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Abstract. We consider the Dirichlet problem for steady elastic oscillations. The main result
concerns the solvability of the boundary integral system of equations of the first kind arising
when we impose the Dirichlet boundary condition to a simple layer potential. Such a result
is here obtained by using the theories of differential forms and reducible operators.
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1. Introduction

Potential methods for the basic boundary value problems related to steady elastic
oscillations have been developed in [8]. In particular, the representability of the
solution of the Dirichlet problem has been obtained by means of a double layer
potential. If we look for the solution of this problem in the form of a simple layer
potential, we obtain an integral system of the first kind on the boundary.
The same problem for Lamé system was previously considered in [3]. There an

existence theorem for the relevant integral system of the first kind on the boundary
was obtained following a method given in [1] for the Laplace equation. This method
hinges on the theory of reducible operators and on the theory of differential forms,
it does not use the theory of pseudodifferential operators and could be considered as
an extension to higher dimensions of Muskhelishvili’s method (see [2]). Later, this
approach was extended to different BVPs for several partial differential equations
and systems in simply and multiple connected domains (see [5] and the references
therein).
The aim of the present paper is to show how to extend this method to the

Dirichlet problem for steady elastic oscillations.
The paper is structured as follows. Section 2 is devoted to some notations and

definitions, whereas Section 3 deals with auxiliary results in potential theory. In
Section 4 we construct a reducing operator that we use in the study of the integral
system of the first kind arising when we impose the Dirichlet boundary condition
to a simple layer potential. In Section 5 we find a solution of the Dirichlet problem
in terms of a simple layer potential.
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2. Definitions

Throughout this paper, Ω is a bounded domain (open connected set) of R3 such
that its boundary is a Lyapunov hypersurface Σ (i.e. Σ has a uniformly Hölder
continuous normal field of some exponent λ ∈ (0, 1]), and such that R3 \ Ω is
connected; n(x) = (n1(x), n2(x), n3(x)) denotes the outwards unit normal vector
at the point x = (x1, x2, x3) ∈ Σ. The symbol | · | denotes the Euclidean norm for
elements of R3.
Given the set of constants λ, µ, ρ satisfying the conditions

µ, ρ > 0, 3λ+ 2µ > 0,

the homogeneous system of elastostatic oscillations has the form

µ∆u+ (λ+ µ)∇div u+ ρω2u = 0 (1)

where u : R3 → C3 is the displacement vector and ω ∈ R is the oscillation frequency
[8, p. 48]. It is convenient to write the basic equation (1) in a matrix form. To this
end we consider the (3× 3) matrix differential operator

A(∂x, ω) =
(
Ajk(∂x, ω)

)
j,k=1,2,3

whose entries are

Ajk(∂x, ω) = δjk(µ∆+ ρω2) + (λ+ µ)
∂2

∂xj∂xk
, j, k = 1, 2, 3,

δjk being the delta Kronecker symbol. Equation (1) becomes

A(∂x, ω)u = 0. (2)

When ω = 0 we simply write A(∂x).
The (3× 3) matrix differential operator

T (∂x, n) =
(
Tjk(∂x, n)

)
j,k=1,2,3

is introduced, where

Tjk(∂x, n(x)) = λnj(x)
∂

∂xk
+ µnk(x)

∂

∂xj
+ µδjk

∂

∂n(x)
.

T is known as the stress operator (see [8, p.57]). The matrix of the fundamental
solutions of the homogeneous oscillations system (2) has the form

Γ(x, ω) =
(
Γkj(x, ω)

)
j,k=1,2,3
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where

Γkj(x, ω) =

2∑
l=1

(
δkjαl + βl

∂2

∂xk∂xj

)eikl|x|

|x|
,

i is the imaginary unity, the non-negative constants k1 and k2 are determined by

k21 = ρω2(λ+ 2µ)−1, k22 = ρω2µ−1,

and

αl = δ2l(2πµ)
−1, βl = (−1)l(2πρω2)−1.

Γ(x, ω) is called Kupradze’s matrix (see [8, p. 85]). Each column and each row of
this matrix satisfy (2) for x ̸= 0.
Let

Γ̃(x, ω) = Γ(x, ω)− Γ(x), (3)

Γ(x) being Somigliana’s matrix (see [8, p. 84]).
We recall the following estimates (see [8, pp. 87-88]):

|Γkj(x, ω)| ≤
c(λ, µ)

|x|
, k, j = 1, 2, 3, ∀x ̸= 0,

|Γ̃kj(x, ω)| ≤ |ω|c̃(λ, µ), k, j = 1, 2, 3,

and

|
∂Γ̃kj(x, ω)

∂xl
| ≤ ω2c(λ, µ), k, j, l = 1, 2, 3 (4)

where c(λ, µ), c̃(λ, µ) and c(λ, µ) are positive constants, depending on λ and µ only.
The symbol Ch(Ω) (h ∈ N) stands for the space of all complex-valued continuous

functions whose derivatives are continuously differentiable up to the order h in Ω.
Moreover, the Hölder space Ch,β(Ω) consists of all functions, defined in Ω, having
continuous derivatives up to order h ∈ N and such that the partial derivatives of
order h are Hölder continuous with exponent β ∈ (0, 1].
If u is a h-form in Ω, the symbol du denotes the differential of u, while ∗u denotes

the dual Hodge form.
From now on we consider p ∈ (1,+∞). By Lp(Σ) we denote the space of p-

integrable complex-valued functions defined on Σ. By Lp
h(Σ) we mean the space of

the differential forms of degree h ≥ 1 whose components belong to Lp(Σ).
The Sobolev space W 1,p(Σ) can be defined as the space of functions in Lp(Σ)

such that their weak differential belongs to Lp
1(Σ). If u ∈ [W 1,p(Σ)]3, by du we

denote the vector (du1, du2, du3).
Finally, we write ∗

Σ
w = w0 if w is an 2-form on Σ and w = w0dσ.
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In what follows, we shall distinguish by apices + and − the limit obtained by
approaching the boundary Σ from Ω and R3 \ Ω, respectively, that is

u+(x) = lim
Ω∋y→x

u(y) and u−(x) = lim
R3\Ω∋y→x

u(y).

If B1 and B2 are two Banach spaces and S : B1 → B2 is a continuous linear
operator, we say that S can be reduced on the left if there exists a continuous
linear operator R : B2 → B1 such that RS = I+T , where I stands for the identity
operator on B1 and T : B1 → B1 is compact. Analogously, one can define an
operator S reducible on the right. If S is a reducible operator, its range is closed
and then the equation Sα = β has a solution if and only if ⟨γ, β⟩ = 0, for any
γ ∈ B∗

2 such that S∗γ = 0, S∗ being the adjoint of S (see, e.g., [7] or [9]).

3. Auxiliary results

We need some results about the BVPs


v ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x, ω)v = 0 in Ω

v = 0 on Σ

(5)

and


w ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x, ω)w = 0 in Ω

T (∂x, n)w = 0 on Σ.

(6)

Denote by V0 and W0 the spaces of solutions of (5) and (6), respectively. First,
observe that V0 = {0} (W0 = {0}) whenever ω2 is not a Dirichlet (traction)
eigenvalue of (5) ((6)). Moreover, let us define

V =
{
T (∂x, n)v

∣∣∣
Σ

: v ∈ V0

}
and

W = {w|Σ : w ∈ W0}

We are interested in the kernels of the boundary integral operators ∓I +K and
±I +K∗, where

Kφ(x) =

∫
Σ
[T (∂y, n(y))Γ(x− y, ω)]′φ(y) dσy ,
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the prime denoting the transpose of a matrix, and

K∗ψ(x) =

∫
Σ
[T (∂x, n(x))Γ(x− y, ω)]ψ(y) dσy .

In view of [8, Theorems 2.2 and 2.3, p.413–415], we have

N (I +K) =W and N (I −K∗) = V. (7)

From (4), (3) and [8, p. 236 and p. 355] it follows

dim N (I +K) = dim N (I +K∗) = mT ∈ N (8)

and

dim N (I −K) = dim N (I −K∗) = mD ∈ N .

If ω2 is not an interior traction (Dirichlet) eigenvalue, then mT = 0 (mD = 0).

Lemma 3.1: Suppose mT ̸= 0. Let {ϕ1, . . . , ϕmT } is a basis of N (I +K∗) and
define

wj(x) =

∫
Σ
Γ(x− y, ω)ϕj(y) dσy, x ∈ R3 \ Σ

j = 1, . . . ,mT . Then

ϕj(x) = −1

2
[T (∂x, n(x))w

j(x)]− on Σ,

j = 1, . . . ,mT , and the vector functions

ψj(x) = −[wj(x)]− x ∈ Σ,

j = 1, . . . ,mT , form a basis for N (I +K).

Proof : Note that [T (∂x, n)w
j ]+ = 0 on Σ because ϕj+K∗ϕj = 0 (j = 1, . . . ,mT ).

By applying the jump relation (see [8, p. 416])

[T (∂x, n(x))w
j(x)]+ − [T (∂x, n(x))w

j(x)]− = 2ϕj(x), x ∈ Σ,

we get

ϕj(x) = −1

2
[T (∂x, n(x))w

j(x)]−, x ∈ Σ.

Moreover, [wj ]+ = [wj ]− ∈W = N (I +K) (see (7)).
If we assume that αj (j = 1, . . . ,mT ) solve
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mT∑
j=1

αj

∫
Σ
ψj ϕl dσ = 0, l = 1, . . . ,mT ,

and if we set

w =

mT∑
j=1

αjw
j ,

we have that ∫
Σ
[w]−[T (∂x, n)w]

− dσ = 0.

Then, arguing as in the proof of [8, Theorem 2.13, p. 132], we get

lim
R→+∞

∫
|x|=R

|wp|2 dσ = lim
R→+∞

∫
|x|=R

|ws|2 dσ = 0, (9)

where w = wp + ws,

curl wp = 0, (∆ + k21)wp = 0 ,

div ws = 0, (∆ + k22)ws = 0

in Ω (see [8, Theorem 2.5, p. 123]). In view of Lemma 2.14 in [8, p. 134], (9) along
with radiation conditions lead to w = 0 in R3 \ Ω. Hence [T (∂x, n)w]

− = 0 on Σ
and this implies that

mT∑
j=1

αjϕ
j = 0,

that is αj = 0 (j = 1, . . . ,mT ) due to the fact that ϕj are linearly independent.
Since the determinant of the matrix

∫
Σ
ψj ϕl dσ =

1

2

∫
Σ
[wj ]−[T (∂x, n)w

l]− dσ j, l = 1, . . . ,mT

does not vanish, ψ1, . . . , ψmT are linearly independent and, in view of (8), form a
basis of N (I +K). �

In an analogue to Lemma 3.1, we have the following result.

Lemma 3.2: Suppose mD ̸= 0. Let {η1, . . . , ηmD} be a basis of N (I − K) and
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define

vj(x) =

∫
Σ
[T (∂y, n(y))Γ(x− y, ω)]′ηj(y) dσy, x ∈ R3 \ Σ

j = 1, . . . ,mD. Then

ηj =
1

2
[vj ]− on Σ,

j = 1, . . . ,mD, and the vector functions

[χj ]− = [T (∂x, n)v
j ]− on Σ,

j = 1, . . . ,mD, form a basis of N (I −K∗).

4. Reduction of a certain integral equation

Given f ∈ [W 1,p(Σ)]3 (1 < p <∞) such that∫
Σ
f T (∂x, n)v dσ = 0, ∀ v ∈ V0, (10)

we want to determine a solution of the Dirichlet problem{
A(∂x, ω)u = 0 in Ω

u = f on Σ
(11)

in the form of a simple layer potential

u(x) =

∫
Σ
Γ(x− y, ω)φ(y) dσy, x ∈ Ω (12)

with density φ ∈ [Lp(Σ)]3. Observe that conditions (10) are necessary for the
solvability of the problem (11) because of Green’s formulas.
By imposing the boundary condition to (12), an integral system of equations of

the first kind ∫
Σ
Γ(x− y, ω)φ(y) dσy = f(x) (13)

arises on Σ. Following [1], we take the differential d of both sides of system (13)
and the singular integral system∫

Σ
dx[Γ(x− y, ω)]φ(y) dσy = df(x) (14)

comes out. Note that in (14) the unknown is a vector function φ ∈ [Lp(Σ)]3, while
the data is a vector whose components are differential forms of degree 1 belonging
to Lp

1(Σ).
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We are going to show that the operator on the left-hand side of (14), acting from
[Lp(Σ)]3 into [Lp

1(Σ)]
3, can be reduced on the left.

First, we recall the next result proved in [3] (see also [4] for higher dimensions).

Lemma 4.1: The singular integral operator R : [Lp(Σ)]3 −→ [Lp
1(Σ)]

3

Rjφ(x) =

∫
Σ
dx[Γjk(x− y)]φk(y) dσy (15)

(j = 1, 2, 3) can be reduced on the left. A reducing operator of (15) is the integral
operator R

′
: [Lp

1(Σ)]
3 −→ [Lp(Σ)]3 defined as

R
′

i[ψ](x) =
(λ+ µ)(λ+ 2µ)

(λ+ 3µ)
Kjj [ψ](x)ni(x) + µKij [ψ](x)nj(x)+

+ µ
(λ+ µ)

(λ+ 3µ)
Kji[ψ](x)nj(x)

(16)

(i = 1, 2, 3), where

Kjs[ψ](x) = ∗
∫
Σ
dx[s1(x−y)]∧ψj(y)∧dxs− δ123ihp

∫
Σ

∂

∂xs
[Kij(x−y)]∧ψh(y)∧dyp,

s1(x− y) = − 1

4π|y − x|

3∑
j=1

dxjdyj

and

Kij(x− y) =
1

4π

(yi − xi)(yj − xj)

|y − x|3
.

Theorem 4.2 : Let S : [Lp(Σ)]3 → [Lp
1(Σ)]

3 be the singular integral operator

Sφ(x) =

∫
Σ
dx[Γ(x− y, ω)]φ(y) dσy, x ∈ Σ.

Then S can be reduced on the left by the singular integral operator (16).

Proof : In view of (3)

Sφ(x) =

∫
Σ
dx[Γ(x− y)]φ(y) dσy +

∫
Σ
dx[Γ̃(x− y, ω)]φ(y) dσy

= Rφ(x) + Λφ(x), x ∈ Σ.

The operator (16) reduces S because

R′S = R′R+R′Λ
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is a Fredholm operator. In fact R′ reduces R (Lemma 4.1) and R′Λ is compact (see
(4)). �

5. Representation theorem

In this section we obtain the representability of a solution of the Dirichlet problem
(11) by means of a simple layer potential. To this end we define the space in which
we look for such a solution.

Definition 5.1: We say that the vector function u belongs to Sp if and only
if there exists φ ∈ [Lp(Σ)]3 such that u can be represented by the simple layer
potential (12).

Theorem 5.2 : Let f ∈ [C1,λ(Σ)]3. There exists a solution of the Dirichlet prob-
lem u ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x, ω)u = 0 in Ω
u = f on Σ

(17)

if and only if conditions (10) are satisfied. Moreover, any solution can be repre-
sented as

u(x) =

∫
Σ
Γ(x− y, ω)φ(y) dσy, x ∈ Ω ,

with φ ∈ [C0,λ(Σ)]3.

Proof : In view of [8, pp. 426-428] there exists a solution of (17) if and only if
conditions (10) are satisfied, and any solution can be represented as a double layer
potential

u(x) =

∫
Σ
[T (∂y, n(y))Γ(x− y, ω)]′φ(y) dσy, x ∈ Ω

with φ ∈ [C0,λ(Σ)]3.
Now set

z(x) = ρω2

∫
Ω
Γ(x− y)u(y) dy, x ∈ Ω.

It is well known that z ∈ [C2,λ(Ω)]3. Moreover, z satisfies A(∂x)z = −ρω2u in Ω,
and then A(∂x)u = A(∂x)z in Ω.
The vector function v = u− z satisfies the Dirichlet problemv ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x)v = 0 in Ω
v = f − z on Σ.
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The unique solution v can be represented as a simple layer potential

v(x) =

∫
Σ
Γ(x− y)ψ(y) dσy, x ∈ Ω

with density ψ ∈ [Cλ(Σ)]3 (see [3]). Then v ∈ [C1,λ(Ω)]3 and u = v+z ∈ [C1,λ(Ω)]3

too.
Consider the BVP w ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x, ω)w = 0 in Ω
T (∂x, n)w = T (∂x, n)u on Σ .

(18)

According to [8, pp. 428-431] a solution of (18) exists and it can be represented by
a simple layer potential with density in [C0,λ(Σ)]3. The vector function g = u− w
satisfies the BVP g ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x, ω)g = 0 in Ω
T (∂x, n)g = 0 on Σ.

If ω2 is not a traction eigenvalue, g = 0, and hence u = w, i.e. u is a simple layer
potential with density in [C0,λ(Σ)]3.
If ω2 is a traction eigenvalue, we define

uj(x) =

∫
Σ
Γ(x− y, ω)φj(y) dσy, j = 1, . . . ,mT

{φ1, . . . , φmT } being a basis of the kernel of the operator I +K.
Observe that φj ∈ [C0,λ(Σ)]3 for each j = 1, . . . ,mT . In view of Lemma 3.1

g(x) =

mT∑
j=1

cju
j(x) =

mT∑
j=1

cj

∫
Σ
Γ(x− y, ω)φj(y) dσy, x ∈ Σ.

Moreover

g(x) =

mT∑
j=1

cj

∫
Σ
Γ(x− y, ω)φj(y) dσy, x ∈ Ω

because g̃(x) = g(x) −
mT∑
j=1

cj

∫
Σ
Γ(x − y, ω)φj(y) dσy satisfies A(∂x, ω)g̃ = 0 in Ω

and g̃ = T (∂x, n(x))g̃ = 0 on Σ. Thus g is a simple layer potential with density in
[C0,λ(Σ)]3, and then the same is for u. �

We are now in a position to prove an existence theorem for the singular integral
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equation Sφ = w, i.e.∫
Σ
dx[Γ(x− y, ω)]φ(y) dσy = w(x) a.e. on Σ, (19)

where w ∈ [Lp
1(Σ)]

3 is given and φ ∈ [Lp(Σ)]3 is looked for.
To this end, we recall the following lemma.

Lemma 5.3: [6, Lemma 1] Let g1, g2, . . . , gm ∈ Lp(Σ) (1 < p < ∞) be linearly
independent and h ∈ (0, 1]. If ψ ∈ Lp

1(Σ) is such that∫
Σ
du ∧ ψ = 0, ∀u ∈ C1,h(Σ) :

∫
Σ
ugj dσ = 0, j = 1, . . . ,m

then ψ ∈W 1,p
1 (Σ) and dψ =

m∑
j=1

cjgj dσ.

Theorem 5.4 : Given w ∈ [Lp
1(Σ)]

3, there exists φ ∈ [Lp(Σ)]3 solution of the
singular integral equation (19) if and only if∫

Σ
γj ∧ wj = 0, j = 1, 2, 3

for every γ ∈ [W 1,q
1 (Σ)]3, (q = p/(p− 1)) such that dγ = T (∂x, n)vdσ, with v ∈ V0.

Proof : Consider the adjoint S∗ of S, i.e. the operator S∗ : [Lq
1(Σ)]

3 −→ [Lq(Σ)]3

whose components are

S∗
j [ψ](x) =

∫
Σ
ψj(y) ∧ dy[Γij(x− y, ω)], j = 1, 2, 3.

Theorem 4.2 implies that the integral equation (19) has a solution φ ∈ [Lp(Σ)]3 if
and only if the compatibility conditions∫

Σ
ψj ∧ wj = 0, j = 1, 2, 3

hold for any ψ ∈ [Lq
1(Σ)]

3 such that S∗ψ = 0. Let ψ ∈ [Lq
1(Σ)]

3 such that S∗ψ = 0,
i.e. ∫

Σ
ψj(y) ∧ dy[Γkj(x− y, ω)] = 0, a.e. on Σ.

For any p ∈ [Cλ(Σ)]3, we have

0 =

∫
Σ
pk(x)dσx

∫
Σ
ψj(y) ∧ dy [Γkj(x− y, ω)]

=

∫
Σ
ψj(y) ∧ dy

∫
Σ
pk(x)Γkj(x− y, ω)dσx =

∫
Σ
ψj ∧ duj ,
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where u(y) =

∫
Σ
Γ(x− y, ω)p(x) dσx.

Thanks to Theorem 5.2, we can say that∫
Σ
ψj ∧ duj = 0 (20)

for any u ∈ [C1,λ(Σ)]3 such that∫
Σ
uT (∂x, n)v dσ = 0, ∀ v ∈ V0 .

If ω2 is not a Dirichlet eigenvalue of (5), V0 = {0} and (20) holds for any

u ∈ [C1,λ(Σ)]3. This means that ψ ∈ [W 1,q
1 (Σ)]3 and dψ = 0.

If ω2 is a Dirichlet eigenvalue of (5), there exist v1, . . . , vmD linearly independent
eigensolutions of (5). Therefore, we may say that (20) holds for any u ∈ [C1,λ(Σ)]3

such that ∫
Σ
uj(x)Tkj(∂x, n(x))v

l
k(x) dσx = 0, l = 1, . . . ,mD.

Observe that T (∂x, n)v
1, . . . , T (∂x, n)v

mD are also linearly independent functions
of [Lq(Σ)]3. In fact, let c1, . . . , cmD be complex constants such that

c1T (∂x, n)v
1 + . . .+ cmD

T (∂x, n)v
mD = 0

on Σ. Setting U = c1v
1 + . . . + cmD

vmD , we find A(∂x, ω)U = 0 in Ω and U =
T (∂x, n)U = 0 on Σ. Then, from Green’s formula it follows that U ≡ 0 in Ω
and thus c1 = . . . = cmD

= 0. Hence, for any fixed j = 1, 2, 3, the functions
Tkj(∂x, n)v

1
k, . . . , Tkj(∂x, n)v

mD

k are linearly independent. Now, applying Lemma

5.3 to uj with gj,l = Tkj(∂x, n)v
l
k, (l = 1, . . . ,mD) we get ψj ∈ W 1,q

1 (Σ) and

dψj =

mD∑
l=1

clTkj(∂x, n)v
l
kdσ for some complex constants cl.

Conversely, let ψ ∈ [W 1,q
1 (Σ)]3 be such that dψ = T (∂x, n)v dσ with v ∈ V0.

Then ∫
Σ
Γ(x− y, ω)T (∂y, n(y))v(y) dσy = 0, ∀ x ∈ R3 \ Ω

in view of Green’s formulas. It follows that∫
Σ
Γ(x− y, ω)T (∂y, n(y))v(y) dσy = 0, a.e. on Σ

and this means S∗γ = 0.
�

The next theorem provides the representability of solutions of the Dirichlet prob-
lem for elastostatic oscillations with data in [W 1,p(Σ)]3 by means of a simple layer
potential.
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Theorem 5.5 : Let f ∈ [W 1,p(Σ)]3 (1 < p < ∞). There exists a solution of the
Dirichlet problem u ∈ Sp

A(∂x, ω)u = 0 in Ω
u = f on Σ

(21)

if and only if f satisfies the compatibility conditions (10).

Proof : The necessity of conditions (10) follows from Green’s formula, as already
remarked. For the sufficiency, we first prove that the singular integral system (14)
is solvable in [Lp(Σ)]3. In view of Theorem 5.4, there exists a solution φ ∈ [Lp(Σ)]3

if and only if

∫
Σ
γj ∧ dfj = 0, (j = 1, 2, 3) for every γ ∈ [W 1,q

1 (Σ)]3 such that

dγ = T (∂x, n)vdσ with v ∈ V0. Thus the simple layer potential

z(x) =

∫
Σ
Γ(x− y, ω)φ(y) dσy

satisfies A(∂x, ω)z = 0 in Ω and dz = df on Σ. Therefore there exists a complex
constant c such that z = f + c on Σ. Moreover, for every v ∈ V0, we have∫

Σ
cT (∂x, n)vdσx =

∫
Σ
(z − f)T (∂x, n)v dσx = 0.

Hence, there exists a solution ofw ∈ [C1,λ(Ω)]3 ∩ [C2(Ω)]3

A(∂x, ω)w = 0 in Ω
w = c on Σ ,

and it can be represented by a simple layer potential (see Theorem 5.2). Then the
simple layer potential u = z − w satisfies the Dirichlet problem (21), so the claim
is proved. �
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[8] Kupradze, V.D., Gegelia, T.G., Bas̆eleĭsvili, M.O. and Burculadze, T.V. Three-dimensional prob-
lems of the mathematical theory of elasticity and thermoelasticity North-Holland Series in Applied
Mathematics and Mechanics, 25, North-Holland Publishing Co., Amsterdam, 1979.
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