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In this paper we study a number of nonlinear fractional equations, involving Caputo derivative
in space or/and in time, admitting explicit solution in separating variable form. Some of these
equations are particularly interesting because they admit completely periodic solutions. When
time-fractional derivatives are introduced, this property is lost, but in the space-fractional case
we can obtain new interesting equations admitting these solutions. This can be the starting
point for a more general analysis about fractional isochronous partial differential equations.
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1. Introduction

Twenty years ago, Calogero developed a simple transformation (often called ”the
trick”) modifying a dynamical system so that the new system yielded by it is
isochronous [1]. This transformation is applicable to a quite large class of dynamical
systems and it yields ω − modified autonomous systems which are isochronous,
with period T = 2π

ω . The trick was applied mainly on dynamical systems described
by systems of nonlinear Ordinary Differential Equations.
Recently, the same approach was extended to treat time evolutions described by

nonlinear Partial Differential Equations (PDEs), displaying, list of ω −modified
isochronous PDEs, characterized by the important property to possess lots of
completely periodic solutions, living in open regions of their phase space (see
chapter 7 of [1]).

In particular, in [2] and [3], a number of nonlinear evolution PDEs are modified
so that they possess isochronous solutions, i.e. completely periodic solutions with
a period that does not depend on the initial data. In some of the cases, consid-
ered in [2], the nonlinear PDEs admit explicit solutions, in a separating variable
form. In the general case, it is not possible to construct space or time-fractional
versions of these ω-modified PDEs admitting explicit solutions. On the other hand,
the particular cases admitting separating variable solutions can be generalized to
the fractional case. This leads to new interesting methods and results in the field
of nonlinear fractional PDEs. This can be the starting point for the analysis of
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fractional isochronous PDEs, i.e. nonlinear fractional evolutive equations, admit-
ting completely periodic solutions. We will prove that this property is lost in the
time-fractional case (and this is quite intuitive) while it is preserved in the space-
fractional case. In any cases we are able to construct explicit exact solutions for the
considered equations, in terms of Mittag-Leffler functions. We also consider gener-
alizations of these equations, based on the application of Laguerre derivatives.

2. Isochronous space-fractional PDEs

In this Section we consider some simple cases of nonlinear space-fractional partial
differential equations (PDEs) admitting completely periodic solution, inspired by
[2]. Here we consider space fractional derivatives in the sense of Caputo of order
ν ∈ (0, 1) (see [4]) that is

(a∂
ν
xf) (x) =

1

Γ(1− ν)

∫ x

a

∂x′f(x′)

(x− x′)ν
dx′, (1)

Hereafter we will consider a = 0 for simplicity.
We here observe that the classical Leibniz and chain rules are not valid for the frac-
tional derivatives in the sense of Caputo, as can be simply observed by definition.
This is the reason why, in most cases it is not possible to apply classical methods
to solve nonlinear fractional PDEs. On the other hand, many recent studies have
been devoted to find particular exact solutions for nonlinear fractional equations by
means of Lie symmetry group and invariant subspace method (see e.g. [5–7] and
the references therein). These methods in many cases permit to find separating
variable solutions.
As a first interesting candidate, inspired by [2], we consider the following equation

∂u

∂t
− iω

α
u = auα

(
∂νu

∂xν
+
ik

α
u

)
, (2)

that admits the completely periodic separating variable solution

u(x, t) = exp

(
iω

α
t

)
Eν(−

ik

α
xν), (3)

where

Eν(−xν) =
∞∑
k=0

(−x)νk

Γ(νk + 1)
, (4)

is the Mittag-Leffler function (see [8]). This result can be proved by direct substi-
tution.
Observe that the fractional derivative appearing in (2) is in the sense of Caputo
(see [4]) and we consider the problem in the semi-line x ≥ 0. Indeed in this case, it
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is well-known that the Mittag-Leffler function is an eigenfunction of the fractional
derivative in the sense of Caputo.
In the case ν = 1, we recover the simple solution

u(x, t) = exp

(
iω

α
t− ik

α
x

)
. (5)

Another interesting example is given by the equation

∂u

∂t
− iω

α
u− u

∂νu

∂xν
= −u2, (6)

that admits as a solution the function (3). Equation (6) can be interpreted as a
nonlinear-nonlocal advection-reaction equation and the possible physical applica-
tions should be deepened. Starting from (6) a sort of simple hierarchy of space-
fractional equations, admitting solutions of the form (6) can be built. Indeed, it is
simple to prove that the general family of nonlinear space-fractional PDEs

∂u

∂t
− iω

α
u = un−1∂

νu

∂xν
− un, (7)

admits solution of the form (3).
We can conclude this section, observing that space-fractional generalizations of
isochronous PDEs, admitting separating variable solutions still admit completely
periodic solutions. More general cases should be an object of further analysis.

2.1. Isochronous fractional Burgers-Hopf equation

From the ω-modified version of the ”generalized Burgers-Hopf” PDE (see [2])

∂u

∂t
+ i

1

α− 2
ωu+ i

1− α

α− 2
ωx

∂u

∂x
= au

∂u

∂x
+ b

∂

∂x

(
uα
∂u

∂x

)
(8)

we consider an homogeneous nonlinear space-fractional standard Burgers-Hopf
equation (α = 0)

∂u

∂t
− iωu =

∂ν

∂xν

[
ã

2

(
∂1−νu

∂x1−ν

)2

+ b̃
∂2

∂x2
Jν
xu+

iω

2
xνu

]
(9)

where

Jν
xu(x, t) =

∫ x

0

(x− x′)ν−1

Γ(ν)
u(x′, t)dx′,

is the Riemann-Liouville integral of order ν ∈ (0, 1) and ∂ν/∂xν is the Caputo
fractional derivative with respect to x-variable.
This equation is an homogeneous isochronous modification of a class of non-

homogeneous nonlinear nonlocal diffusive equation, recently investigated in ([9]).
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We consider the following Cole-Hopf transformation:

u(x, t) = − ∂ν

∂xν
lnψ(x, t). (10)

By using the Caputo fractional derivatives, the following equality holds

∂1−ν

∂x1−ν

∂ν

∂xν
u =

∂

∂x
u (11)

and it can be proved that

Jν
x

∂ν

∂xν
u(x, t) = u(x, t)− u(0, t) ν ∈ (0, 1] , x > 0. (12)

Considering u(0, t) = 0 as a boundary condition, we have

∂ν

∂xν

[
− ∂

∂t
lnψ + iω lnψ + b̃

∂2

∂x2
lnψ + b̃

(
∂

∂x
lnψ

)2

− iωxν
∂ν

∂xν
lnψ

]
= 0. (13)

This means that

− ∂

∂t
lnψ + iω lnψ + b̃

∂2

∂x2
lnψ + b̃

(
∂

∂x
lnψ

)2

− iωxν
∂ν

∂xν
lnψ = f(t). (14)

We suppose that f(t) = 0, ã = 2b̃ and we consider the Gaussian ansatz

ψ(x, t) = exp
[
a(t)x2 + b(t)x+ c(t)

]
(15)

as a trial solution of (13). Then, by using Cole-Hopf transformation (10) we
obtain the following solution of (9)

u(x, t) = − ∂ν

∂xν
(
a(t)x2 + b(t)x+ c(t)

)
= −

(
b(t)x1−ν

Γ(2− ν)
+

2a(t)x2−ν

Γ(3− ν)

)
(16)

where the two functions a(t) and b(t) satisfy the two Riccati equations, special
case 1 and 2 respectively,

ȧ(t) = 4b̃a(t)2 + iω

(
1− 1

Γ(3− ν)

)
a(t), (17)

ḃ(t) = 4b̃a(t)b(t) + iω

(
1− 1

2Γ(2− ν)

)
b(t), (18)
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whose solutions are

a(t) = e
iω

(
1− 1

Γ(3−ν)

)
t

C − 4b̃

iω
(
1− 1

Γ(3−ν)

)eiω(1− 1

Γ(3−ν)

)
t

−1

, (19)

b(t) = C̃ϕ(t)e
iω

(
1− 1

2Γ(2−ν)

)
t
, (20)

where ϕ(t) = 1
4b̃

[
C − 4b̃

iω
(
1− 1

Γ(3−ν)

)eiω
(
1− 1

Γ(3−ν)

)
t
]
, which are completely periodic

in t with period T = 2π
ω .

3. The time-fractional case

Inspired by the simplest cases of [2], considered in the previous section, we show
that, by using time-fractional derivative it is not possible to obtain completely
periodic solutions. Moreover, we underline again that we are forced to consider
the time-fractional generalization of the equations, admitting separating variable
solutions since the analysis of the more general cases does not lead to analytical
solutions in the closed form (that is the main interest of this paper).
We first consider the equation

∂νu

∂tν
− iω

2α− 1
u = a

(
∂u

∂x

∂u

∂y
− u

∂2u

∂x∂y

)α

. (21)

Also in this case we consider Caputo time-fractional derivatives of order ν ∈ (0, 1)
and t ≥ 0. More general cases can be obtained from this one by simple calculations.
Ansatz. We first observe that this equation admits the polynomial solution in

the form

u(x, y, t) = m(t) + n(t)x+ l(t)y + p(t)x2 + q(t)y2 + s(t)xy. (22)

This ansatz can be justified by means of the theory of invariant subspace method
(see e.g. [7]) and essentially permits us to reduce the original problem to the solution
of a system of fractional ODEs. Let us consider, in particular, the case

∂u

∂x

∂u

∂y
− u

∂2u

∂x∂y
= 0,

using the previous ansatz we have the following conditions:

nl = ms; pl = 0; qn = 0; ps = 0; qs = 0; pq = 0.
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Therefore, we have p = 0, q = 0 and

∂νm

∂tν
+ x

∂νn

∂tν
+ y

∂ν l

∂tν
+ xy

∂νs

∂tν
− iω

2α− 1
(m+ xn+ y l + xy s) = 0. (23)

We obtain four decoupled equations:

∂νm

∂tν
=

iω

2α− 1
m,

∂νn

∂tν
=

iω

2α− 1
n,

∂ν l

∂tν
=

iω

2α− 1
l,

∂νs

∂tν
=

iω

2α− 1
s.

(24)

Recalling again that the solution of the fractional linear differential equation

∂νu

∂tν
= λu(t),

is given by the Mittag-Leffler function, i.e.

u(t) = Eν(λt
ν) =

∞∑
k=0

(λtν)k

Γ(νk + 1)
,

we have that

m(t) = n(t) = l(t) = s(t) = Eν

(
iω

2α− 1
tν
)
. (25)

Hence the ansatz (22) leads to the following explicit separating variable solution

u(x, y, t) = (1 + x+ y + xy)Eν

(
iω

2α− 1
tν
)

= (1 + x) (1 + y)Eν

(
iω

2α− 1
tν
)
.

(26)
We underline that this polynomial solution represents an interesting explicit

solution but it is just a particular case of the more general class of separating
variable solution

u(x, y, t) = f(x)g(y)Eν

(
iω

2α− 1
tν
)
. (27)

Indeed, it is simple to prove, by direct substitution, that (27) satisfies equation
(21) for all the choices of sufficiently smooth functions f(x) and g(y). This general
class of solutions corresponds, a posteriori, to the solution of a problem with initial
condition u(x, y, 0) = f(x)g(y) (recalling that Eν(t = 0) = 1). Moreover, observe
that we obtain completely periodic solutions only in the limit-case ν = 1, leading
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to the solution (see [2])

u(x, y, t) = f(x)g(y) exp

(
iω

2α− 1
t

)
. (28)

Therefore, as expected, the introduction of fractional derivatives in time leads
to essential changes on the structure of the solution of the PDEs that still can be
represented in separating variable form but are not anymore isochronous.
A second model equation that can be treated by similar methods is the following

one

∂2βu

∂t2β
− iω

(2α+ 3)

(2α− 1)

∂βu

∂tβ
− 2 (2α+ 1)

(2α− 1)2
ω2u = a

(
∂u

∂x

∂u

∂y
− u

∂2u

∂x∂y

)α

(29)

with 0 < β < 1.
Using the same ansatz (22), taking p=q=0, we have to solve the following four

decoupled equations:



∂2βm
∂t2β − iω (2α+3)

(2α−1)
∂βm
∂tβ − 2(2α+1)

(2α−1)2
ω2m = 0

∂2βn
∂t2β − iω (2α+3)

(2α−1)
∂βn
∂tβ − 2(2α+1)

(2α−1)2
ω2n = 0

∂2βl
∂t2β − iω (2α+3)

(2α−1)
∂βl
∂tβ − 2(2α+1)

(2α−1)2
ω2l = 0

∂2βs
∂t2β − iω (2α+3)

(2α−1)
∂βs
∂tβ − 2(2α+1)

(2α−1)2
ω2s = 0

(30)

And since the linear second order fractional differential equation

∂2βy

∂t2β
− (a+ b)

∂βy

∂tβ
+ aby = 0, (31)

has the solution

y(t) = A

∞∑
k=0

(atβ)k

Γ(βk + 1)
+B

∞∑
k=0

(btβ)k

Γ(βk + 1)
, (32)

we conclude that the fractional PDE (29) admits the following solution

u(x, y, t) =

[
AEβ

(
iω

2α+ 1

2α− 1
tβ
)
+BEβ

(
2iω

2α− 1
tβ
)]

(1 + x) (1 + y) , (33)

where the real coefficients A and B depends by the initial conditions.

4. Isochronous Laguerre evolution equations

In this last section, we consider another generalization of the isochronous PDE
considered before involving Laguerre derivatives in space (see [10] and [11] about
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the definitions and main applications). Let us consider the nonlinear PDE

∂u

∂t
− iω

α
u = auα

(
∂

∂x
x
∂u

∂x
+
ik

α
u

)
. (34)

We recall that the so-called Laguerre derivative is defined as follows

DL =
∂

∂x
x
∂

∂x
.

The equation (34) admits the completely periodic separating variable solution

u(x, t) = exp

(
iω

α
t

)
C0

(
− ik
α
x

)
, (35)

where

C0(−x) =
∞∑
k=0

(−x)k

(k!)2
, (36)

is the so-called Tricomi function, that is an eigenfunction of the Laguerre derivative
(see [10]) and it is directly related to the Bessel function. Also in this case, the
time-fractional generalization admits and explicit exact solution but the property
of completely periodicity is lost. Indeed, in this case we have

∂νu

∂tν
− iω

α
u = auα

(
∂

∂x
x
∂u

∂x
+
ik

α
u

)
, (37)

admits the solution

u(x, t) = Eν

(
iω

α
tν
)
C0

(
− ik
α
x

)
. (38)

Considering the space-fractional extension of the nonlinear PDE (34):

∂u

∂t
− iω

α
u = auα

(
∂β

∂xβ
xν
∂u

∂x
+
ik

α
xν−1u

)
, (39)

we can find an explicit exact isochronous solution

u(x, t) = exp

(
iω

α
t

)
Wβ,ν

(
− ik

αβ
xβ

)
, (40)

whereWβ,ν(z) denotes the classical Wright function which is defined by the series
representation, convergent in the whole complex plane (see [12]),
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Wβ,ν(z) :=

∞∑
k=0

(z)k

k!Γ(βn+ ν)
, β > −1, ν ∈ C (41)
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