ ∈]π2 , π[). It
has a Lipschitz boundary

Figure 6.12: ϕ̂ = π Figure 6.13: Wedge, ϕ̂ ∈]0, π[

Figure 6.14: ϕ̂ = 0

Figure 6.15: π
2 < ϕ̂ < π Figure 6.16: π

2 < ϕ̂ < π

Figure 6.17: ϕ̂ = π
2 Figure 6.18: 0 < ϕ̂ < π

2

Figure 6.19: 0 < ϕ̂ < π
2 Figure 6.20: 0 < ϕ̂ < π
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