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The pseudo-Chebyshev functions, recently introduced, have been used in a preceding article
in order to compute the roots of 2×2 and 3×3 non-singular complex matrices. In this article
another method is shown, which works, in some case, even for singular matrices (provided that
such roots exist), based on the Fk,n functions, that is the functions which constitute a basis
for the solutions of linear recurrence relations. A representation formula of these functions by
means of a contour integral encircling the eigenvalues and the use of Cauchy’s residue theorem
gives the possibility to derive a closed form for roots of r×r matrices based on the knowledge
of the matrix invariants.
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1. Introduction

The problem of finding roots of a r × r matrix [8] is in general hard to be solved
in his generality, since there exist matrices without roots (for instance the Jor-
dan blocks, see e.g. [30]), and other which have infinite many roots (for instance ,
see e.g. [15]). Some papers on this subject, mainly referred to 2 × 2 matrices, can
be found in the Mathematical Gazette [11, 28, 30] or in Linear Algebra journals
[6, 10, 18]. N.J. Higham [9] proposed a numerical technique for computing matrix
square root applying Newton-Rhapson’s method.
The Cayley-Hamilton Theorem was applied to compute roots of a 2×2 non-singular
matrices by I.A. al-Tamimi [1], and by S.S. Rao et al. [20] for n× n matrices with
non-negative distinct eigenvalues, since this subject appears while solving certain
differential equations related to Markov models of finance, and related topics.
P.J. Psarrakos [18] gave a necessary and sufficient condition for the existence of
mth roots of a singular complex matrix A, in terms of the dimensions of the null
spaces of the powers Ak, (k = 0, 1, 2, . . . ).
In a recent article [26] a method for finding matrix roots for non-singular 2× 2 or
3×3 has been proposed. This method uses the Cayley-Hamilton Theorem in order
to derive matrix powers [21, 22] and the pseudo-Chebyshev functions introduced in
[23–25]. However the technique considered there can hardly be extended to higher
order matrices, since it would be necessary to use a difficult inductive procedure.
But there is another approach used in past time to construct matrix powers which
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makes use of the Fk,n functions (see [3–5, 19]). These functions, which will be de-
noted for shortness by the acronym FKN, are related to the Lucas polynomials of
the second kind and to the multivariate Chebyshev polynomials [5].
It is worth to note thate the FKN have been used even for solution of linear dy-
namical systems [16, 17].
In an old paper [3], largely unnoticed because it was written in Italian, a Cauchy
type integral representation formula for the FKN, was proven. This representation
makes possible to define the FKN even for rational values of their indexes, and
gives the key to extend the matrix powers formulas given in [5] to the case of ma-
trix roots.
This technique is used in what follows, and gives the possibility to construct the
n-th roots of matrices based on the knowledge of the matrix invariants, which are
the elementary symmetric functions of the eigenvalues.
Since matrix properties depend on the hidden numbers, i.e. by the eigenvalues of
A, the proposed technique could be defined of “canonical” type. In fact it ignores
other methods, based, for instance, on indeterminate entries, by means of which
the roots of identity matrices are derived.
By using this procedure, we can find at most a finite number of roots, and more
precisely, since the obtained equations depend on the r complex roots of eigenval-
ues, we find nr possible values for the n-th root of A. Of course, sometimes it is
sufficient to derive a less number of roots, and then to change the determinations
for deriving the other ones.
The paper is presented as follows: first we recall the FKN and their connection
with powers of matrices. Then, by using a contour integral representation for the
FKN, which makes sense even for rational values of powers, the representation of
matrix powers in terms of the FKN is extended to the case of matrix roots. By us-
ing Cauchy’s residue theorem an explicit expression for matrix powers is derived.
Some developed examples are shown in Sect. 4, and a list of previous papers is
collected in the Bibliography section, with particular reference to recent articles,
which generally show particular techniques and do not frame the problem in its
generality.

2. Recalling Fk,n functions and Lucas polynomials of the second kind

A basis for the r-dimensional vectorial space Vr of solutions of the (r+1)-terms ho-
mogeneous linear bilateral recursion with complex coefficients uk (k = 1, 2, . . . , r)
(with ur ̸= 0):

Xn = u1Xn−1 − u2Xn−2 + · · ·+ (−1)r−1urXn−r , (n ∈ Z) . (2.1)

is given by the functions Fk,n = Fk,n(u1, u2, . . . , ur) , (k = 1, 2, . . . , r , n ≥ −1) ,
defined by the initial conditions:

F1,−1 = 0 F1,0 = 0 . . . F1,r−2 = 1,

F2,−1 = 0 F2,0 = 1 . . . F2,r−2 = 0,
. . . . . . . . . . . . . . . . . .

Fr,−1 = 1 Fr,0 = 0 . . . Fr,r−2 = 0.

(2.2)
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Since we have assumed ur ̸= 0, the FKN are defined even when n < −1, putting:

Fk,n(u1, . . . , ur) = Fr−k+1,−n+r−3

(
ur−1

ur
, . . . ,

u1
ur

,
1

ur

)
,

(k = 1, . . . , r; n ∈ Z) .

(2.3)

Therefore, any solution of the recursion (2.1) is a linear combination of the FKN.

Remark 2.1 – It is worth to recall that another basis for the Vr space is usually
obtained by using the roots of the characteristic equation

λr − u1λ
r−1 + · · ·+ (−1)r−1ur−1λ+ (−1)rur = 0 , (r ∈ Z) , (2.4)

however, this implies the knowledge of roots, whereas the use of the FKN is inde-
pendent of that. Furthermore, the solution based on the FKN does not depend of
the multiplicity of roots.

An important result, originally stated by É Lucas [14] in the case r = 2, is given
by the equations 

F1,n = u1F1,n−1 + F2,n−1

F2,n = −u2F1,n−1 + F3,n−1

. . .

Fr−1,n = (−1)r−2ur−1F1,n−1 + Fr,n−1

Fr,n = (−1)r−1urF1,n−1

(2.5)

showing that all the FKN are expressed by the sequence {F1,n}n∈Z.
Therefore, we assume the following

Definition 2.1 – The bilateral sequence {F1,n}n∈Z, that is the solution of (2.1)
corresponding to the initial conditions:

F1,−1 = 0 , F1,0 = 0 , . . . , F1,r−3 = 0 , F1,r−2 = 1 , (2.6)

is called the fundamental solution of (2.1), that is the “fonction fondamentale” by

É. Lucas [14].

Putting

F1,n(u1, . . . , ur) =: Φn(u1, . . . , ur) = Φn , (n ∈ Z) . (2.7)

For n ≥ −1, the Φn(u1, . . . , ur) functions are called in literature [19] Lucas
polynomials of the second kind in r variables.

Remark 2.2 – Note that, for r = 2, u2 = 1, putting u1 = x, we find

Φn(u1, 1) = Φn(x, 1) ≡ Un

(x
2

)
, (n ∈ N0) ,
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where {Un(x)}n∈N0
are the second kind Chebyshev polynomials.

Therefore, for r ≥ 3, putting ur = 1, the (r− 1)-variable Chebyshev polynomials
of the second kind have been introduced, putting:

Φn(u1, . . . , ur−1, 1) =: U (r−1)
n (u1, . . . , ur−1), (n ∈ N0) ,

see, for instance: R. Lidl, C. Wells [12], R. Lidl [13], M. Bruschi, P.E. Ricci [5],
K.B. Dunn, R. Lidl [7], R.J. Beerends [2].
Note that the choice of indexes in equations (2.2) and (2.3) was made in such a
way as to find the Chebyshev polynomials with the same indexes in case r = 2.

3. Matrix powers representation

In preceding articles [4, 21], the following result was proved:

Theorem 3.1 – Given an r × r matrix A, putting by definition u0 := 1, and
denoting by

P (λ) := det(λI − A) =

r∑
j=0

(−1)jujλ
r−j (3.1)

its characteristic polynomial, the matrix powers An, with integer exponent n, are
represented by the equation:

An = F1,n−1(u1, . . . , ur)Ar−1 + F2,n−1(u1, . . . , ur)Ar−2+

+ · · ·+ Fr,n−1(u1, . . . , ur) I ,
(3.2)

where the FKN are defined in Section 2.
Moreover, if A is not singular, i.e. ur ̸= 0, equation (3.2) still works for negative
integers n, assuming the definition (2.3) for the FKN.

Of course, if the degree of the minimal polynomial of A is q < r, the linear combi-
nation of powers in equation (3.2) is reduced to the degree q − 1.
It is worth to recall that the knowledge of eigenvalues is equivalent to that of
invariants, since the second ones are the elementary symmetric functions of the
first ones.

Remark 3.1 – Note that, as a consequence of the above result, the higher powers
of an r × r matrix A are always expressible in terms of the lowers ones (at most
up to the power q − 1, if q is the degree of the minimal polynomial of A).

In a preceding article [3], the following representation formulas for the FKN have
been established:

Fk,n−1(u1, . . . , ur) =
1

2π i

∮
γ

λn
∑k−1

h=0(−1)huh λ
k−h−1

P (λ)
dλ , (3.3)

where γ denotes a closed positively oriented (i.e. traversed counterclockwise) con-
tour encircling all the zeros of P (λ), for example a circle centered at the origin
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whose radius is greater then the spectral radius of A.
Therefore, equation (3.2) can be written as

An =
1

2π i

[
r∑

k=1

∮
γ

λn
∑k−1

h=0(−1)huh λ
k−h−1

P (λ)
dλ Ar−k

]
. (3.4)

Noting that equation (3.3) makes sense even if n is a fractional number, we can
put:

Fk, 1
n
−1(u1, . . . , ur) =

1

2π i

∮
γ

λ1/n
∑k−1

h=0(−1)huh λ
k−h−1

P (λ)
dλ . (3.5)

Therefore, by equations (3.2)-(3.5), we find:

A1/n =

r∑
k=1

Fk, 1
n
−1(u1, . . . , ur)Ar−k =

=
1

2π i

[
r∑

k=1

∮
γ

λ1/n
∑k−1

h=0(−1)huh λ
k−h−1

P (λ)
dλ Ar−k

]
.

(3.6)

Recalling Cauchy’s residue theorem [27], and denoting by λ1, λ2, . . . , λr the eigen-
values of A, and by f = f(λ) the integrand in equation (3.6), the contour integral
is given by: ∮

γ

λ1/n
∑k−1

h=0(−1)huh λ
k−h−1

P (λ)
dλ = (2π i)

r∑
ℓ=1

Resfk(λℓ) . (3.7)

Supposing, for simplicity, the eigenvalues are all distinct, and putting

P (λ) = (λ− λ1)(λ− λ2) · · · (λ− λr),

we find:

r∑
ℓ=1

Resfk(λℓ) =

r∑
ℓ=1

lim
λ→λℓ

(λ− λℓ)
λ1/n

∑k−1
h=0(−1)huh λ

k−h−1

P (λ)
=

=

r∑
ℓ=1

λ
1/n
ℓ

∑k−1
h=0(−1)huh λ

k−h−1
ℓ

(λℓ − λ1) · · · (λℓ − λℓ−1)(λℓ − λℓ+1) · · · (λℓ − λr)
,

(3.8)

where we have put, by definition: (λ− λ0) = (λ− λr+1) := 1.
Then, equation (3.6) becomes:

A1/n =

r∑
k=1

r∑
ℓ=1

λ
1/n
ℓ

∑k−1
h=0(−1)huh λ

k−h−1
ℓ

(λℓ − λ1) · · · (λℓ − λℓ−1)(λℓ − λℓ+1) · · · (λℓ − λr)
Ar−k . (3.9)

A similar result can be found in case of multiple roots of the characteristic poly-
nomial, by using the more general equation, which holds for a pole of order m at
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the point λℓ:

Resfk(λℓ) =
1

(m− 1)!
lim
λ→λℓ

dm−1

dλm−1
[(λ− λℓ)

m f(λ)] . (3.10)

Therefore, we can proclaim the following resut:

Theorem 3.2 Given a r × r complex matrix A, and denoting by

u1 = trA, u2, u3, . . . , ur = detA

its invariants, and by λ1, λ2, . . . , λr its eigenvalues, a n-th root of A is given by
equation (3.6).
If the eigenvalues are all distinct, equation (3.6), by Cauchy’s residue theorem
reduces to equation (3.9). By using equation (3.10) the result can be extended to
the case of multiple eigenvalues.
Since the (1/n)-powers appearing in equation (3.9) have n determinations, by using
this method we can find at most nr roots of A.

Remark 3.2 Note that the knowledge of eigenvalues is not strictly necessary. It
is mandatory if we compute the integral in equation (3.6) by Cauchy’s residue
theorem, but actually only the knowledge of the invariants is necessary, since we
could compute the contour integral by choosing as γ a circle centered at the origin
with radius greater then the spectral radius of A.

4. Examples

4.1. A square root for a 3 × 3 matrix

Let A be a 3× 3 matrix, put n = 2 and

P (λ) = λ3 − u1λ
2 + u2λ− u3 = (λ− λ1)(λ− λ2)(λ− λ3).

Then equation (3.9) has the form:

A1/2 =
1

2π i

[∮
γ

λ1/2 dλ

P (λ)
A2 +

∮
γ

λ1/2(λ− u1) dλ

P (λ)
A+

∮
γ

λ1/2(λ2 − u1λ+ u2) dλ

P (λ)
I
]
,
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and by using Cauchy’s residue theorem we find:

A1/2 =
λ
1/2
1 (λ2 − λ3)− λ

1/2
2 (λ1 − λ3) + λ

1/2
3 (λ1 − λ2)

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)
A2+

+
λ
1/2
1 (λ2 − λ3)(λ1 − u1)− λ

1/2
2 (λ1 − λ3)(λ2 − u1) + λ

1/2
3 (λ1 − λ2)(λ3 − u1)

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)
A+

+

[
λ
1/2
1 (λ2 − λ3)(λ

2
1 − u1λ1 + u2)− λ

1/2
2 (λ1 − λ3)(λ

2
2 − u1λ2 + u2)

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)
+

+
λ
1/2
3 (λ1 − λ2)(λ

2
3 − u1λ3 + u2)

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

]
I .

(4.1)

4.1.1. Numerical example 1.

Consider the matrix

A =

 2 1 0
−2 0 1
1 0 0

 , so that A2 =

 2 2 1
−3 −2 0
2 1 0

 . (4.2)

The invariants are:

u1 = 2 , u2 = 2, u3 = 1 . (4.3)

The characteristic equation is:

λ3 − 2λ2 + 2λ− 1 = 0 , (4.4)

and the roots are:

λ1 =
1 + i

√
3

2
, λ2 =

1− i
√
3

2
, λ3 = 1 . (4.5)

According to equation (4.1), choosing the positive sign for the square roots appear-
ing below, we find:

λ1 − λ2 = i
√
3 , λ1 − λ3 =

1

2
(−1 + i

√
3) , λ2 − λ3 =

1

2
(−1− i

√
3) .

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3) = i
√
3 ,

λ
1/2
1 =

1

2
(i +

√
3) , λ

1/2
2 =

1

2
(−i +

√
3) , λ

1/2
3 = 1 , (4.6)

λ
1/2
1 (λ2 − λ3) = −i , λ

1/2
2 (λ1 − λ3) = i , λ

1/2
3 (λ1 − λ2) = i

√
3 ,
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so that the coefficient of A2 is: −2 i+i
√
3

i
√
3

=
√
3−2√
3

.

Moreover, recalling that u1 = u2 = 2, by elementary computations, we find the
other coefficients in equation (4.1).

The coefficient of A is: 3−
√
3√

3
, and the coefficient of I is:

√
3−1√
3
.

Then equation (4.1) has the form:

A1/2 =

√
3− 2√
3

A2 +
3−

√
3√

3
A+

√
3− 1√
3

I ,

that is:

A1/2 =
1√
3


√
3 + 1

√
3− 1

√
3− 2

−
√
3 3−

√
3 3−

√
3√

3− 1
√
3− 2

√
3− 1

 . (4.7)

It is easily seen that by equation (4.7) it follows:[
A1/2

]2
= A .

By choosing different signs for the square roots considered in equation (4.6), we
find other possible determinations for the square root of A:

A1/2 =
1√
3


−
√
3 + 1 −

√
3− 1 −

√
3− 2√

3 3 +
√
3 3 +

√
3

−
√
3− 1 −

√
3− 2 −

√
3− 1

 , (4.8)

and

A1/2 =
1√
3


−
√
3− 1 −

√
3 + 1 −

√
3 + 2√

3 −3 +
√
3 −3 +

√
3

−
√
3 + 1 −

√
3 + 2 −

√
3 + 1

 , (4.9)

and

A1/2 =
1√
3


√
3− 1

√
3 + 1

√
3 + 2

−
√
3 −3−

√
3 −3−

√
3√

3 + 1
√
3 + 2

√
3 + 1

 , (4.10)

4.2. A cubic root for a 2 × 2 matrix

4.2.1. Numerical example 2.

Consider the matrix

A =

{
9 1
−8 0

}
(4.11)
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The invariants are:

u1 = 9 , u2 = 8 . (4.12)

The characteristic equation is:

λ2 − 9λ+ 8 = 0 , (4.13)

and the roots are:

λ1 = 8 , λ2 = 1 . (4.14)

We will consider only the real cubic roots for the eigenvalues, so that we find only
the real solution for A1/3. Of course the possible cubic roots are 32 = 9.
Equation (3.9) has the form:

A1/3 =
λ
1/3
1 − λ

1/3
2

λ1 − λ2
A+

λ
4/3
1 − λ

4/3
2 − u1(λ

1/3
1 − λ

1/3
2 )

λ1 − λ2
I , (4.15)

that is:

A1/3 =
1

7
A+

6

7
I , (4.16)

so that

A1/3 =
1

7

{
15 1
−8 6

}
. (4.17)

It is easily seen that

[
A1/3

]3
=

1

343

{
3087 343
−2744 0

}
= A .

4.3. The special case of Identity matrices

4.3.1. Numerical example 3.

We consider here, for instance, the identity 3× 3 matrix

I3 = I2
3 =

1 0 0
0 1 0
0 0 1

 . (4.18)

The invariants are:

u1 = 3 , u2 = 3, u3 = 1 . (4.19)
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The characteristic equation is:

(λ− 1)3 = 0 , (4.20)

and the eigenvalues are the cubic roots of unity:

ε0 := λ1 = 1 , ε1 := λ2 = −1

2
+ i

√
3

2
, ε2 := λ3 = −1

2
− i

√
3

2
. (4.21)

by using equations (3.6 ) and (3.10) because of the multiple root, we find the cubic
roots of I3 in the form:

I1/3
3 =

εi 0 0
0 εj 0
0 0 εk

 , (4.22)

where (i, j, k) are the arrangements with repetitions of numbers (0, 1, 2), so that
we have in total 33 = 27 cubic roots, including I3 itself, derived by this method.

Remark 4.1 The same procedure can be extended in a direct way to the n-th roots
of Ir, therefore finding nr roots, including Ir itself.
As we have noticed before, the particular cases of k-matrices [29] and of other
special matrices cannot be found by using the “canonical” method proposed in
Sect. 3.

Remark 4.2 Several other checks has been made on the equation (3.9), and in
particular some case of singular matrices - for which the roots exist - was checked.
The results are found correct.

Acknowledgments: The author is grateful to Dr. Diego Caratelli, for a careful
control of the manuscript. Furthermore, by using the Mathematica c⃝ program,
and a numerical evaluation of the contour integral (and then avoiding the use of
eigenvalues and Cauchy’s residue theorem), Dr. Caratelli was able to check the
FKN technique for computing roots of higher order matrices with random complex
entries (i.e. random invariants).

5. Conclusion

A general method for computing the n-th roots of complex matrices has been
shown. The method is based on properties of the Fk,n functions, which are the
basic solutions of linear recurrence relations and on Cauchy’s residue theorem. In
the author opinion, the FKN seems to be naturally connected with the problem of
computing matrix roots. The efficiency of the procedure is not a surprise, since
the used equation (3.6) is nothing but a particular case of the Dunford-Taylor
(also called of Riesz-Fantappiè) formula.
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