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1 Introduction

Hierarchical models constructed by I. Vekua’s dimension reduction method is a powerful tool
for investigation of Problems considered in angular 3D domains (see Appendix). The advantage
is threefold:

1. 3D problem is reduced to 2D problems;

2. 3D geometric singularity is transferred into singularity of governing differential equations
in 2D domains, therefore, into investigation of BVPs and IBVPs for singular ordinary and
partial differential equations and systems. Ilia Vekua’s method is especially fitting this
case;

3. The hierarchy models obtained in that way can be discretized by the p-version of the finite
elements (In this connection see [19], [20]).

While constructing hierarchical models for elastic prismatic and standard shells of variable
thickness, Ilia Vekua suggested and developed a dimension reduction method [1-3] (for the state
of art in this direction see [4], [5]) which in [6,7] is formalized in such a form that it is applicable
directly for constructing the hierarchical models corresponding to physical models containing
the thickness as a physical variable.

The present paper deals with the state of art in application of Ilia Vekua’s method of
dimension reduction for constructing and investigating the hierarchical models for different
physical models. The special attention is paid to the case of 3D angular domains, namely, to
the study of peculiarities of posing the boundary conditions caused by it within the framework
of the corresponding 2D boundary value (BV) and initial BV (IBV) problems. In other words
the special attention is paid to the case of 3D angular (such as that dihedral and polyhedral)
domains and the peculiarities of setting 2D BVPs caused by them.

Section 2 deals with the hierarchical models for elastic and piezoelectric, viscoelastic Kelvin-
Voight with voids prismatic and standard shells and bars (see Appendix).

Section 3 deals with the hierarchical models for thermoelastic deformation of chiral porous
prismatic shells.

Section 4 is devoted to fluids in prismatic and standard shell-like, bar-like, and canal-like
domains.

In Section 5 we indicate how the above techniques may be used for different materials and
summarise conclusions.

Each section is as much as possible selfcontained.
Throughout the paper we use Einstein’s summation convention on repeated indices (that
Latin and Greek run values 1,2,3 and 1,2, respectively) and the simplified notation for the

~ =
partial derivative (---),; and (---) mean differentiation with respect to variable x; and time ¢,

respectively. Further, jgkr and ]?\L]]m« k=1,3,r=0,1,2,...N, N = 0,1,2,... mean solutions of
the governing systems of the Nth order approximation with respect to that unknowns, while
e and vy, mean the Fourier- Legendre coefficients up to the fector (r + 1/2)1/2a4'/2 (i.e. the
mathematical moments of the unknown displacements u, k = 1,3) and that weighted ones (i.e.
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s.c. weighted moments given by vg, := h™""lug,). Sometimes the Fourier -Legendre coefficient
itself is called the mathematical moment of order & (see [3]). Clearly,

1 1
e o D, 0

is the orthonormal system since

(+)

+
h
1\1/2 1\1/2
(kz + 5) (l + 5) Py(axs — b)P(axs — b)adxs = oy
)

(_
h
(see [18] p. 219 (the first edition), 258 (the second addition)) and the Fourier-Legandre coeffi-

cient

(=)

h
1\1/2 1\ 1/2
ay = (ug, or) == (7‘ + 5) aI/QUkPT(awg —b)dxs = (7“ + ;) a1/2ukr,
(=)
h
where
=)
h (r1,72) E
T
Upy = Uk(xl,IQ,xS)Pr<h(T3$2) - E>d$37
(=) ’
h (z1,22)
is the rth order mathematical moment.
(;L>(361,$2) E
e e T
Vg i= b Ny, 2)upy = hT T (w1, 29) uk($1,$2,$3)Pr<h(T3m) - E>df€3-
(=) ’
h (x1,x2)

. . . =) (+)
Evidently, in the sense of mean convergence [i.e., in Lo( h (x1,22), h (z1,22))]

Uy = Z O op = Z (7‘ + ;)aukTPT(aarg -b) = Z <r + ;)hrvkrPT(amg, —b).
r=0 r=0 r=0

Note that (see [13] and for that of cusped prismatic shells [14])

. N
Upr = lim ug., k=1,3.
N—oo

Mainly, in the literature the upper index N = 0,1, 2, ..., indicating the order of the approx-
imation, for the sake of simplicity of notion, is omitted, and the reader should be carefull not
to be confused.

Ilia Vekua’s approximated solution

N
1 - 1
]z\{k = Z (T‘ + §>a]2\tfk,,Pr(a:E3 -b), k=1,3, a:=———, b(z1,29) := Dt h
r=0 h — h
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and the partial sum of the Fourier-Legendre series

N
Z (r + %)aukTPr(axg -b), k=1,3,

r=0

are different but the both tend to the unique exact solution u of the corresponding 3D BVP as
N — oo (see [13] and [14]).

It is also remarkable that I. Vekua (see [1] pp. 401-405) in the N = 1 approximation besides
classical normal, tangential, and transversal (intersecting) forces in other words, according to
I. Vekua, the zero order weighted mathematical moments and the first - order mathematical
moments according to I. Vekua, defined the additional first order mathematical moment called
by him as the splitting couple of forces which is nothing more than the equilibrated stress
vector that can be identified with singularities in classical linear elasticity known as double
force systems without physical moments equivalent to two oppositely directed forces at the
same point (see [15], p. 127). Singularities of this type were first discussed by Love [16] (see
p.56).

One thing more, in some practical (enginering) models displacements are represented as
polynomials of order < n but they may represented as some linear combinations of Legenre
polynomials (see [17], p. 529), in particular,

xg = aOHPn(xg) + a1, P1 (:Ug) + -+ annPn(l‘;g),

therefore models of such type are contained as particular cases in I. Vekua’s hierarchical models.

2 Elastic prismatic and standard shells and bars

For the sake of simplicity we restrict ourselves to prismatic shells.
The first version of Vekua’s hierarchical models for cusped, in general, homogeneous elastic
prismatic shells in the Nth approximation has the form (see [4], page 19, we refrain from giving

the proof here)
N N
L [(h2r+lvar,j> 4 <h2r+lvjr7a>
(0% (0%

) )

r—1
L N r+l+1 N r+l+1 N N
1 7 it i
+ Z <Bajks prtst vks) + Z a; |:>\5th Vyly + wh <Uil,j + Uﬂﬂ)
s=r+1 & =0

N
+ Ao (hQT“ v,m> (2.1)

)

N N
[ 7‘+s+1N r 82h7’+1 UjT
" §z+:1Bijksh Uks | THXG = phT =55
s=

qg—1
r=0,N, j=13, ) () =0,
q

where
I8 T T T
Bijks := Xoijbrs + pdgjbis + poigbys,
N
Vpr 1= —F LT3, r=0N. (2.2)

T hr+1?
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N
For j = 3 from the three groups of terms of the main part of (2.1) remains (uh* 103, 4),0
£
which will give integral criteria of well-posedness of Dirichlet (I := [ % < 400) and Keldysh
0

type (I = +o00) problems (for the case N = 0 see Appendix).
For bars see [4] p. 54 (for more in details see [11]).

2.1 Field equations for piezoelectric Kelvin-Voigt materials with voids

Let a piezoelectric solid occupy a reference configuration Q € R3. Under the quasi-static
conditions, when the rate of change of the magnetic field is small and there is no electric
current, i.e., the electric field E and magnetic field M are curl free, the 3D governing equations
have the following form

Motion Equations

Xjij + ®; = piij(w1, 02,23, 1), (v1,72,23) €EQC R, t>ty, i=1,3; (2.3)
H;;+Hy+F =k,
Djj=fe, Bj;=0, Qx]0,T],

where X;; € C1(Q) is the stress tensor; ®; are the volume force components; k is the equilibrated
inertia per volume unit, p is the mass density; ¢ = vy — v € C?(Q) is the change of the
volume fraction from the matrix reference volume fraction v (clearly, the bulk density p = v,
0 < v < 1, here v is the matrix reference density); u; € C?(2) are the displacements; H; €
C1() is the component of the equilibrated stress vector, Hy = g and F = [ are the intrinsic
and extrinsic equilibrated volume forces; we remind that Einstein’s summation convention is
used; indices after comma mean differentiation with respect to the corresponding variables
of the Cartesian frame Oxjxoxs (throughout the work we assume existence of the indicated
(continuous) derivatives unless otherwise stated); dots as superscripts of the symbols mean
derivatives with respect to time ¢; X : Qx]0,T[— R! and 5 : 2x]0,7[— R! are electric and
magnetic potentials, respectively, i.e., E = —gradX, M = —gradn, f.: Q2x]0,T[— R! is electric
charge density. D := (Dy,Do,D3) : Qx]0,T[— R? is the electrical displacement vector,
B := (By, B2, B3) : 2x]0,T[— R3 is the magnetic induction vector.
Kinematic Relations

e;; € CH(R) is the strain tensor;
Constitutive Equations

Xji = Xij = Ejjuen + Ejpén + bijo + b0 + dijro i + djpd

FPkij Xok TP Xok Tkig Mok g Mok 47 = 1.3, (2.7)

Hj = dpjep + diyém + djo + djo + i + a4, j=1,3, (2.8)
Ho = —bijei; — &p — dip; — bijéi; — £ — dip, (2.9)

Dj = pjmext + Pilr — Gixg — agengs J=1,3, (2.10)

Bj = qjmier + Gryfr — aXa =g j = 1,3, (2.11)
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where the constitutive coefficients E;ji; (elasticity), Ejjkl (viscosity), bij, di, dyij, @i, & (poros-
lty)v b:]) d:a d]tlja a;iv 6* (ViSCOpOI‘OSity), Pkij, p;kla qkij, q;'(klv lea djla gjla Pkij are the piezoelectric
coefficients, gy;; are the piezomagnetic coefficients, ¢;; and &;1 are the dielectric (permittivity)
and magnetic permeability coefficients, respectively, a;; are the coupling coefficients connecting
electric and magnetic fields, satisfy the following relations

Eijr = Ejigy = Ejik = Eriijs Ejj = Elig = Ejue = Epyj

bij = bji, diji = djik, Guj = i

bij = blis dijp = djips O = G, Pikl = Djtks Gkl = Gjtks it = Qg

aji = aij, 1= &js Pipr = Pitkr Gk = G-

The constitutive coefficients also meet some other conditions, following from physical con-
siderations, with a view to apply I. Vekua’s dimension reduction method, we require the con-
stitutive coefficients to be independent of xs.

Let us consider the general BVPs and IBVPs with the following mixed BCs

u=f; on Ty, Xinj=g on I'1=00\Ty, i=13, ( )
o=1f% on T§, Hmnj=g% on I'Y= OQ\W, i=1,3, (2.13)
X=f" on Ty, Djmn;=g° on I'|= OONTY, i=1,3, (2.14)
n=f" on I}, Bjnj=g" on I'l= OONI'!, i=T,3, (2.15)

and the standard ICs in the case of dynamical problems

u(z,0) = u’(z), u(z,0)=u'(z), ¢(z,0)=¢"@), &(z,0)=¢' (z),
(2.16)
x €
here n := (n1,n9,n3) is the outward unit normal vector to 99, (f1, fo, f3), f#, f%, f" are

the given displacement vector, volume fraction, electric and magnetic potentials, respectively,
(91,92,93), g%, g* and g" are the given stress vector, normal components of the equilibrated
stress, electric displacement and magnetic induction vectors, respectively, while u’ and u' are
the initial mechanical displacement and velocity vectors, whereas ¢" and ¢! are the initial
volume fraction distribution and its rate. Note that the sub-manifolds I'g, T'§, T'y, and '], of
the boundary 02 in boundary conditions (2.12)-(2.15) are different, in general, from each other
and depending on the physical problem some of them may be empty.

2.1.1 Construction of hierarchical models. Nth approzimation

Below we use formulas (for proof see [6], Section 10).

(+)
h (z1,%2)

Pr(ax?: - b)faa dzs

( (2.17)

=)
h (z1,22)

LA (+)
:fr,a+zaasfs_ f
s=0

(+) (=)(=)
h ,a+(_1)r f h Ne2) o = 1727
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(Z)(CELQQ) )

L, )
Pr(aws —b)fsdrs =Y asefs+ f —(=1) [, (2.18)
) =0
h (z1,2)

or in the unified form

(+
h (z1,72) 0
r .
Pr(axs —b)fjdws = frj+ Y bjsfs, j =3, a=12, (2.19)
S=r
(h)(lvl,lvz)
(+) -
provided f and f are not prescribed on the face surfaces.

(+)
h (z1,%2)

Pr(a$3 — b)f,j dxs = fnj + Z ajsfs
s=0

(=)
h (z1,22)

(+)
+ f nj\/1+(h,1)2+(h,2)2

=) (=) ) ,
+(=D)"f o\ 1+ (R )2+ (h 2% j=a,3, a=1,2,

(+) =)
provided f and f are prescribed on the face surfaces. Here

(+) =)
h Yo _(_1)T+8 h Yo
2h

— (=" (+ =)
(—1) ol h)—(h,

o
h )

aa512(28+1) ’ S#T; aaz:r

g/gs = —(28 + 1)1T7
)

h:a_haa

bjs = _ajsa J 7& Ty bar 1= —(’I" + 1) oh
From (2.3)-(2.11), after multiplying them by P,(axzs —b) for r =0,1,--- , and then integrating

T
R bgzzo.

— +)
within the limits h (x1,22) and h (x1,x2) with respect to the thickness variable x3, we obtain
the following formulas in w:
(i) from (2.3)-(2.5), correspondingly, it follows that

r r 2w
Xeira + ; arjszis + X, = p#» i=1,3, r=0,1,---, (2.21)
.
r T ..
Harva_‘_ZaOlSHOés_FHOT_FH:k(pT_]:T‘a 7’:0,1,"' ) (222)
s=0
r T
.
Dyry+ Y disDis + D = for, 7=0,1,---, (2.23)
s=0
r T
Byy+ Y isBis+ B=0, 7=0,1,--; (2.24)

s=0
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where
T (+) (+) (+) (=) (=) (=)
Xi = XS’L - Xaih7()c + (_ )r [ - X3’L + Xaihaoc:| + (I)zr
(+)\2 (H)\2 (=)\2 (=)\2
= X<$) \/1 + (h,l) + ( ,2) + (_1)7’X(ﬁ> \/1 + ( ,1) + (h,Q) + (D“n,
1=1,3, r=0,1,2, ;
since
() ()
x3 = h (x1,22) = F(v1,22,23) := 23 — h (x1,22) =0
(x) (£)
(£) F,; (£) —h,a (*) 1
P = = Nyq = , N3 =
(£) (£ & (£) () (£) () &)
+\|F3+F3+ F3 +\|F2+F3+ F3 +\F3+F3+F3

here X, and X, are components of the stress vectors X ;) and X _, acting on the upper
n 1 n n

+ —
and lower face surfaces with normals (n) and (n), respectively,

=) =)=

r + ) ) )
Hy + Hoho| + F,

H = H; — Hoho+ (—1)" [ -

%)\/1 + ((h+1)>2 4 (5?,3)2 4 (—1)7“(;1)\/1 4 (%_,1))2 + (%2)) L F =01,

(+) =)
Hj; and H; are components of the equilibrated stress vectors on the upper and lower face surfaces

+ —
with normals (n) and (n), respectively.

. @) ) (-
D = Dy— D h+(—1) D3—|—DW }
() (+) () —)
= Din; +(h,1)2+( +D G 1+ (h2)?,
" ) ) ()
B = By~ Byhy+(=1)"| = By + By by |

) (1) T © O
= Bini \|1+(h1)?+ (h2)?+ Bini \| 1+ (h1)*+ (h2)%

(ii) from (2.6), using (2.19), it follows that

1 1N r I s R—
eijr = 5(um i) + 5 D bistys 5 > bistiiesij =13, 1 =01+, (2.25)
S=T S=r

by virtue of
_ p—r—1
Vir = h Uiy,
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we have

1 1 > T T
€ijr = ihr—H ('Uiv",j + Ujr,i) + B Z pstl (bisvjs + bjS’UZ'S),
s=r+1 (2.26)

Z.vj:m7 ’I":O,l,"' .
(iii) from (2.7), taking into account (2.19) for j =y and j = 3, it follows that

00
- r
Xijr = Eijklekl'r + E;}‘]gléklr + bij@r + b:}sor + dij'y (@r,’y + Z bys%)

S=Tr

oo
—d;j3 Z ays% + dij (cpm + Z bysgos) —djjs Z aTgsng

s=r+1 s=r+1

9 o9 9
r . T .
+p’yij(Xr,'y + Z b’ysxs) — D3ij Z CLTSSXS + pj';ij (Xr,'y + Z b’ysxs)

S=r S_T+1 s=r
—P3ij Z azs X + Qvij nr'y+z bysns — G3ij Z a3s7s
s=r+1 s=r+1
* . r . * T oo ..
@5 Ty + Z bysts) — @3 Z assns, 4,j=1,3, r=0,1,---. (2.27)
s=T s=r+1

Therefore, by virtue of (2.25),

1 1 o T T
Xijv“ = iEijkl <ukr,l + ulr,k) + §Eijkl Z <bksuls + blsuks)
s=r
1 . /. . I o= . T
+§Eijkl (um + Ulr,k‘) + §Eijkl Z (bksuls + blsuks)
s=r

~ . 7
+bij90r + b;}‘,br + dz’j’y (@r,’y + Z b'ys@s)

s=r
0o
* oo
fdz]3 Z (IVSQOS + dz]ry <SOT‘,'y + Z b»ysSOs) - dljg Z a3sPs
s=r+l s=r+1
X r
+Drij (XT7’Y + Z b’YsXs) D3ij Z aSsX + p,m (X Ty + Z b’ysX )
S=T s= r+1
> r
* AN r
~P3ij Z a3sXs + Qyij (777‘,7 + Z b’ys778> — q3ij5 Z a3sMs
s=r+1 s=r s=r+1
oo r o0 ,
+qj;ij(7:/7“,'y + Z b'ysﬁs) - q;,‘” Z agsﬁs, Z’j = 1, 3, r = O’ 1’ e (228)
S=T s=r+1
Let
Uy v Xy ~ T

Vir +— hr‘i’l? ’l]Z)T- : hTJrl’ o= W, Nr ‘= hT+1 . (229)
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Substituting (2.26) into (2.27), and taking into account (2.29), it follows that

1 1 - r T
Xijr = 3 sikth (vkr,l +'Ulr,k> + iEijkl Z hstl (bksvzs+bzsvks>
s=r+1
. 1 N A
+5 Ejklh (Ukrl+vlrk> t3 ikl Z h* <bksUZS+blsvks>
s=r+1

+Z~7ijhr+1¢r + b* hr—er + dz]'yh %,w + dijk Z hs—kusws + d;k],yhr+1¢r’7

s=r+1
[e's) . B ) .
+dz]k Z hs+1bks¢s +p'yijhr+1xr;y + Dkij Z hs—kusXs
s=r+1 s=r+1

00 o0
53 oL » o
+pikyijhr+1xr,'y + pz@'j Z hSJrlbksXs + Q'yijhr+177r,'y + qkij Z hs+lbks775

s=r+1 s=r+1
. > ro.
+q:;ijhr+1ﬁr,'y + QZZ] Z h5+1 bksﬁw Z)j - ]-) 37 r= 07 17 T (230)
s=r+1
(because of
- h
(A X,) , — BT (r + 1)76“ =h"X, .,

and the similar formulas for ¢ and 7).
Analogously, from (2.8) we have

1 1 © r r
Hj, = idklj(ukr,l + upr ) + §dklj ;(bksuls + bstgs)

1 * 1 * = " r X .
+5di (Wkr + wir k) + ki Z(bksuls + bisugs) + djpr + dior
S:

~ T (+)(+) (=) (=)
+a,3 [gprﬁ + Z agsps — P hg+(—1)" ¥ hwg}

s=0
+ay3 [Zags% + (:E) — (—1)’"(;)]

s=0

r () () (=) (=)

g [fna+ D e = @ ha = (<17 ¢ hal
s=0

(+) (=)
s [ Y+ ¢~ (18], j=T3

s=0
and substituting here the corresponding Fourier-Legendre expansions of ¢ on the upper and

lower face surfaces
> 28 +1)
Z 8057

s=0
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we get

1 1 > r T
Hj, = §dklj (ukr,l + Ulr,k) + §dklj Z(bksuls + bisugs)

S=Tr

1, 1, =" v .
+§d}glj(ukr,l + upr k) + idklj Z(bksuls + bistgs) + djpr + dior

S=r

o0 oo
T T
+ak (gor,k +) bks%) + o (@nk +)° bkscps), j=1,3,r=0,1,---, (2.31)
s=r

S=T

ie. (see (2.29))

1 1 © T r
Hj, = §dkljhr+l(vkr,l + Vi) + idklj Z RS (bgsvns + bisvks)
s=r+1

Lo e ; . S s+1p " r+1 *pr41,]
5™ Okt + i) + 5y D R brsOns + bistia) dih" o + AR
s=r+1

—FCthi (hr+1wr,i + Z h5+1bisws> + a;‘fi <hr+l¢r,i + Z hs+lbis¢5>7 (2.32)
s=r+1 s=r+1

From (2.9), on account of combined (2.19), (2.20), evidently, it follows that

o0 r ~ .
Hor = —di(0ri + Y _ bistps) — bijeijr — Eor

s=r

ot NS e e _
d(Qor,z'i_szs(Ps) b@'jeur 6901"7 T—O,l,"-

S=Tr

and, in view of (2.22),

Hy, = _di(@r,i + Z bis@s)

S=r
-1l =7 17
—bij [5 (Uir,j + “jm’) + 3 ; bisujs + 3 ; bjsuis}

_5907' - d*(Sbr,i + Z bis(ps)

S=T

LT/, , =y . 1. .
—bj; [5 (Uir,j + ujr,i) t3 Z bistijs + 5 Z bjsu'is] — & ¢, (2.33)
s=r s=r

while, by virtue of (2.26) and (2.29),
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~ 11 1 s T r
HOT‘ = *bi]’ [ihH_l <Ui7“,j + Ujr,i) + 5 Z hs+1 (bisvjs + bjsvis)]
s=r+1

e, (1 S )

s=r+1

.l . , 1 & ro o
—by; [§hr+l (”iermi) T3 > hSH(biS”jstbjS%)}
s=r+1

—&* e, — d (h?"“zbr,i + i bzszbs), r=0,1,---. (2.34)
s=r+1

Similarly, from (2.10) it follows

00 0o
. r r
Djv‘ = Djkl€klr T p;kleklr — Sjy (X'r,'y + Z b'ysXs> + Sj3 Z a3sXs

s=r s=r+1
(o) r (o)
~ ~ T . —_—
_ajv (777‘,’}/ + Z bvsﬂs) + aj3 Z a3sNs, J] = 17 37 r= O? 17 T
s=r s=r+1
i.e., in view of (2.25),
1 N r

Dj, = ipjkl(ukr,l + upr k) + Pkl ;(bksuls + brsugs)

LI . I A N
5P (ery + i) + Pk D (brstius + bigigs)

2 s=r
o ) ,
—Siv (XT,W + Z bvsXs> + 3 Z a3sXs
s=r s=r+1
>~ [eS) . -
_d]'y (nr,’y + Z b’ys”s) + d]?) Z a3sl]s, j = ]-7 37 r= 07 ]-7 R (235)
s=r s=r+1

while by virtue of (2.26) and (2.29), we have

1 1 © r T
Dj, = ipjklhrJrl(vkr,l + k) + 5 Pjk > B (bsvis + bievs)
s=r+1

1, , , 1, v
+§pjklhT+1(Ukr,l + Ulr,k) + 5Pkl Z hSJrl(bksUls + blsvks)

2
s=r+1
~ s T o~ s r o~
—gjy(hTHXm%— Z hs—HbfysXs) +§j3 Z hS_H(ZBsXS
s=r+1 s=r+1
0 r 0 r
—djfy <hr+177r;y + Z h5+1b,ysﬁs> + C~l]3 Z hs+1a38ﬁ87 (236)
s=r+1 s=r+1

j:1773’ 7":0,1,"'.
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In the same way from (2.11) we get

1 1 . r T
Bj, = §ijl(ukr,l + k) + 2 Lkl Z(bksuls + bisus)

s=r

Lo . Lo N o
+§qj‘kl(ukr,l + k) + 5 ikt > (bksting + bistis)

S=T
aﬂ( m%—z b%;X > + ajs3 Z (J,gs s
s=r+1
fﬂ(m,wz bysns) +&53 Z dssns, j=1,3, 1=0,1,", (2.37)
s=r+1
ie.
1 r+1 1 = s+1 " g
Bjr = 5a5kh (Vkr + Virge) + 5 ikt > B (bgsvis + bisvs)

s=r+1

1 L 1, < roor
+§q;kzhr+1(vkr,z + i) + 5 Gk > B (bgts + bistns)
s=r+1

g (W% + Z W+, X, ) +ajs Z W+ ldy,X,
s=r+1 s=r+1
[o.¢]

oo
r
& (P e+ 0 Wil ) s D R i, (2.38)
s=r+1 s=r+1
j:17737 T:0717"' ;

Substituting (2.30) into (2.21); (2.32) and (2.34) into (2.22); (2.36) into (2.23); (2.38) into
(2.24) we get an infinity system that after truncation it gives the governing system of the Nth
approximation with respect to

Vkr, ¢T> %Ta ﬁra k= 1a37 r= 0 N :

N
1 1 1
2 ( azkéh +1vkr,5> ats 9 < az'ythrJrlvlr,’y) 5 ( atkl Z hr+s+1vls) o

_l’_
N
1 " sl Ll ory1 1 21,
+§ (Eaikl Z blsh Uks) IYe’ +§ (Eaikéh Ukr,(S) Pre’ 5 ( az'ylh Ulr ’y) Y’
s=r+1
N

N
1 N r . 1 N r . -
+§( ikl Z bkshTJrSHUZs) a +§< ikl Z blshTJrsHUks)aa +<baihzr+1¢r>aa
s=r+1 s=r+1

N
+ <b2ih2r+l¢r> ya T (dai7h2r+1w7‘,’y) ya <daik Z bkshr+s+1ws> e

s=r+1

(b (e 3 G710, o

s=r+1
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. N
1 ) /
+D dis [gEjiklh”S“ <'Ulcs,l + Uls,k) + 5B Y, B
s=0 Wl

N
1. . . 1, / s 5.
+§Ejiklhr+s+1 (Uks,l + Uls,k) + §Ejik:l Z hr—l—s +1 (bkslvlsl —+ blslUks/)
s'=s+1

s
ks'Vls' + bls’”ks’)

N
~ . s ,
b h™ T g b AT g TP dg Z bro BT L
s'=s+1

N
S
1 H ! 1 . 1~
—|—d;~i7hr+s+ 1113,7 + d;ik E bks,hr—l-s + ¢S, _|_pw.ihr+s+ Xs,'y
s'=s+1

N N
S . S o
E : +s'+1y * 1y Z "+15
+pkji bks’hr # Xs’ +p7jihr+s+ Xsn/ +pltji bks’hrJrs * Xs’
s/'=s+1 s'=s+1

N
S
s+ 441z s+l
+qyjih" T sy Qrji E brs' K" T T R+ DT s
s'=s+1

N
s fq s r 82 hr+1ly.
g Y ek | X = o S

s'=s+1

(2.39)

N
1 1 1 r
3 (dklah2T+lvkr,l) oty (dklah2r+lvlr,k) aty (dkm S_ZT:H bkshr+s+lvls> -

N

1 r 1 : 1 .

t5 <dkla Z blshr+s+lvks> oty <d;;lah2r+1vkr,l> aty <d2lah2r+1vlr,k) o
s=r+1

N N
1/ . r . 1/ . r .
+§(dkla Z bkshr+s+1yls>,a -|—§< o Z blshr+5+lvks)7a
s=r+1 s=r+1
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o (dah® 100 Yo+ (312140 ) o+ (Gah® )

N N
+(dak Z bkshr-i-s-i-lws)’a+<a(§kh2r+l¢r7k)7a—|—(azk Z b’fshrﬂﬂd}s),a

s=r+1 s=r+1

r N
1 1 ’ S S
+ E s [QdklihT+s+1 <Uks,l + UZS,k) - §dkli § prts (bks'vzsf + blskas'>
s=0 s'=s+1

N
1 * . . 1 - ’ s s
+§dklihr+s+l (Uks,l + Uls,k) + idklz E hr—i—s +1 (bks’vls’ + bls’vks’)
s'=s+1

1 1, 1 o '+1
T g + AR N G (hr+s+ Gs g + Z by BT T 1/,5,)
s'=s+1

N
. s P
+a;'kk (hr‘+8+1ws,k + E bks’ hT‘+8 +1ws/>i|
s§'=s+1

N N
~ 1 1 T 1 T
—bij [§h2r+1 (Uz‘r,j + Ujr,@') + 5 E bishr+s+lvjs + B E bjshr+5+lvis}
s=r+1 s=r+1

N
~ T
_ERrHLy, _di<h2r+1¢r7i+ Z bishr+s+1ws>
s=r+1
Lot 1 & 7 1 1 & 1
_b;‘j bh T+ (@im- + bjr,,;> + 5 Z bishr+s+ @js + 5 Z bjsh7"+8+ z}is}
s=r+1 s=r+1
. . N T .
R, _d (h2r+l¢r,i + Z bz’shr+s+1¢)s)
s=r+1
thrJrlwr
ot2 7’

FRTH = pkh' r=0,N, (2.40)

N

1 1 1 r

3 (paklh%“vk,«,l) aty (paklh2T+lvlr,k> aty (pakl > bkshr+s+lvls) o
s=r+1

N
1 r 1 . 1 .
+5 (pakl > blshT+s+1Uks> oty (kathTJrlvkr,l) ats (kalh%Jrlva,k) o
s=r+1

N N
1. " . 1/, " .
+§ (pakl Z bkshr+s+1vls> o +§ (pakl Z blshr+8+1vks) Ye
s=r+1 s=r+1

2r+1+ al " r+s+1+
- (ga'yh Xr,’y) o T (gak Z bksh Xs) sQ
s=r+1

N
T
- (da7h2r+l7~77’,7> o T (dak Z bks hr+s+1 ~s> sa
s=r+1
r 1 1 N s s
T !
+> ais [ihr+s+1pz’kl(vks7l + s k) + Pk > W v + bigvge)
s=0 s'=s+1
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N

1, ) ) 1, 1145 s
+§piklhr+s+1(vks,l + Uls,k) + §pikl Z prts ‘H(bks’vls’ + bls’vks’)
s'=s+1
~ s / ~
—GihT X L — Zé\’f:s—&-l b 71X,
N
S 1 - r
%@Wﬁ”%w+@k§:bMM“H@J+MD:Mﬁmr:QN. (2.41)
s'=s+1
1 1 1 Ny
5 (qaklh”“vknl) oty (qaklh”Hvlr,k) aty <Qakl > bkshT+S+1Uls) o
s=r+1
1 Yo rst1 Lo ot Lo Lortt.
+§ (qgckl Z blsh vks)) et +§ (qaklh Ukr,l) o +§ (qaklh Ulr,k) o
s=r+1

N N
1/, r . 1/, r .
+*(qakl Z bkshr+s+1vls>7a +*(qakl Z blshr+8+1vks)>,a

2 2
s=r+1 s=r+1
N r
- (aa’yh2r+lxr,’y> oo T (&ak Z bks hH_S—HXs) e
s=r+1
N r
- <§a7h2r+l Nrﬁ) o T (gozk Z bkshr+s+l Ns) e
s=r+1
r 1 1 N s s
r /
+> ais [§Qiklhr+s+1(vks7l +Us k) + 5 ikt > W vy + bigvge)
s=0 s'=s+1
| : L, - rs .
+§q7;klh (vks,l + Uls,k) + iqikl Z h (bks’vls’ + bls’vks’)
s'=s+1

N
~ > ~ S / <
_aifyhr+s+1xs,'y — Gk § bks’hr—’—s +1Xs’
s'=s+1

N
s f r
_éi'yhTJFSJrl ~8,’Y - glk E bks’ hr+s +1775’] + hTB
s'=s+1

0, r=0,N. (2.42)
In the Nth approximation (hierarchical model):

N
1 1
(ui7w7X7n)(x1ax2,fB3,t) = ;h(r + 5)}-[(

ﬁr)(xl, x2,x3,t)Pr(azs —b),

N N NN
where (vm Upy X, ﬁT) is a solution of the above system (2.39)-(2.42).
2.1.2 N =0 approzimation

The governing system in N = 0 approximations has the form (see also [6], page 42), as it directly
follows from Subsection 2.1.1 for N = 0,
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0 0%hv; R
Xojoa+Xj=p 6t2]0’ j=1,3, (2.43)
0 9%h
Huoa + Hoo + H = pk at;%’ (2.44)
DaO,a + D = f607 (2-45)
0
BaO « + B = 0 (246)

ujo
szj,llfo

1 1 . )
Xijo = iEijklh<’UkO,l + Uzo,k> + iEf}kzh(Uko,z + ’Ulo,k)

+bijhibo + bishio + dijyhtbo + dfz hibo y + Pyigh X,

‘Hﬁwhioﬁ + @yighno + @3iih00 .4, 1,5 = 1,3, (2.47)
< Xo - 7o
X = — = —
0 h ) Mo h )

Hjo = §dkljh(vko,l + viok) + §dkljh(vko,z + Dio,k) + djhibo + d;hao
+ajihao + ohibo, §=1.3, (2.48)

1 ~ ng 1 . . * ] >k 0
Hoo=—5bigh (vio + vjo.) —Ehtbo — dihwbo— 5035k (D10, + Bj0s ) =€ hibo — dihfo,is (2.49)

1, . . ~ -~ —
5Pkt (Vko + Vo) + GivhXoy + @jyhijoy, §=1,3; (2.50)

1
Djo = ~pjrth(vrog + viok) + 5

2

1 1, . R
Bjo = §ijzh(vk0,l +vio,k) + quklh(vko,z + Do,k) + @jyhXon + EjyhN0 .y, §=1,3; (2.51)

1 ..
€ijo = §h<’0i0,j + UjO,i)v i,j=1,3, (2.52)

Substituting (2.47)-(2.51) into (2.43)-(2.46), respectively, we obtain the governing system of

equations with respect to v, 1o, Qo, 1o:

= (Eaz‘kzéhvko,d) o +§ (Eai«ylhvl0q> o +§ (Emmhvko,d) o +§ (Eai'ylhvlo,’y> o

2
+baihtho,a + (5aih) o 0 + bihtho,a + <b* -h) o o + (dai'yhdjo,'y) a
+ <d2mh¢0,v> st (pvaihiﬂﬁ> o (p'yonhXO,’y) o+ <Q’yaih7~70,7) o

* 3 0 82}11}
+ (q7aih7707’7> e +X@ =p atQZO 5

i=1,3, (2.53)

0 (+) (+) () (=) (=) (+)
Xi = X3 — Xai hya —X3i + Xai h o +Pi0 = Q(+)
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1 1 7. .. 1 :
5 (drsahv105) o +5 (dahvios ) +5 (disahinos) o +5 (dahino, ) o

+ (dah> o tho + (d’;h) o tho + (aatgh%ﬁ) .t (aj;éhzbo,a) o —biahvio.a

- . . e 0 0%h
~Ehapo — Biohiio — b + H = K10, (2.54)
1 1 17, .
3 (pakahvk:o,5> o +§ (pmlhvzo,y) o +§ (pak5hvk0,6) a
1/, . - 5 B 0
+§ <pafylhvl0,'y) s + <§a7hXO,7) ' + <aa'yh7]0,7) ' +D = fe(]v (255)
1 1 1/, .
) (C.Iozkﬁhvko,é) o +§ (quhUmq) o "‘5 (qakdhvk0,6> o
1/, . 5 - B 0
5 (@ahinng ) o+ (8ayh%o ) o+ (Ear il ) o +B = 0. (2.50)

Similarly, we may conctruct the governing system for the Nth approximation with respect
to Vi, Y, &, Ty 7 =0, N, i =1,3 (see [6], pp. 31-42 for details).

2.2 N =0 approxrimation for porous isotropic elastic prismatic shells

In the case under consideration, assuming the cgnstitutNive coefficients A\ := Eq192 = F1133 and
W= %(Euu — F1122) (the Lamé constants), &, b, and ¢ to be constants' from (2.53)-(2.56) we
get the following governing system (see also [6], pages 66, 67)

~ 0
| (hvao,8),a + (hvgo.a)a| + A(hvy ) g + 0(hibo) g + X = phiige, B=1,2; (2.57)
0
p(hv30,a),a + X3 = phizo; (2.58)
~ ~ 0 .
d(h?ﬁo’a),a — bhv'yoﬁ — ghwo + H = ph?,bo — ]'-0. (2.59)

BCs for the weighted displacements and the weighted volume fraction are non-classical in
the case of cusped prismatic shells. Namely, we are not always able to prescribe them at cusped
edges.

Let w be a domain bounded by a sufficiently smooth arc (9w \ 4°) lying in the half-plane
z3 > 0 and a segment 79 of the z; —axis (xo =0).

If the thickness looks like

2h(x1,x2) = hoxh, ho, k = const > 0, (2.60)

then we can prescribe the displacements and volume fraction at the cusped edge 7, if £ < 1,
while we cannot do it if k > 1.
Let us show it for the particular case of deformation when

Vo0 =0, a=1,2; vz Z0.

iClearly, F1122 = F1133 = A, E1111 = A + 2u. Other elastic coefficients are equal to zero.



Vol. 26, 2025 23

Then in the static case, taking into account (2.60), from (2.58), (2.59) we get
—-1,.1-k

T2V30,00 + kU302 = 2(pho) " Ty " X3, (2.61)
T20.00 + K02 — E0 Vb = —2(dho) \ak " (H + Fo), (2.62)

respectively.
Problem D (Dirichlet Problem: Find solutions

v30, Yo € C*(w) N C(@)
of (2.61), (2.62) by their values prescribed on dw)
and
Problem E (Keldysh Problem: Find bounded solutions
v30, %0 € C*(w) N C(w U (8w \1?))

of (2.61), (2.62) by their values prescribed only on the arc dw \ 7°)

are uniquely solvable for equations (2.61), (2.62) by x < 1 and k > 1, correspondingly. It follows
from

Theorem 2.1. (Jaiani, see [7], Section 3.9) If the coefficients aq, o = 1,2, and ¢ of the equation
5 Uqq +0a(T1, T2)Usq +c(1, 22)u =0, ¢ <0, Kkq = const >0, a=1,2,

are analytic in W, then
(i) if either Ky < 1, or ko > 1,

ko—1

ag(x1,z2) < 5 (2.63)
in wg for some § = const > 0, where
ws :=={(x1,22) Ew : 0 < x2 <6},

the Dirichlet problem (Problem D, u € C?*(w) N C(@)) is well-posed;
(i) if k2 > 1,
as(x1,x9) > xgrl (2.64)

in ws and aj(x1,x2) = O(z5'), o — 04 (O is the Landau symbol), the Keldysh problem
(Problem E, bounded u € C?*(w) N C(w\ ) is well-posed.

Indeed, from (2.63) and (2.64), it follows as(z1,x2) = k < 1 for Problem D and ag(z1,z2) =
k > 1 for Problem E, respectively, since k1 = k2 = 1, a1 = 0; in addition for (2.62) ¢ =
—&a oy < 0.
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2.3 Transversely isotropic solids

Let us now consider the transversely isotropic elastic piezoelectric material in the case when
the poling axis coincides with one of the material symmetry axes [22]. A material behavior is
said to be transversely isotropic if it is invariant with respect to an arbitrary rotation about a
given axis. This material behavior is of special importance in the modelling of fibre-reinforced
composite materials with a coordinate axis in the fibre direction and assumed isotropic in cross-
sections orthogonal to fibre direction [23] (in our case to poling axis as well, since in the case
under consideration they coincide). The transverse isotropic model is also suitable for biological
applications because it adequately describes the elastic properties of bundled fibers aligned in
one direction (see [24], [25]).

It is well-known [22] that the electric field that develops in piezoelectrics can be assumed
to be quasi-static because the velocity of the elastic waves is much smaller than the velocity
of electromagnetic waves. Therefore, the magnetic field due to the elastic waves is negligible
B =~ 0. This fact implies that

0B

- ~0.
ot

So one of Maxwell’s equations of electrodynamics becomes

0B
tE=—=~0
re ot

and, as it was already assumed,

E = —gradX.

Consequently, considering transversely isotropic piezoelectric continuum, it will be based on the
governing equations of elastodynamics in the care of small deformations and quasi-electrostatic
fields. Note that piezoelectric materials show in most cases a crystal structure with a symmetry
of hexagonal 6 mm class. In the case when the poling axis coincides with one of the material
symmetry axes these materials become transversely isotropic.

Restricting to the case of time-harmonic motion with frequency o, i.e., all the sought quan-
tities, s.c. free members of governing equations, and boundary data are represented as the
products of ¢ and of the same quantities (to avoid redundant indices and symbols we leave
the same notation) depending only on the space variables, from the governing equations of
dynamics (2.3), (2.5), (2.6), (2.7), (2.8) we get the following governing equations

Xijj+ potu; = —®;, i=1,3; (2.65)
Djj = fe; (2.66)
1 .
eij = 5uig +uji),  4,5=13

&

=—-X; 1=13;
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X1 e11
X929 €22
X33 €33
Xo3 2e93
X31 = C 2631 (267)
X12 2e12
D1 Eq
Do Es
D3 E3
where (see [22])
C =
Ei111 Ei122 Ei1133 0 0 0 0 0 P311
Ei122  Eii11 E1133 0 0 0 0 0 P311
E1133 FEi1133  FEssss 0 0 0 0 0 P333
0 0 0 Eg303 0 0 0 P113 0
0 0 0 0 Eg323 0 P113 0 0 (2.68)
0 0 0 0 0 %(Ellll — E1122) 0 0 0
0 0 0 0 p113 0 —<11 0 0
0 0 0 P113 0 0 0 —<S11 0
P311 P311 P333 0 0 0 0 0 —633
From (2.67), (2.68) we have
X11 = Ennenn + Eriooez + Eri3zess — p311 ks,
Xoo = Eq122e11 + Er11e22 + Er133es33 — p311 L3,
X33 = Eq133e11 + Er133€22 + E3333€33 — p333 i3,
Xog = 2FEa303e03 — p113k2, X31 = 2F2303e31 — pr13kn,
Xi2 = (B — Erig2)ers,
Dy = 2p113e13 + 11 b1, Do = 2p113es3 + <11 Eo,
D3 = p311e11 + p311e22 + p333ess + <33k3,
ie.,
X11 = Fiinu + Erooug 2 + Erizsuz 3 — psi1 Bs,
Xoo = Fii22u11 + Erinug2 + Erizsuz 3 — psi1 Bs,
X33 = Er133u1,1 + Er133ug2 + E3333u3,3 — p333 ks,
Xog = Ea3p3(ug3 + uz2) — prisFe, Xs1 = Eazes(uzy + ui3) — priski, (2.69)
1
X2 = §(E1111 — Er22)(u12 +u21),
Dy =pus(usi +ui3) +s11E1, D2 = pns(uzz +us2) +si1Es,
D3 = p311u1,1 + p31iug2 + p333us3 + <33L3.
Conditions of Anti-plane Piezoelectric State [22] have the form
up =0, up=0, wug#0;
X13 5—/; 07 X23 §é 07 Xaﬁ = 07 awB = 1727 X33 = 07
e1sZ0, e #0; ep=0, a,8=1,2; e33=0; (2.70)

Er#0, B0, E3=0;
D1§é0, Dg?—éO, DgEO

MY
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Taking into account (2.70), from the first three relations of (2.69) we have
uz3 =0, ug=ug(21,r2);
the fourth and fifth relations of (2.69) give

Xo3 = Ea3o3u3 2 — p113Es,
X31 = Eago3uz 1 — p113Fa,

respectively;
the sixth of (2.69) is identically fulfilled;
the seventh and eighth relations of (2.69) give

D1 = pr1zus; + s En,
Dy = pr13uz 2 + s11E>.

respectively;
the ninth of (2.69) is identically fulfilled.
From the first two of (2.65) it follows that

P,=0, a=1,2,
the third of (2.65) will have the form
X311+ Xsz2 + po’ug = —®3;

while (2.66) will have the form
Di1+ Doy = fe.

Substituting (2.71) and (2.72) into (2.76) and (2.73) and (2.74) into (2.77) we get

(E2sa3us)n +(Easasus,2),2 —(p113E1) 1 —(p113E2) 2 +po’us = — 3,

and
(p113us.1),1 +(P113us2),2 +(s11E1)1 +(s11E2),2 = fe,

respectively.
Taking into account
E,=-X,n, a=1,2.

We obtain the following governing equations in the anti-plane piezoelectric state

(E2s23u31) 1 + (E2s23usa) o + (p113X.1) 1 + (p113X 2) 2 + po*uz = — @3,
(pr1sus 1)1 + (prigus2) 2 — (s11X1) 1 — (s11X2) 2 = fe,

i.e.,

(E2323u3.0).0 + (p113X.0) o + poiusz = —®3,
(P113U3,a) 0 — (S11X,0),a = fe-

(2.75)

(2.76)

(2.77)
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Let the plane domain of interest have the form given in subsection 2.2 and let
Eos93 = Egxl', Ep = const >0, k; = const > 0;
p113 = poxy?, po = const >0, kg = const > 0;

S11 =%y, o = const >0, k3= const >0,

then (2.78) and (2.79) take the forms

Eo(25 uz a) .0 +po(25 X 0) 0 + potus = —@s, (2.80)

and
po(xgzu&a),a - §0($§3X,a),a = fea (2.81)

respectively.
Case 1. k; =k = const > 0,1 =1, 3.
After some actions, from (2.80) and (2.81) we get

(s0Eo + p§) (25u3.0) o + opous = —o®3 + po fe, (2.82)

and
(P§ + $0E0) (¥5X 0) o + popo’us = —po®s — Ep fe. (2.83)

(2.82) and (2.83) we rewrite as

T2U3 o + KU32 + S0(s0Eo + pg)_lx%_“po%g)

= (s0Bo + pg) "y " (—<0®s + pofe) (2.84)
and

22X a0 + KX 2 + po(soEo + pg) x5 " po’us

= (s0Bo +pp) ' ay " (—po®3 — Eofe), (2.85)
respectively.

In the static case o = 0 and from (2.84), (2.85) we obtain separate equations
ToU3 a0 + Kuz2 = (s0Fo + pg) toy "(—s0®3 + pofe) (2.86)
22X a0 + KX 2 = (0Eo + pg) x5 " (—po®s — Eofe), (2.87)
with respect to us and X, correspondingly.

Theorem 2.2. The values of ug and X should be prescribed on the entire boundary (Problem D)
for k < 1, while on the part of the boundary, where xo = 0, should be freed at all of boundary
conditions (Problem E) for k > 1. Both problems are uniquely solvable in the classical sense.

Proof. Indeed, for k < 1 and k > 1, correspondingly, (2.63) and (2.64) are fulfilled, which proves
the theorem. O

Remark 2.3. If & is a stripe {—0c0 < 21 < 400, 0 < 29 < L = const} and all the quantities
depend only on x5 (it means that we consider cylindrical strain) then in the static case (o = 0)
from (2.82) and (2.83) we obtain

(25u32),2 = (0Fo + p3) ' (—s0®3 + pofe)
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and
(:CSX:Q)’Q = (§0E0 +])(2))_1(*]30(1)3 - EOfe)y

respectively. Their general solutions have the forms

x2 13
uz(x2) = (soEo +p3)‘1/L f_:/L [—s0®3(t) + pofe(t)]dt + ¢

! (1—r)"Nay ™ —L'7%) for w#1,
'Y Inzg—InL for k=1

and

xo I3
X(x2) = (<0Eo +p3)—1/L :l_:/L [—po®3(t) — Eofe(t)|dt + 2

L (1—r)"Nay ™ = L'7%) for w#1,
) Inas —InL for x=1.

In the case under consideration BCs look like
u3(0) = ¢}, X(0) = ¢3; wuz(L) = ck, X(L) = ¢ (Problem D);
ug(w2) = O(1), X(22) = O(1), w2 — 0+; wus(L) = c},, X(L) = ¢} (Problem E).

From these BCs we easily calculate constants

¢z, a,8=1,2, for k <1 (Problem D)
and
¢y, a=1,2, for k > 1 (Problem E),

in the last case ¢f =0, a = 1,2, (otherwise solutions will be unbounded) and some restrictions
on ®3(x3), fe(xa) are required as well.

Case 2. ko = kK3 = kK = const > 0.
After some actions, from (2.80) and (2.81) we get
(Pgry + 0 Eors uga) 0 + opo*us = —o@3 + pofe, (2.88)
CO(mgx,a),a = pO('fcguS,oc),a - fe‘ (289)
So, for kK1 = 0 and any k > 0, equation (2.88) is not a degenerate one, while equation (2.89)

is a degenerate one. If 0o = 0, i.e., we deal with the static case and from (2.88), (2.89) we arrive
at the system

(P35 + 0Bo)uz,a).a = —0P3 + pofe, (2.90)

go('rgx,a),a = pO(xgu?),a)’a _fe- (291)

As (2.90) is not a degenerate equation, the values of uz should be prescribed on the entire
boundary (Problem D), while, according to Theorem 2.1, the values of X should be prescribed

on the entire boundary (Problem D) for 0 < x < 1 and the part where x5 = 0 should be freed
of BCs (Problem E) for x > 1. It will be clear if we rewrite (2.91) in the following form

29X 00 +HX,2 = 65 [Po(T5U3.0) 0 — fe) Ty "

Indeed, for k < 1 and k > 1, correspondingly, (2.63) and (2.64) are realized. So we have proved
the following
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Theorem 2.4. Problem D for equation (2.90) for all k > 0 is uniquely solvable in the classical
sense. Problem D for 0 < k < 1 and Problem E for k > 1 for equation (2.91) are uniquele
solvable in the classical sense. In other words Problem D for system (2.90), (2.91) has a unique
classical solution, while Problem E has a unique classical solution for k > 1.

Remark 2.5. Similarly to Case 1 we solve BVPs in the explicit form in the case of cylindrical
strain.

2.4 Conclusions

1. Differential hierarchical models for piezoelectric nonhomogeneous viscoelastic Kelvin-Voigt
prismatic shells with voids are constructed. The ways of investigation of boundary value prob-
lems and initial boundary value problems, including the case of cusped prismatic shells are
indicated and some preliminary results are presented.

2. It is shown that in the case of hierarchical models of cusped prismatic shells, depending on
the character of vanishing of the thickness at the lateral boundary of the prismatic shell, for well-
posedness of the boundary value and initial boundary value problems the setting of boundary
conditions is nonclassical, in general. Namely, in the case of nonclassical setting of boundary
conditions they should be either weighted ones or the cusped edge should be freed from boundary
conditions. In other words, at cusped edges: in the case of piezoelectric viscoelastic materials
the displacements, volume fraction, and electric potential cannot always be prescribed.

3. If either elastic, piezoelectric, and dielectric constitutive coefficients are independent of the
space points while the thickness of the prismatic shell vanishes in some way at some part of
the boundary of the prismatic shell or the thickness of the prismatic shell is constant while the
elastic, piezoelectric, and dielectric constitutive coefficients vanish in the same way at the same
part of the boundary of the prismatic shell, then peculiarities of setting the boundary conditions
for the displacement in the first case and those arising for the volume fraction function and the
electric potential in the second case coincide. The stress-strain states coincide as well.

4. Antiplane deformation of piezoelectric nonhomogeneous transversely isotropic materials in
the three-dimensional formulation and in N = 0 approximation is analysed. Some boundary
value problems are solved in explicit forms in concrete cases.

3 Hierarchical models for the thermoelastic deformation of chiral porous
prismatic shells

Applying I. Vekua’s dimension reduction method, the present paper is devoted to construction
of hierarchical models for thermoelastic deformation of chiral porous prismatic shells. Special
attention is paid to the case, when the prismatic shell considered as a 3D body occupies a
spatial angular domain and to the study of consequent mathematical and physical peculiarities,
since by dimension reduction the geometrical 3D singularity will be transferred to the BVPs for
governing singular partial differential equations and exclusiveness of well-posedeness of BVPs
will be needed to be investigated. For field equations we use the strain gradient theory (see [9],
chapter 14). Note that, in contrast to the case of chiral materials, the thermal field in chiral
cylinders produces torsional effects.
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The field equations of 3D model
i) geometric (kinematic) equations

1
eij = 5 (uig +uji), gn = ks (3.1)
ii) constitutive equations (relations)
Xij = )\emézj + 2pe;; + d(p(sij + f(gikm%jkm + gjkm%ikm) — bT&Z‘j (3.2)
1
Hijk = ial(%nm'djk + 2unj0ik + 250 0i5) + 02 (Hinndjk + Hjnndik)
+203260m1055 + 510501 + Bo(Sinp,j + 0jkp,i) + 2045t
+as (g + 2kij) + f(Eiknein + Ejknein);
H; = B1560mi + 2625nn + QoPi, 9= denn + &p — BT;

iii) equilibrium (motion) equations

Xjij = Higikj + Pi = 0(%) Hij+g+1=0(k¢), i=13, (3.3)
where e;; is the strain tensor and sy is the strain gradient tensor, ®; are the volume force
vector components, X;; is the stress tensor, p;; is the dipolar stress tensor, ¢ is the change of
the volume fraction function from the matrix reference volume fraction, k is the equilibrated
inertia, H; are the equilibrated stress vector components g, and [ are the intrinsic and extrinsic
equilibrated volume forces, T' is temperature change, d;;, is the Kroneker delta &;;;, is the Levy-
Civita symbol, A\, i and b are constitutive constants of the classical theory of thermoelasticity;
a;, © = 1,5 and fB;, j = 1,2, are constitutive constants associated with the gradient terms,
d, g, & and § are the constitutive constants linked to porosity and f is the constant associated
with chiral behavior

On the lateral boundary X, either the fractions or displacements are given:

Xni(z1, 22, 23)|x, = Fi(z1, 22, 23), (3.4)

wi(z1, 22, 23)|n, = pi(z1, 22, 3). (3.5)

This boundary conditions on X7, can be replaced by ripermissible mixed triples of components
of X,, and 4.
(:t) . . .
On the face surfaces > either stress or displacement vectors are prescribed:

L (£) (£)

Xn(xlaan h ($17$2)) - Xn(.%'l,xQ), (36)
. (+) (£)

Ui (r1, 72, h (v1,72)) = u (21,22), (21,72) €W, (3.7)

n being the unit vector of external normal to 02 and F' = X, the surface density of the surface
forces applied at the point x € 09 considered (more precisly exerted on a surface element

passing through x normal to n).
+ (£)
Herewith on ), we replace, correspondingly values of @;(z1,z2, h (x1,22)) in the case (3.6)

)
and X, (z1,22, h (x1,22)) in the case (3.7) by the values of the Fourier-Legendre expansions
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. ) (+)
of u;(z1,x2,23)) and X, (x1,x9,x3) for z3 € [ h (x1,22), h (x1,x2), on upper and lower face

(&)
surfaces X

(+) (=)
3= h (xlva)v and r3= h (ﬂfl,.’EQ)], (38)

respectively.

3.1 2D problem

Now, we reformulate BVP (3.1)-(3.4), (3.6) in terms of the mathematical moments:

1
(uira Xijr = Tijrs Cigrs Xijkry Hijkrs 9rs Prs Ty, Vi, d)ir = Xir, by, Xoir, Hzr) = (T + 5)&
(+)
Z (21,22)
X / (ui, Xij = Tij, €5, High, Mijk» 9, 0, Ty viy 03 = Xy, 1, X, Hy) Pr(ax3 — b)das, (3.9)

<E)(CL‘1,CL‘2)
1 %(1‘1,1’2)
= ————— b = =
h(l’l,.’IJQ)’ (x17x2) h(l’l,.fQ)’

i7j7k:1737 T:071727'” 7N)"'

Under the well-known restrictions (see e.g. [1]) the following Fourier-Legendre series
(ui, Xij = Tij, €45, Hijhs Mijks 95 05 T viy 05 = Xiy 1, Xni, Hi) (w1, w2, 23, 1)

oo
1
=> afr+ 5) (wir, Xijr = Tijr, €ij, gk Bijkr, (3.10)
r=0
Vir, ¢ir = Xi’/‘7 l?“7 XTLZ"I‘) Hzr) (xla x2, t)Pr(axB - b)

are convergent. The Nth, N = 0,1,2,--- approximation of hierarchical models means that in
equations (relations) all the moments of the order greater than N equal zero and we get 4N + 4

governing (basic) equations (relations) with respect to 4N + 4 unknown moments ijm gr of the
order r < N. Hence, in the formulas derived below in the infinite sums the limit “oc” should
be replaced by “N”.

In the Nth approximation, e.g.,

N
1\ v N . 5
(o, u;)(z1, 2, 23,1) = g a (s + 2) (ps, Uis)(x1, 2, t)Ps(axs — b), i =1,3. (3.11)
s=0

In particular, in the N = 0 (zeroth) approximation

1 0 0 1.0 ¢
(o, ui)(x1, x2, 3,1) = m(@o,uio)(xl,xz,t) =: §(¢0,Uio)(a?1,w2,t), (3.12)
N T
Wy = (3.13)

T hr+l



32 Lecture Notes of TICMI

and in the N =1 i.e. first approximation

(¢, ui(wy, 2, 23,1))

1 1l 3 11 -
= (a2 i 1 &2, PY YR y U ,X2,1 —h
2h(z1, z2) (o, uio) (21, 2, 1)) + 2h2(x1,x2) (o1, ui1) (21, 22, 1) (23 )
1,11 3 .1
=: 5(77[}0, UiO)(l'17$2,t> + §($3 — h)(?,bl,'l)io)(l‘l,ﬂjg,t), (314)

To this end we multiply (3.1)-(3.4), (3.6) by P,(ax3z —b) and then integrate the obtained
)

—

with respect to the thickness variable x3 within the limits ﬁ (x1,22) and h (z1,22). In this
way:
From (3.1); we get (see [6] formula (3.8) and also (3.25) below)

[e.9]

1 1 r r ..
Ejir = i(uir,j + Ujr,i) + 5 Z(bjsuis + bisujs)a ,j=13, r=0,1,---, (315)
where
};as = *aa& 8757“, a=12,sr=0,1,2,.--; (316)
(+) (=)
r hoa—(=1)5h 4
a:=(2s+1) 57 , S#T, (3.17)
r h r* h
— é“, b, = (2r + 1) A“; (3.18)
bar 1=y — g, = —(r + )= (3.19)
r 1—(=1)5t" r
ass == —(2s + 1)* = as, =0, (3.20)
2h
b3s i= —0gs = bgr = 0, (3.21)

i.e. {see [6], deduction of Formula (3.9)} from (3.15) it follows

1 1 & r r
€jir = ihr—u (Ujr,i + Uir,j) + 2 Z hstl (bjsvis + bisvjs) ) (322)
s=r+1
i,j=1,3,r=0,1,...,
e r
Or = ejr = hH_lfUz’r,i + Z hs+1bisvisa (323)
s=r+1
where
vip = h "y, i =1,3, 7r=0,1,... (3.24)

(=) (+)

which are derived, when f and ]; are not known (prescribed) on the face surfaces, ¥, and
(=)
Sp-

The formulas (10.11) and (10.12) of [6], i.e. (2.90) and (2.91) of [7] which are derived, when

(+) =) (+) (-)
f and f are not known (prescribed) on the face surfaces ¥, and ¥,. we may rewrite in the
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unified form as follows

(+)
h (x1,22)

fiPr(axs —b)dzs = fr; + ijsfs (3.25)

s=r
(=)
h (r1,22)

© O (+) -)
If f and f are known (prescribed) on the face surfaces ¥, and ¥, the formulas (10.14),

(10.13) of [6] and (2.92), (2.93) of [7]) we may rewrite in the unified form as follows

(+)
h (z1,22)

" (H)(+ (=) (=
fiPrlazs — b)dzs = frj+ Y Gasfs+ f nj\/+ f n]\/ (3.26)

s=0

(+) EN @) ) \2 /@) \2
n's={,/ s =R\ I+ ha) +( h2)- (3.27)

Similarly, using twice (3.25), From (3.1)2 we get

;zr (w1,22) 0o
T T
Hijhr 1= 1 Pr(axs — bldws) = uprj + Z <bisuks,j + bjsuks,i>
S=Tr
(h)(whxz)
+ Z bzs JUks + b]s Z bis' Uks' ] ) iaja k= m (328)
s'=s
Taking into account (3.24), from (3.28) we get
+1
Hjikr = Hijkr = hT'U k’r s8] + |:bzs Uk:s 5] +bjs(hs+lvks)ai]
© '
+ 3 bish* g + Z e S bk ] . (3.29)
S=r s'=s

Proof of (3.28) Clearly, using (3.25) more precisely, substituting there f by ug ;, from
Hijk = Uk,ij

we have
(+) (+)
h (z1,x2) h (z1x2)

Hijkr = %Z‘jkPr(aiL‘g - b|d$3) = ukyijPr(axg - b)d.’L’g

(=) (=)
h (z1,22) h (z122)
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(+)
h (z122)

= / (ury),j Pr(azs — b)drs = (ug;)rj + ijs(uk,i)s-

s=r
(=)
h (z122)

Clearly, applying (3.10) for u;and bearing in mind P,(ax3 —b)

) z3= h (z122)
we obtain

[e.e] o)

(il)c,l = Z <S + ;) (uk,i)s(il)s = Z W(Uk,i)s.

s=0 s=0
The last formula had been taken into account by us while deriving (3.30).
Now, using once more (3.25), replacing there f by wuy, we get

(+)
h (z1,x2)

o '
(Whyi)r = / up,i Pr(axs — b)dxz, = upy; + Z bisUks,

S=T

clearly, here we have used

(+) () > (£1)%(2s + 1
up = ug(z1,z2, h (T1,22)) = Z ()éh)

1/%5 .

s=0

Hence, if we substitute (3.31) into (3.30), we obtain

o0 (0.) oo
' T T S
Hijkr = Ukr,ij + Z(bis,juks + b, Uks,j) + Z[bjs (Uks,i + Z b, Uk,s')]-

s=r S=T s'=s

(3.30)

) = Ps(+1) = (£1)°,

(3.31)

(3.32)

From (3.32) it follows (3.28), when we have in the sum with the summation index s the limit
to replace by s, in practical use we consider useful summation index s to replace by s’ it was

easy for us in order to avoid confusing tremendous variety of letters as indices.
Further, from (3.2) we get [see (3.22)]

inr = )\ennr(sij + 2,Ueijr + dﬁpr(sij + f(gikm%jkmr + 5jkm%ikmr) - bTr(sijy
iaj:m7 T:O>1>27"'7

1 .
Mjikr = ial(%nm%&jk + %nnjréik + 2%knm“5ij) + a2(%innr5jk + %jnnr(sik)u

Ywhere
Eikm Hjkmr = E1235¢j03 + E1325¢532 + E2132¢513 + E2312¢531 + E3122¢512 + E321¢521

= xjo3 — j32 — Xj13 + X531 + 12 — ¥jo21,

Ejkm Hikmr = E1235503 — 1326332 — E21326313 + E2315¢i31 + E3129¢012 — E32156521

= 23 — »i32 + 531 — Xi13 + Hi12 — Hj21.

(3.33)
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Oik (%«,j +) gjs‘Ps)

oo
T
+203 5k 0 + B10i5(Prk + D bhsps) + B2

S=T S=T
D
I
+01 (@m‘ + Z bis¢s> + 20051y + o5 (2kjir + Hhijr)
S=7
+f(5ikn€jm" + gjkneim")a iy, k= ﬁ) r=0,1,2,---, (334)
o0
T . N
H;. = B13nnir + 2092 mnr + o (gpm- + Z bis§033> ,t1=13r=0,1,2,---, (3.35)
s=r
gr = depnr +&or — BT, 7=0,1,2,---. (3.36)
From (3.3) we have [see (3.28) and (3.29)]
, (2)(11712)
T r O%u;r
Xoira + Z s Xjis + Xi — / ki ki Pr(axs — b)dzs =0 (P 72 ) ; (3.37)
5=0 _
<h)(50175'?2)
Z‘:m7 7":0,1,2,"' ’
r (+) ) R
Xi=Xg +(ED)"X,) / [see (3.27)], i=1,3, r=0,1,2,---, (3.38)
n g n
o0
I8 .
Horo + > bjsHjs+gr + 1 =0 (k&y), 7=0,1,2,--. (3.39)
s=r
From (3.4) we obtain
Xﬂi”"aw: ir Z:ma T:07172'” ) (340)
Nnow, we prove
(2)(11@2)
T
(Bkjiskj)r i= / Prji ki Pr(ars — b)drs = (prji)r ks + M, (3.41)
<E)(I175L‘2)
i:m7 T:071727'” )
where
IS > T T s T e T
Mi =Y [(be) i (iji)s + brs(ttii)sgl + > bjsl(tagi) s + D brsr (i) o], (3.42)
s=r s=r s'=r

i=1,3, r=0,1,2,-- .
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Indeed, using (3.25), for f = ;i k.

(Z)(Ihrz)
(Hkji g )r = / Pk ki Pr(axs — b)dxs
<E)(CC1,CE2)
& (@1,22) N
- / (Hjik) s Pr(azs = 0)des = (uijip)rg + ) bis(Hkji)s,
s=r
(h)(ml,mg)

i:m7 7":0,1727"‘,

provided on face surfaces jij; 1, are not prescribed and we apply (see (3.10))

(£) > 1
Hjip =) a (8 + 2) (Kkjig)s(£1)%, 0,5 =1,3,
s=0

similarly, we obtain for f = py;;

(+)
h (z1,22)

(Nlcji,k)r = (Mkj@k)Pr(a(L’g . b)dazg
(}_L)(xl,xQ)

(+)
h (z1,22)

= / (prji)sk Pr(axs — b)dxs = (pji)rp + Z bies (ki) s

S=r
7:7.].:17737 T:O7172a"' )
provided on face surfaces f = py;;, are not prescribed and we apply
(£) > 1
P =30 (55 ) 0
Ss=

If we substitute (3.44) into (3.43) we get

(Bkgiki)r = (Phji)rj + i [(gks) i (Bgi)s + gks(ukﬁ)&j}

s=r

el X s I
+ijs [(Mkji)s,k + Z bks’(,ukji)s’] =13, r= O, 17 27 .
s=r

s'=s

So we have proved (3.41). Q.E.D

(3.43)

(3.44)

(3.45)
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Substituting (3.41) into (3.37), we derive

. : - 02u;
Xair,oz + Z ajszis + X — (Mvai)r{ya —M; = 0 <P W) ; (346)
j=0
P=T3 r =012

Substituting (3.22), (3.23) and (3.29) into (3.33)-(3.35), (3.36) and then the obtained into
(3.46). (3.39) we arrive at the infinite governing system from which we easily derive the gov-
erning systems of hierarchical models as it was explained at the beginning of Section 3.

For the sake of transparency we restict ourselve to the zeroth approximation in the next
section.

3.2 The zeroth (N=0) aproximation
Since the moments are independent x3, their derivatives with respect to z3 are equal to zero

0
and, consequently, in the zeroth approximation N = 0,r =0, s =0,s =0, > .(---) =0 "
1

0 0
bearing in mind (3.21), (3.12), i.e., b3o = 0, bao = —hTC“ from (3.15), and (3.28), we obtain
0 1 /0 0 1 0 0
€apo = 3 <ua0,ﬁ + uﬁO,a) ~ o7 (haa Uug,o0 + hvﬂ uaO)
2 2h
1 0 0
:§h@wﬁ+WnQ, 0, f=1,2: (3.47)
0 1 /0 h,30 1 0
€350 = 5 <U3o,ﬁ - hﬁuo@) = §hU30,ﬁ, =12

1 /0 R 0 1 o0
€a30 = = <U30,a - aUﬁo) hv3g o, o =1,2;

2 h 2
0
es30 =0
and
hs ha <ha> hg(ha>
HaBk0 = Uk0,08 — ——UkO,a — ——Uk0,8 — | = |uro + —— | =— | uxo, (3.48)
h h h 8 h h

a,f=1,2; k=1,3;
hao _
23350 = 0, »a3k0 = <_h> upo =0, 23800 =0, o, =1,2, k =1,3. (3.49)
3

)

In the zero approximation see (3.11) and (3.12) from (3.33) we derive

0
Xjio = Aennodij + 2pejio + dpodi; + f(Eikm#ikmo + Ejkm*ikmo)
b8y ij = 1.3. (3.50)

Higince in the zeroth approximation in (3.15) and (3.12)

)

<. 0 0 1
SZ:; = bjotio + biotjo and (p,w) =Y () = az (%o, wio),

s=0

o0
respectively, and subsums > (---) = 0 there and in what follows, in the zeroth approximation
s=1
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From (3.47) and (3.49) in terms of vgg[see (3.24)] it follows:

0 1 0 1
€aB0 = 571 (V80,0 + Va0,3) s €380 = ﬁhvﬁo,av
0 1 0
€330 = ﬁhviﬂ],ﬁv 047,8 = 17 27 €330 = 07 (351)
hq h h o h gh o
apko = (hvro),ap — T(hvko),ﬁ - Tﬂ(hka),a — <h> hvgo + %vko
7B

h.oh hao
= (h,avko + hvk(),a)ﬁ — = 5 0 Vko — h,avkoﬂ — (’) hvro + hwg
B

h
= h agVk0 + haVko,g + h VK00 + RaVko,as — h.a0K0,0 —

ha) hohs (ha
(. hvko:[hﬂﬁ_,,_< 3
(h 5 h h) g

) )

a,f=1,2 k=1,3

Vo + hUk0,a,3, (3.52)

[see also (3.22), (3.23), and (3.29) for r =0 |.
From (3.34), (3.35), (3.36), (3.46), (3.39) for r = 0, bearing in mind (3.49), (3.23), (3.18)-
(3.21), we obtain

1
Hjiko = §a1(%nmo5jk + nnjodik + 22knn0d;i) (3.53)
0
+a2(%inn00jk + #jnn0dik) + 20:30nk005i + 1045 [(hﬂﬁo)’k +bkoh¢s]
0 0
92 [ ((ha00)5 —bjohato ) + 3 ((hato)i —biohaio )|

+20045¢5510 + s (2n5i0 + Hkijo) + f (giknejnﬂ + 5jkn6m0), i3,k =1,3;

Hio = B152y~i0 + 282 im0 + [(hwo),i +2i0h¢0} , 1=1,3, (3.54)
9o = dhvsgy + Ehpo — BT, (3.55)
Xaio,a — (Hvyji)oqs + Xi— Mi=0 (pazg”), i=1,3, (3.56)
Hao — "V Hog 4 g0+ 1o =0 (ko). (3.57)

h

Substituting (3.50), (3.53)-(3.55) into (3.56), (3.57) we arrive at the governing system of the
N = 0 approximation which we investigate for the case

h(z1,x2) = hoxh, ho = const >0 k = const >0,
applying the approach developed in [6], we prove the following expected result:
in the case of the cusped (i.e. k > 0) prismatic shell the cusped edge i.e., where the thickness

vanishes (2h(z1,0) = 0) the edge may be fixed only if

O0<k<l,
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in other words, the Dirichlet type problem, when desired displacement may be prescribed on
the entire lateral boundary of the prismatic shell under consideration, is well-posed, while when

k>1

it is not the case, the cusped edge cannot be fixed and boundary condition should be replaced
by the demand of boundedness of the displacement near the cusped edge, in other words, the
Keldysh type boundary value problem is well-posed. Note that the vertical displacement is
not affected by chirality, since in (3.16) sa3k0 = 0, 23800 = v (see (3.15)) and, therefore,
I+ (Eskm#3kmo + E3km3kmo) = 0, but it is not the case in other approximations.

3.8 Conclusion

Applying I. Vekua’s dimension reduction method, hierarchical models (approximations) for
thermoelastic chiral porous prismatic shells have been constructed. In the N = 0 approximation,
using the approach developed in [6] we have proved for the case

h(z1,z2) = hoxs, ho = const >0 k= const > 0,

the following expected result: in the case of the cusped (i.e. k > 0) prismatic shell the cusped
edge i.e., where the thickness vanishes (2h(z1,0) = 0) the edge may be fixed only if

O0<kr<l,

in other words the Dirichlet type problem, when desired displacement may be prescribed on the
entire lateral boundary of the prismatic shell under consideration, is well-posed, while when

k>1

it is not the case, the cusped edge cannot be fixed and boundary condition should be replaced
by the demand of boundedness of the displacement near the cusped edge (or should be posed a
weighted boundary condition).
In the Nth approximation as it follows from the note at the end of the preface of Section 2,
bearing in mind that
p2r+l h0x§(2r+1)

in the case under consideration the Dirichlet problem is well-posed when

k(2r+1)<1, r=0,N, ie. RSZN—i—l’

while the Keldysh problem is well-posed when
k2r+1)>1, r=0,N, ie. k>1.

As N — 400, i.e. for the infinite system, i.e. 3D problem we get k = 0.
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4 The hierarchical models for fluids

Let us recall the governing equations of the Newtonian viscous fluid (see e.g., [26], Ch. 2
Conservation of mass and Momentum, Ch. 6 Viscosity and the Navier-Stokes equations and
[27] Ch 1, §1 Classical fluids and Navier-Stokes system):

As it is well known, motion of the Newtonian fluid is characterized by the following equations

dvi(z1, x2, z3,1)

a :UjiVj(fL'l,{L'Q,xg,t)+‘I)i($1,x2,x3,t), 1=1,3, (4.1)
0ji = —5jz‘p + )\(5]@'9(1}) + 2/16]‘2'(1)), i,j = m, (4.2)
1 .o
eji(v) = §<Uj7i + vz‘,j), 1,7 = 1,3, (4.3)
0 .= €5 = Vg k. =: diVU, (4.4)
2
A=y — =
H 3:“

where v := (v1,v2,v3) is a strain velocity vector, o;; is a stress tensor, €;;(v) is a velocity (rate)
tensor, p is a pressure, ®;, 1 = 1,3, are components of the volume force, // and p are the second
viscosity and the viscosity respectively, p is a density of the fluid. Throughout the paper we
use, on the one hand Einstein’s summation convention on repeated indices, bar under one of
the repeated indices means that we do not sum. Latin indices run values 1,2,3, while Greek
indices run values 1,2 and on the other hand, the simplified notation for the partial derivative

e.g.,

do i .
61']' == Uji,j'

As well-known an incompressible fluid is defined as the fluid whose volume or density doesn’t
change with pressure (see e.g. [25], p. 6 and p. 17). In reality, rigorous incompressible fluid
doesn’t exist.

In the case of incompressible barotropic fluids, to the system (4.1)-(4.3) we add the equation

dive = 0, (4.5)

which expresses the fact that the velocity of change of cubical dilatation of each parcel of moving
fluid is unchangeable (constant) during moving.
In general, for compressible fluids the continuity equation has the form

d .
d—': + pdive = 0% (4.6)
[this last equation can also be written as
0
(,7;) + div(pv) = 0]
clearly, for p = const from (4.6) we get again (4.5), and the state equation
x(p,p) =0, (4.7)

MWhen p = p(z1,x2) then (4.6) has the form

0
67;) + Py Uy + p(21, 22) U8k =0
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where x is a certain function defining the state equation.

In the prismatic and standard shell-like, bar-like, and canal- like domains two type of hier-

archical models are constructed (for details see [10]):

(i) when on the face surfaces of the fluids container stresses are prescribed;

(ii) when on the face surfaces velocities are prescribed.

4.1 Mathematical moments

Here we follow Section 10 of [6] ¥

Let f(x1, 72, 23) be a given function on Q having integrable partial derivatives, let f,. denote

its r-th order moment, defined as follows

(;Zr)(1'17332)
fr(z1,29) == / f(x1, x2,23)Pr(az3 — b)dxs,
(E)($17332)

where (see also Subsection 2.1 of [10] and Section 2.3 of [7])

1 h(x1, 22)
= b
(1(1’1,1’2) h($1,$2)7 (1'1,$2) h(.ﬁU )
(+) (—)
2h(w1,02) = h (21, ¥2) — h (21, ¥2) >0,
~ +) (=)
2]1(1‘1,1}2) = h (:L'l, :L‘Q) + h (:L'l, 132) > 0,
and
1 d(r?—1)
2rel drr
are the r-th order Legendre polynomials with the orthogonality property

Po(r) = r=0,1,-

Y

+1 )
/Pm(T)Pn(T)dT Cy——
2
From here, substituting
(+) (=)
2 h (x1, 22) + h (71, T2)
T=ar3—b= T3 —
(+) (=) (+) (=)
h (z1, x2) — h (21, x2) h (z1, x2) — h (21, T2)
we have
+)
) h (z1,x2)
(m + i)a / Py (axs — b)P,(ax3 — b)dxs = Opmpn.
<h)(a:1,w2)

Ywhere 1. Vekua’s dimension reduction method is reformulated and presented in the unified form, that for-
mulas for arbitrary functions independent of physical meaning, allow to construct easily for any physical model
containing the thickness (or something like that) the Vekua-Babushka and Schwab type [20]. Hierarchical models
which are suitable for use of the (p-version of the finite the element method as it is indicated in Douge at. al.

(19]
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Using the well-known formulas of integration by parts (with respect to z3) and differentiation
with respect to a parameter of integrals depending on parameters (z,), taking into account
P.(1)=1, P.(—-1) = (-1)", we deduce

X1, T2

PT(ax3_b)faad$3:fr,a f h .« +( 1) f h o
(=)

h (z1,22)
@2
- / Pi(azs —b)(a,a w3 — by ) fdos, a=1,2, (4.9)
G @)
(Z)(wl’zﬂ (Z)(.'ELZ‘Q)

=)
/ P.(ax3 —b)f,3drs = —a / P/(ax3 — b) fdxs + f (=D)" f, (4.10)

) (=)
h (x1,22) h (x1,22)

where superscript prime means differentiation with respect to the argument axs — b, subscripts

preceded by a comma mean partial derivatives with respect to the corresponding variables,
(£) (+)

f = flz1,22, h (x1,22)]. Applying the following relations from the theory of the Legendre
polynomials (see [1] p. 197, [3] p. 27, [2] pp. 22, 23 and [18], p. 299 or p. 338, 339 of the second

edition)

- 1—(—1)rts .

Pl(r) =) (2s+ 1)¥PS(7)VI, (4.11)
s=0 2
r—1

1 —1)rts -

TP/(7) = rP.(1) + P._{(17) = rP.(1) + 2(23 + 1)+(2)P5(7)V“ (4.12)

s=0
. . (4276 hva Qs 7 7 LR :
and, in view of i (Ina),, = — Pt b= ha,,, bo=(ha),, it is easily seen that

Plazs — b) (a3 — by ) Vi = 2% (azs — b)P'(azs — b) + (2% — b0 )P (az3 — b)
a

a
= —h,o hYaxs — b)P.(axs — b) — hoo h~"P(az3 — b)

= — arm (axs —b) Z Qes Ps(axs —b) Z aqsPs(axs — b), (4.13)

Vion the top of the symbol > both r — 1 and r are true since the last term equals zero.
Y"on the top of the symbol > both r — 2 and r — 1 are true since the last term equals zero.
viliClearly,

a,a

a «@ a/ «@
— b= ——axs b + =
a

1
h

T — b =

“ _
Yo" _p _ha
o, (azs —b) —h,

Ay
Ay T3 — b7o¢ =

because of a B B _ B B _
%b —b,a = ay,a h — (ha),o = ha,o —ha,o —h,,a=—h qa.
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where
(+) (=)
r h «@ r oo -1 s Qo
Qar = Tf’ Qqs ‘= (28 +1) h Y h

in deed, taking into account (4.12) and (4.11),

, SFT, (4.14)

—~hoh(axs — b)Pl(axs — b) — E,ahflPT/(axg —b) = —rhoh ' P.(azs — b)

1)r+s 1 ( 1)7"—1—5
Ps(axs —b) — h h~ 225+ ————P(ax3 — b)

= —hh” 12 (25 +1

ﬁ
|
—

oo +(=1)T5hog Ry —(=1)" SRy
+
2h 2h

- —rh—;;lPr(amg - ST@2s 4 1) Py(azs — b)

b r—1 (25 + 1) (Z) (;L) +(;) (= 1)+ (};) (= 1)+
:—Tﬂpr(afﬂs,—b)—z S ( o o prey o

2
r_ (+) .
= —r—2P.(ax3 —b) — Zl 25+ 1) —(=)™ h Ps(axs —b) s P (axs —b)
s=0 2h s=0 o
because of
(+) (=) (+) (=)
hya: haa_haa’ h,a: haa—i_h’oc‘
2 2

Now, by substituting (4.13) and (4.11) into (4.9) and (4.10), respectively, we obtain

+)
h (z1,72)

L. (H)(+) (=)(-)
[ Piass = 0fadus = frat Y dusf= Rt (1 f Ry a =12, (@415
(=) -

h (z1,z2)

(;)(m,xz)

LA (+) r(*)
/ Pr(am?’_b)fﬁdx?)zzaiﬁsfs"" f _(_1) f ) (4.16)
_ s=0
(h)(l‘l,xg)
respectively. Here

1-— (—1)5+T

ass = —(2s + 1) (4.17)

2h ’

clearly,
T

as, = 0. (4.18)
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Remark 4.1. We may take down formulas (4.15) and (4.16) in the following unified form

D o 22)
T1,T2
., () S B
Praxs —b)fjdus = fri+ Y ajsfs— [ hj+ (0" f hj j=1.3
) s=0
h (z1,%2)

(£)
provided we formally read h 3 as —1 and vice versa, since moments are independent of 3, i.e.
fr;3 = 0. A justification of this convention looks like as follows using equations of the upper and
lower face surfaces in the implicit form

(£) (£)
F (x17x27x3> = a3 — h (1’1,1’2) = 07

the last formula we may rewrite as

R (@1,22)
- - (H)(+) L))
Pr(axs —b)fjdus = frj+ Y ajfe— f Foy+(=1)" f F.y

(=)

h (z1,x2)
because of
R T N B WIS R

) (&) “ ) &) @)
F2+F2+F}3
) 1

N
T\ i+ F5+F3

Here (+) and (—) before root we take for the upper (a normal forms an acute angle with
the z3 -axis) and lower (a normal forms a blunt angle with the x3 -axis) sides, respectively.

(=) (+)
Let the Fourier-Legendre expansion of f(-,-,23) € C*('h', h ) be

f('rl) T2, 1'3)

( )fs 331,332)P8(a$3_b)

( 5 ) Fo(an, @) Pufas —b).
fs(a:1,w2)

Filzy, — Js\P,%2) 419
falor,m) hst(z1, 22) (4.19)
(£)
then, if f are not known, using (4.19), we calculate them as follows
() (£) > 1 s = (D25 4+ 1)
= f(:l,’l,(lig, h (wl,l’g)) = Za(s + i)fs(il) = Z Tfsa (4.20)

s=0 s=0
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whence, denoting a%s = —635, bearing in mind (4.20), (4.17),
(+) =) & -
F=(0Tf =) asfs (4.21)
s=0

and, by virtue of (4.20), (4.14),

()(+) ) =

(=)= v
Fhwa=(=0"f Ba=> ajfs a=12, (4.22)
s=0
where, taking into account (4.18),
’V‘* r 'r* r 'r* r r* h7a
a3, = —az =0, a3,:= —0a3s; Q45 = Qas, 5§ F T, Qpy = (21 +1) o (4.23)

Substituting (4.22) and (4.21) into (4.15) and (4.16), respectively, we get

(J];>($1’$2) r 00 o)
/Pr(axfﬁ - b)faoz dr3 = fr,oc + ZCLTOZS fs - Zazsfs = fr,oc + Zbasf& a=1,2, (4-24)
s=0 s=0 s=r

(=)
h (z1,x2)

and
G @ a2) . . . N _
/ Pr(CLI',?) - b)f73 dx3 = Z 07:35 fs - Z 07:35 fs = - Z({gs fs = Zbgsfs = Z b3$f87 (425)
) 5=0 s=0 s=r+1 s=r+1 s=r
h (xl,wg)

respectively, where
T T T

bjs = —aj,, s>1; bjs=0, j=1,2,3, s<r; (4.26)
from (4.14), (4.23), (4.18), (4.21) it follows that

r T ha ha h,a T r r
bar = Qor — . =7—— — (2r + 1) h =—(r+1) o b3y 1= az, — agr = 0. (4.27)

(£)
We may take down (4.24) and (4.25) in the unified form as follows (here f are not known and
clearly (4.20), more precisely (4.21) and (4.22), are applied)

(+)
h (z1,22)

P.(ax3 —b)f,jdxs = frj+ ijsfs; j=13. (4.28)
(E)(Z'l,xQ)

() =)
If f and f are known (prescribed), then from (4.15) and (4.16), correspondingly, we obtain
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(+)
h (z1,x2)

Pr(al'3 - b)faoc dx3z = fr,a + Z({as fs
=) s=0
h (z1,22)

(H)(+) (+) (+) (=)(-) (=) (=)
+ f na\/1+(h,1)2+(h72)2+(—1)’"f o\ 1+ (h1)?+(h 2)? (4.29)
and

(+)
h (z1,22)

Pr(al‘S - b)f73 dx3z = ZaTBs fs
s=0

(=)
h (®1,22)

(H)(+) (+) (+) (=)(=) ) (=)
+ f ng\/1+(h,1)2+(h,2)2+(—1)”f(n3 14+ (h1)?+(h 2)? (4.30)
() £ h e ) 1

since n o = = = ng=
\/1+( R 1)2+(h 2)?

() L
\/1+( h )2 4+(h'2)?

()
Remark 4.2. Evidently, (4.29), (4.30) we may rewrite in the unified form as (here f are

known) [compare with (4.28)]

(+)
h (x1,22)

e, () ) N2 () \2
/ Pr(azs —b) fydws = fry+ > jufs+ f nj\/1+(h,1) +(h2)
s=0
(=)

h (z1,z2)

+(—1)T(})(n)j\/1 + ((ﬁ),lf + <(ﬁ)72)2, j=1,3, (4.31)

(+) (=)
because of f.3(x1,22) = 0, where n and n’ are the outward normals to the surfaces z3 =

)
) =) )
h (z1,72) and 3 = h (x1,22), respectively (see the end of Remark 4.1).

4.2 The first type hierarchical model

The basic relations of the N-th approximation in term of mathematical moments have the
following forms (see Subsection 3.1 of [10]

(+)
h

r—1
~ r ~ " dv; [
(h2r+10'jir),j + Zakl G+ R X = /pCZPT(axg —b)dxs, i =1,3. (4.32)

1=0 )
h
[ pasyee ~ Lo~ eii(] =~ S~
€jir = 5h (Ujm' + Uir,j) t3 Yok (bis Ujs + bjs Uis)» (4.33)
s=r+1
> T
97‘ = Ek'kr = hr+15’}’r77 + Z h8+1 bk/S 5’6’57 r= 07 17 3 N. (434)

s=r+1



Vol. 26, 2025

47

Ojir = —5jip7»(.fv1, T2, t) + AéjihT+1§7r + ,U/hr (’UWW + UWJ + ZBJzk’
s=r+1

o0
.
Tjir = —0jibr + AdjiUyry + (Ujri + Virj) + ZB]’ik;/ghs "k s,
s=r+1

— (hrpr) v [Ah%ﬂvw v] si { p2rt (Vjri + ”Zm)} i

[y

00 r—
r - r _
+ Z (Bjik/ShT-i-S-H,Uk/S) 2j + Akl [ - 5kiplhr + )\(skihr—'_l—‘rl’[)’yl’ﬂ/
s=r+1 =0
+
h

s, (4.35)

(4.36)

(4.37)

+ph" T G 4 T g) + ZBk prsh TS ] +HTX = / %Pr(alﬁ — b)dus,

s=l+1 <
h

q—1
i=06,3 =12, r:0,1,2,_,,,2(...):0’

q
_ (h2r+1]5r) 5+ [)\hQ"’H’ﬁwﬁ} .8+ [ h2"+1(vm 5+ Vgr, a)}

oo r—1
-
+ g (Baﬂk'shT+s+15k's> +§ aﬁl[ Plhr+l+1+>\hr+l+lvvlv]
=0

s=r+1 @

r—1 r—1
+Zakl ph™ G 5 + Za L R g+ Zakz Z Bkﬂk/ het,
=0 =0 s=l+1
)
r i dv iy
+h' X = /pdtﬁPT(axg —b)dzs, r=0,1,2,..., Z( ) =0;
=) 4
h

r—1

o9
~ r ~
[:U’h2r+1v3r,a:| ya Z (BaSkshr_'_s—i_lvks)

Yo%

s=r+1 =0
r—1 r—1
+Zgal 'uhr-i-l-i-l Zakl Z Bk3k’ RS +th3
= =0 s=l+1

(+)
h

1
dvg q
e /pdtP’l"(a$3 - b)dIZ‘};) r = 07 172,...7 Zq:( . ) 07

(=)
h

fori=p0=1,2,

o1 Y o1 Y o1 2 o1 2
—(h*t Pr)p+ ()\h " 1}77«77)54— (,uh s UO”«ﬁ)a—l- (uh T+ UﬁT’O‘)a

N

r—1
T N ]~V
+ E <Ba,3k’ hr+s+1 Vi s )70{ + E Jﬁl [— A" + ApTHAL U,ylﬁ}
s=r+1 =

(4.38)

| = o AT

(4.39)
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r—1 N r—1 N r—1 N ! N
T ~ ' ~ T ~
> g ph™ M T 5+ ph T Vg0 + Y dk > Brgwsh™ T g
1=0 1=0 1=0  s=I+1
(+)
N h dv !
+h" X5 = /> pd—fPr(aajg —b)dxs, r=0,N, Z( ) = 0; (4.40)
h q
for:=3
N r—1
N ” N N N
(thﬂ Usr,a) + ) <Ba3k’shr+s+l Uk's ) +)ay [ — PR+ AT,
s fre?
s=r+1 =0
r—1 r—1 N )
T
+)  aa [MhHlH Ugy a:| + Y ar Y Brawsh™ T Do +h" X3
1=0 1=0  s=l+1
+) _
h d’U3 ik
= |y Py Prlaws —b)dws, r=0,N, > () =0 (4.41)
h q
In the N = 0 approximation r = 0, therefore
0 -1
(=0, Y (+)=0
s=1 =0

and, thus the governing system as it follows correspondingly from (4.40) and (4.41):

2 ) B ) 0 0V .

(R0}, + | M0, 5 + |1 (Bao,5 + Do) | s +X g = PR, = 1,2 (4.42)
0 3Q
= 0 v

(ﬂhv?)o,a) pre’ +X3 == ph aio, (443)

provided p = p(x1,z2) and we consider Stoke’s approximation.
We add to system (4.42), (4.43) the additional equation
hyy
U’YO,’Y — T’l}’\/o = 0, (444)

according to (4.5), (4.4), (4.24), (4.25), i.e., in terms of weighted moments

0 9
(hv'yO)w _ha'y V0 = 0,

. 0
"In terms of Py moment for presure the first term in (4.42) looks like

0
Pog-
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whence

0
Uy = 0. (4.45)

In the stationary case, bearing in mind (4.45), from (4.42) we obtain

0 0 0 0 0
(hﬁO)aﬁ +(Nh)aa (fﬁQO,ﬂ + ,7760,04) + thﬁﬂo,aa + X,é’ = 07 6 = 17 2.

Differentiating the last with respect to 3 and then summing with respect to 3 we get

0 0 0 Q Q 0
(hPo) 58 +(1h)sap (Va0,5 + Vgo,a) + (1) 10 Vao,88 + (Hh),5Vp0,00 + X =0, B=1,2. (4.46)

Therefore, if uh = const we have

0 0
(hpo)ipp= —Xpp, B=12.

Further,
9 170 0
Uﬁo,aa = T 0 Xﬁ + (hpO)aﬁ]a ﬂ = 1727
wh
0
0 X3
30,0 — /lh

Remark 4.3. If h = const by virtue of (4.45), clearly, (4.42) takes the form

0
0 0

2 9 19 000
P+ Vv + 71X = p =52 B =12,

differentiating the last with respect to 3 and then summing with respect to 8 we obtain

0 0
0 0 ov ov
~ -1 380 280
Pogs+h  Xpp= [piat },ﬁz P

4.3 The second type hierarchical model

In the N = 0 approximation we have (see Subsection 3.2 of [10]

0 10 0 0 0
—qo,3 + {/\ [(ln ),y W0 + 5\111'1'} },ﬁ +{M [(wao,ﬁ + wgo,a) + (Inh),3wWao
1 81}50 _ 8w50

0 10 0 _
(10 h)sa thp0 + B Wap] fra+¥ s = ph 0 = p TR 31,2 (4.47)
0 0 40 0 _10v ow
{M |:/w30701 + (ln h)aa w30i| }7@ +h 1@043704 + Y3 == Ph ! 8?0 =p at307 (448)

0 0
(hwag),y +V =0, (4.49)
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where
b=t e+ 5 = b -y W,
S 1= g (17 5 by = ) o1y ) (1.5)
Boa = tras = S (21 S = R ey S b,

T (+) r (=)
W33 = 2[vg —(—1)" v3],

+) () .
are known functions, since (vi), (vz-), 1 =1,2,3 are prescribed on the face surfaces. Let them be
equal to zero in Subsection 4.4 for the sake of simplicity.
We may rewrite (4.50), according to the mentioned at the end of Remark 1, as follows

" (+) ) () )
L (-+) o))

. _ (+) 506)
s = 0 oy )+ B 3

. ) T
=) o) = W b4 (—1) 5 B

r +), ) () () (=)
Usa = 03 (= ho) + (= 1) 0 ho -+t +(=1)" b (=1)

) ) .
= o) + (1) 5 ha o+ 0 — (-1 G,

r (+) r (=) () r (=) (+) r (=)
P33 := v3 —(—1) V3 + U3 —(—1) vy = 2[7)3 —(—1) 1)3],

because of
(£) () )
Fo=—hg, F3=1,
(£ (£) (+)

For the sake of transparency in Subsection 4.4 we give analysis of the the governing system
in the N=0 approximation.

4.4 Discussion of peculiarities of well-posedness of boundary conditions
for D3 angular domain () in N =0 approxrimation

In the same manner we can construct hierarchical models when on one face surface either the
surface forces or neither the surface forces nor velocities are prescribed, while on the another
one the velocities are prescribed.

Hierarchical models in Eulerian coordinates for Newtonian viscous fluid in prismatic shell-
like domains (as container) are constructed. As is already clear, when the effects of viscosity
may be supposed to be negligible, we get hierarchical models for perfect fluids. Initial, contact,
and boundary value conditions from classical ones should be rewritten in the explained in the
present paper (see Subsubsection 2.1.1) way of passage to the moments. The governing equations
are the singular equations, in the case of angular 3D domains. On transparent examples it is
shown that by investigating well-posedness of BVPs, boundary conditions may be nonclassical,
in general.
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In order to illustrate it we analyse two concrete examples when geometry of angular 3D
domain is defined by

h(z1,z9) = hoxs, k>0, 0<xo <L, L1 <z < Lo. (4.51)

L1 = —o00, Ly = 400 are admissible as well.
In this case we have to do with the following two equations

0 0 0 0
3 (wzo,n + w30,22> + Kxow3p 2 — KW3p = 0 (4.52)
which it follows from (4.48) and from (4.43) it follows
0 9 9
T (U30,11 + 030,22> + kv3p,2 =0 (4.53)

in the case when either velocities or stresses are known on the face surfaces, respectively.

Equations (4.52) and (4.53) are singular PDEs, in other words, PDEs with the order and
type degeneracy on the degeneracy line zo = 0.

For equation (4.52) only the Keldysh Problem is well-posed and it’s only, when x > 1.

For equation (4.53) when x < 1 the Dirichlet and when x > 1 the Keldysh BVPs are
well-posed.

We consider fluid flow in prismatic shell-like 3D domain when at the edge of the domain
tangent half-planes to the face surfaces create a dihedral angle with a line angle . It will be
observed that considering viscous flow near the fixed dihedral angle, replacing the boundary
condition velocity v = 0 on the edge by boundedness of velocity v in a neighborhood of the
edge for k > 1 i.e., p € [0,x], in particular, of the mathematical cusp it means x > 1, i.e.,
p =0, as it is in the case of the Keldysh problem. When the face surfaces smoothly merge each
into another through the cusped edge, it means for k < 1 i.e., ¢ = w the Dirichlet problem is
well-posed and the boundary condition should be v = 0. These results are in a good accordance
with the viscous boundary layer concept, according to experimental results of J. Nikuradse.

A case of non-homogeneous viscosity is discussed as well.

5 Conclusions

For different materials: homogeneous, non-homogeneous, isotropic, anisotropic, piezoelectric,
viscoelastic, nanostructures, etc., the differential hierarchical models are constructed and pecu-
liarities caused by singularity of geometry of solid bodies and containers of fluids are discussed.

To this end I. Vekua’s dimension reduction method formalized in [6], [7] in an unified form,
which is directly applicable to any physical problem (model) containing the thickness as a
parametre, is utilized.

1. Vekua’s dimension reduction method for prismatic shells, i.e., in symmetric case for plates
of variable thickness, is generalized for prismatic bars (see [11]). A fluid contained in such
bar-like containers is considered in [12], [14].

By means of Vekua’s dimension reduction method and of his modifications two type hierar-
chical models are constructed:

e the first type models, when on the face surfaces stresses are prescribed, while displacements
for solids or velocities for fluids are calculated from values on the face surfaces of their
Fourier-Legandre series;
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e the second type models, when on the face surfaces displacements for solids or velocities
for fluids are prescribed, while stresses are calculated from values of their the Fourier-
Legandre series on the face surfaces.

During considering non-homogeneous materials constitutive coefficients should be either
independent of x3 or they may depend on x3 but peculiarities arising by that will depend on
the kind of vanishing of constitutive coefficients on the boundary of projection for the solid
body and that of container boundary in the case of the constant thickness for homogeneous
cases, while for the case of the variable thickness it will be depending on the kind of vanishing
of the product of the constitutive coefficient and the thickness.

Here it should be noted that ]1\)[;” and JZ\L[]W k=1,3,r=0,1,2,..,N, N =0,1,2,... mean
solutions of the governing system of the Nth approximation with respect to that unknowns,
while ug, and v, mean the Fourier- Legendre coefficients up to the fector (7 + %)%h_% (i.e.
the mathematical moments of the unknown displacements ug, k = 1, 3), respectively and that
weighted ones (i.e. s.c. weighted moments given by (2.2)).

Note that (see [13] and for that of cusped prismatic shells see [14])

N
Upr = lim ug,., k=1,3
N—o0
Sometimes (mainly) in the literature the upper index N = 0, 1,2, ..., indicating the order

of the approximation, for the sake of simplicity of notion, is omitted, and the reader should be
careful not to be confused.
I. Vekua’s approximated solution

N

1 _

]Jk = Za(r + i)gkrpr(ax?) - b), k=1,3,
r=0

and the partial sum

al 1
Z a(r + §>ukrPr(a$3 —b)
r=0
of the Fourier-Legendre series are different but the both tend to the exact solution v as N — oo.
It is also remarkable that I. Vekua (see [1] pp. 401-405) in the N = 1 approximation besides
classical normal, tangential, and transversal (intersecting) forces in other words, according to
I. Vekua, the zero order weighted mathematical moments and the first order mathematical
moments according I. Vekua, defined the additional first order mathematical moment called
by him as the splitting couple of forces which is nothing more then the equilibrated stress
vector that can be identified with singularities in classical linear clasticity known as double
force systems without physical moments equivalent to two oppositely directed forces at the
same point (see [15], p. 127). Singularities of this type were first discussed by Love [16].
One more thing, in some practical (enginering) models displacements are represented as
polynomials of order < n but they may represented as some linear combinations of Legenre
polynomials (see [17], p. 529), in particular,

xg = aOnPn(:L‘g) + a1, P1 (1'3) + -+ annPn(xi’r)a

therefore models of such type are contained as particular cases in I. Vekua’s hierarchical models.
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Applying I. Vekua’s dimension reduction method, hierarchical models (approximations) for
thermoelastic chiral porous prismatic shells have been constructed. In the N = 0 approximation,
using the approach developed in [6, 7] we have proved for the case

h(xz1,x2) = hoxh, hg = const >0 k = const > 0,

the following expected result: in the case of the cusped (i.e. x > 0) prismatic shell the cusped
edge i.e., where the thickness vanishes (2h(x1,0) = 0) the edge may be fixed only if

O0<kr<l,

in other words the Dirichlet type problem, when desired displacement may be prescribed on the
entire lateral boundary of the prismatic shell under consideration, is well-posed, while when

k>1

it is not the case, the cusped edge cannot be fixed and boundary condition should be replaced
by the demand of boundedness of the displacement near the cusped edge, in other words, the
Keldysh type boundary value problem is well-posed. Note that the vertical displacement is
not affected by chirality, since in (3.16) sa3k0 = 0, 213800 = v (see (3.15)) and, therefore,
- (Eskm23kmo + Eskm3kmo) = 0, but it is not the case in other approximations.
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6 Appendix. Prismatic shell-like and bar-like 3D domains

First a few words about prismatic shells (see also [1], [3], [4]).
Let us consider prismatic shells (see, Figures 6.1 and etc., and also [1], [3], [4]), occupying
3D domain 2 with the projection w (on the plane 3 = 0) and the face surfaces

) , ) ,
z3 = h (z1,22) € C*(w) and x3 = h (z1,22) € C*(w), (71,72) € w.

+) (=)
2h(x1,22) == h (x1,22) — h (z1,22) >0, (x1,22) € w, (1)

is the thickness of the prismatic shell. A part of Ow, where the thickness vanishes, i.e., 2h = 0, is
said to be a cusped edge. We shall call it a blunt edge, if in the symmetric case (see below) 02
contains it smoothly, otherwise, i.e., the points of the cusped edge are points of nonsmoothness
of 012, we shall call it a sharp edge (see Figures 6.2, 6.3). In the nonsymmetric case the cusp
edge we shall call blunt provided at least one tangent to a profile is orthogonal to the shell
projection (see Figures 6.6-6.12).

Let

. (+) (=)
2h(z1,22) == h (z1,22) + h (x1,22), (z1,22) € w. (2)

In the case of the symmetric prismatic shell, i.e., when

(=) (+)
h (x1,22) = — h (21, 22),

evidently

2h(w1,a:2) = O, (1’1,:132) € w.
If

h € d
h(0)=0&0§a<ooor/ Y=o
v o h(v)
the cusped edge is sharp, in the N = 0 approximation (model) Problem E (Keldysh) is well-
posed,
in particular, if
dl‘g

g
h = hox¥, ho, » = const >0, then 1 < s, / = o0;
o h(x2)

If
oh ¢ d
h(0)=0, & — =00, or / Y <%
81/ 0 h(l/)
the cusped edge is blunt, in the N = 0 approximation (model) Problem D is well-posed, in
particular, if

dﬂ?g

h(x2)

Distinctions between the prismatic shell of constant thickness and the standard shell of
constant thickness are shown in Figures 6.4, 6.5, where cross-sections of the prismatic shell of
constant thickness with its projection and of the standard shell of constant thickness with its
middle surface are given in red and green colors, respectively, with common parts in blue. In

€
h = hozxsy, ho, » = const >0, s <1, then / < 0.
0
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other words, the lateral boundary of the standard shell is orthogonal to the “middle surface” of
the shell, while the lateral boundary of the prismatic shell is orthogonal to the prismatic shell’s
projection on xz = 0 (see [4]).

In particular, let w be a domain bounded by a sufficiently smooth arc (9w \ 79) lying in the
half -plane x5 > 0 and a segment 10 of the x1—axis (2 = 0). Let the thickness look like (see
Figures 6.2, 6.3)

2h(x1,xe) = 2hoxs5,  ho, k= const >0, (3)

which corresponds to the case

(£) (£) (%) +) ) +) =)
h (:L’l,JIQ) = hQCEg, hg = const, hg > hg, 2hg:= hg — hg.

In this case we have to do with a blunt edge for k < 1 and with a sharp edge for Kk > 1,
respectively.

In Figures 6.6-6.20 (¢ is the angle at the cusp between tangents (jt) and (T), v is an inward
normal at O to dw) we show some characteristic (typical) profiles (cross-sections) of cusped
prismatic shells.

Let

2h(xy1, e, t) = 2hot",

then we will have a time dependent reverse thinning (i.e. blunting) with respect to ¢ with the
above described geometry in the Cartesian frame Otzxs.

In this case we have to do with singular hyperbolic equations and systems, in the principal
part of which it plays a crucial ole a member g—;[t“vgo(t)]. Supposing unknown functions
depending only on time we arrive at

82
K —
Ere) [t U30(t)] =0
v30(t) = 1t ot ™ wgp(t) = it o =0; 30(t) = c1(l — K)t"

K<1:
v30(0) =0
either
lim t”i)g()(t) = 61(1 — Ii) =m, C1 = m
t—0 1-k
or

U30(t) is bounded,i.e., m =0

k# 1, cag =0: either
}in% t" Luzo(t) = c1 = m,

or

v30(t) is bounded,i.e., m =0
either

%ir% t"uso(t) = c1(1 — k) = m,
or

030(t) is bounded,i.e., m = 0.
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Figure 6.2: A sharp cusped prismatic

shell with a semicircle projection. 92  Figure 6.3: A cusped plate with sharp

is a Lipschitz boundary v1 and blunt 5 edges, 7° := v1 U ys.
0f) is a non-Lipschitz boundary

=Sl

Figure 6.5: Cross-sections of a pris-

Figure 6.4: Comparison of cross- matic (left) and a standard shell with
sections of prismatic and standard the same mid-surface

shells .

Figure 6.7: A cross-section of a
blunt cusped prismatic shell (¢ €
10, Z[). It has a Lipschitz boundary

Figure 6.6: A cross-section of a
blunt cusped prismatic shell (¢ =
5). It has a Lipschitz boundary

Figure 6.8: A cross-section of a Figure 6.9: A cross-section of a
blunt cusped prismatic shell (¢ = blunt cusped plate (¢ = 7). It has
0). It has a non-Lipschitz boundary a Lipschitz boundary
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Figure 6.10: A cross-section of a blunt Figure 6.11: A cross-section of a blunt
cusped prismatic shell (¢ = 7). It has cusped prismatic shell (¢ €]7,n[). It
a Lipschitz boundary has a Lipschitz boundary

R
=
XV

Figure 6.12: ¢ = Figure 6.13: Wedge, ¢ €]0, 7|
(H
T -
(-) %)

Figure 6.14: ¢ =0

T T g
(')l\ X2 (_)\\ )'(2

Figure 6.15: § <9 <7 Figure 6.16: § <9 <7
(H (H
(-)l\ X, ) %
T
Figure 6.17: ¢ = § Figure 6.18: 0 < ¢ < 5

(H

T ' -
—\ )? _\\ i’
(-) > (_I_) X,

Figure 6.19: 0 < ¢ < 5 Figure 6.20: 0 < p <7
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