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In the present work a problem for non-homogeneous piezoelectric elastic rod is studied in the
case when constitutive coefficients vary from zero as power functions of spatial variable x3, i.e.
equal to const.×xκ

3 , κ = const. ∈ [0, 1). It is assumed that all other functions depend on time t
and spatial variable x3, with prescribed charge density (fe) and volume force component (Φ3).
The well-posedness of initial-boundary value problem is studied. The displacement vector
(u3) as well as electric (χ) and magnetic (η) potentials that arise during the deformation are
represented as absolutely and uniformly convergent series. The conditions on the volume force
components Φ1 and Φ2, which guarantee the strain state under consideration, are established.

Introduction

The development of science, industry and technologies on the one hand made the
possibility of constructing such new composite materials with different physical
properties (piezoelectric, piezomagnetic, multi-component mixtures, bio-materials,
meta-materials etc.) that are not found naturally on Earth. On the other hand
these new materials can be used for future development of the same fields. Several
examples include piezoelectric sensors for vibration control ([39]), high precision
actuators ([1]), materials with higher strength and stiffness ([33]) or ones that lower
energy consumption ([37], [13]), production cost and size of sensors or actuators
([1], [39]).
”Piezoelectric materials did not come into widespread use until the World War

I, when quartz was used as resonators for ultrasound sources in SONAR to detect
submarines through echolocation. Although nowadays such materials can be seen
in daily life even in devices such as speakers, headphones or microphones” see [16].
The increasing demand on developing new types of materials makes it necessary

to describe mathematically how do they behave under the influence of various
physical fields.
Direct piezoelectric effect was discovered by the brothers Jacques Curie (1856-

1941) and Pierre Curie (1859-1906) ([14], [15]).
The Magnetoelectric effect was first predicted by Landay and Lifshitz in 1957

([29]) and was later confirmed in an antiferromagnetic single crystal Cr2O3 ([2],
[18]).
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The electromagnetic effects in solid bodies was studied by V. Nowacki ([36]),
P. Denieva at.al. ([16]). Other examples of studies can be found in [17], [34], [40],
[30], [5], [6], [7], [35].
The governing equations for thermo-piezo-electro-magneto-elastic material with

voids are given e.g. in G. Jaiani [23]. The governing equations consist of: 1. motion
equations; 2. kinematic relations; 3. constitutive equations. Constitutive equations
and constants (e.g. piezoelectric and piezomagnetic coefficients, dielectric and mag-
netic permittivity constant, etc.) are determined by experimentally.
In 1955 I. Vekua published his models of elastic prismatic shells ([42]). In

1965 he offered analogous models for standard shells ([43]). Works of I. Babuška,
D. Gordeziani, V. Guliaev, I. Khoma, A. Khvoles, T. Meunargia, C. Schwab,
T. Vashakmadze, V. Zhgenti, and others (see, e.g., [3], [4], [19], [20], [28], [32],
[38], [41], [45]) are devoted to further analysis of I.Vekuas models (rigorous esti-
mation of the modeling error, numerical solutions, etc.) and their generalizations
(to non-shallow shells, to the anisotropic case, etc.). Solving boundary and/or ini-
tial value problems for differential equation systems related to body deformations
can be challenging for example when cusped plates are considered, i.e. such ones
whose thickness on the part of the plate boundary or on the whole one vanishes
(see [8]-[12], [21]-[26], and the references there).
In the present work the problem is studied for longitudinal oscillation of non-

homogeneous piezoelectric elastic rod when constitutive coefficients are power func-
tions of the spatial variable x3. The elastic rod can be thought as a rectangular
prism with constant height, length and width (generally, width and height of a
rod can be variable, but in the present work they are considered constants). We
consider spacial 1D particular case of 3D model, all functions where depended only
on x3 spatial variable and on time t. The main problem is to find the displacement
(u3), electric potential (χ) and magnetic potential (η) when charge density (fe)
and the projection of volume force on x3 (Φ3) are given. The top and the bottom
ends of the rod are fixed. The conditions on the volume force components Φ1 and
Φ2 which guarantee the strain state under consideration are established.
The work is organized as follows: in Section 1 some preliminary materials are

provided: in Section 1.1 the system of differential equations is given for spacial 1D
case; In Section 2 the problem is discussed when the constitutive coefficients are
considered as power functions of spatial variable x3, i.e. these coefficients equal to
const. × xκ3 , κ = cosnt. ∈ [0, 1). All the mechanical quantities are calculated by
means of u3(x3, t). For u3(x3, t) we get Fredholm type linear integro-differential
equation of the second kind. The solutions are represented as series, absolute and
uniform convergence of the series are proved.

1. Preliminary Materials

1.1. System of Differential Equations

We consider a piezoelectric elastic rod ([23], [24]):

V̄ := {(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ L, 0 ≤ x1 ≤ d, 0 ≤ x2 ≤ h}, (1)

where L, h = const.
The governing equations for piezoelectric Kelvin-Voigt materials with voids has
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the following form (see e.g. [23]):
Motion Equations

Xji,j +Φi = ρüi(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, t > t0; i, j = 1, 3, (2)

Dj,j = fe, Bj,j = 0, Ω×]0, T [, j = 1, 3, (3)

whereXij ∈ C1(Ω) is the stress tensor; Φi are the volume force components; ρ is the
mass density; ui ∈ C2(Ω) are the displacements; fe : Ω×]0, T [→ R1 is the electric
charge density; D := (D1, D2, D3) : Ω×]0, T [→ R3 is the electrical displacement
vector; B := (B1, B2, B3) : Ω×]0, T [→ R3 is the magnetic induction vector. Here
and in the future Einstein summation convention is used.

Figure 1. Rod given by region V̄

Kinematic Relations

eij =
1

2
(ui,j + uj,i), i, j = 1, 3, (4)

where eij ∈ C1(Ω) is the strain tensor.
Constitutive Equations

Xji = Xij = Eijklekl + pkijχ,k + qkijη,k, i, j, k, l = 1, 3, (5)

Dj = pjklekl − ςjlχ,l − ãjlη,l, i, j, k, l = 1, 3, (6)

Bj = qjklekl − ãjlχ,l − ξjlη,l, i, j, k, l = 1, 3, (7)

where Eijkl are elastic constants (measured at constant electric and magnetic
fields), χ : Ω×]0, T [→ R1 and η : Ω×]0, T [→ R1 are electric and magnetic po-
tentials, respectively; pkij are piezoelectric coefficients (measured at constant mag-
netic field), and qkij are piezomagnetic coefficients (measured at constant electric
field); ςjl and ξjl are dielectric permittivity coefficients (measured at constant strain
and magnetic filed) and magnetic permeability coefficients (measured at constant
strain and electric field), respectively; ãjl are the coupling coefficients (so called
magnetoelectric coefficients) connecting electric and magnetic fields (measured at
constant strain) ([23], [44]). The constitutive coefficients Eijkl, pkij , qkij , ςjl, ãjl, ξjl



124 Lecture Notes of TICMI

satisfy the following symmetry relations ([36]):

Eijkl = Ejikl = Ejilk = Eklij , ξjl = ξlj , ãjl = ãlj ,

pkij = pkji, qkij = qkji, ςjl = ςlj , i, j, k, l = 1, 3. (8)

Let us consider the case when u1 = u2 ≡ 0 and u3 ̸≡ 0, and polarization is
parallel to x3 axis. Under these consideration, if we insert (4) into (5)-(7) and
the result into equations (2) and (3), and use (8) relations it will lead us to the
following system of equations:

(Eα333u3,3 + p3α3χ,3 + q3α3η,3),3 +Φα = 0, α = 1, 2, (9)

(E3333u3,3 + p333χ,3 + q333η,3),3 +Φ3 = ρü3, (10)

(p333u3,3 − ς33χ,3 − ã33η,3),3 = fe, (11)

(q333u3,3 − ã33χ,3 − ξ33η,3),3 = 0. (12)

Here, Φ3, ρ and fe are known functions and we have to solve the system of
equations for u3, χ and η. The general idea of solving this system of equations
is to find functions (x3, χ, η) from the system (10)-(12). Then from (9) can be
find conditions for the volume force components Φ1 and Φ2 which guarantee the
deformation under consideration.
Note that equations (9) and (10) are obtained from motion equation (2), whereas

equations (11) and (12) from (3).

2. Oscillation of Piezoelectric Elastic Rod with Variable Constitutive
Coefficients

In the following section we consider the case when constitutive coefficients are
power functions of spatial variable x3:

Ei333 = E0
i333x

κ
3 , p3i3 = p03i3x

κ
3 , q3i3 = q03i3x

κ
3 , ς33 = ς033x

κ
3 ,

ξ33 = ξ033x
κ
3 , ã33 = ã033x

κ
3 , x3 ∈ [0, L], i = 1, 3,

(13)

where E0
i333, p

0
3i3, q

0
3i3, ς

0
33, ξ

0
33, ã

0
33, κ = const, i = 1, 3 and κ ≥ 0.

From (13) the system of equations (10)-(12) becomes as follows

(E0
3333x

κ
3u3,3 + p0333x

κ
3χ,3 + q0333x

κ
3η,3),3 +Φ3 = ρü3, (14)

(p0333x
κ
3u3,3 − ς033x

κ
3χ,3 − ã033x

κ
3η,3),3 = fe, (15)

(q0333x
κ
3u3,3 − ã033x

κ
3χ,3 − ξ033x

κ
3η,3),3 = 0. (16)

In the case κ = 0 from physical considerations it follows that ([35], [36])

ξ033ς
0
33 − (ã033)

2 > 0.
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Let farther E0
3333 > 0. Under these conditions it can be proved that

D :=

∣∣∣∣∣∣
E0

3333 p0333 q0333
p0333 −ς033 −ã033
q0333 −ã033 −ξ033

∣∣∣∣∣∣ > 0. (17)

If we consider equations (14)-(16) as algebraic system for (xκ3u3,3),3, (x
κ
3χ,3),3

and (xκ3η,3),3, then from (17) it is evident, that the system of equations (14)-(16)
has a unique solution.

2.1. Solution of The System of Differential Equations (14)-(16)

Let the following conditions be fulfilled:

u3(·, t) ∈ C2(]0, L[) ∩ C([0, L]),

u3(x3, ·) ∈ C2(t > 0) ∩ C1(t ≥ 0), u3(x3, t) ∈ C(0 ≤ x3 ≤ L, t ≥ 0).

Furthermore let κ < 1 and consider the following homogeneous boundary condi-
tions:

u3(0, t) = u3(L, t) = ξ(0, t) = ξ(L, t) = η(0, t) = η(L, t) = 0 (18)

and non-homogeneous initial conditions:

u3(x3, 0) = φ1(x3), (19)

u̇3(x3, 0) = φ2(x3). (20)

Integration of (14) from L to x3, dividing both sides of the resulted equation by
xκ3 and integration of the result a second time from L to x3 gives us the following
general equation:

E0
3333u3 + p0333χ+ q0333η − ρ

1− κ

∫ x3

L
(x1−κ

3 − y1−κ)ü3(y, t)dy

= − 1

1− κ

∫ x3

L
(x1−κ

3 − y1−κ)Φ3(y)dy +
c11

1− κ
(x1−κ

3 − L1−κ) + c12.

(21)

Then using boundary conditions (18) we have

c11 =
1

L1−κ

[
ρ

∫ L

0
y1−κü3(y, t)dy −

∫ L

0
y1−κΦ3(y)dy

]
,

c12 = 0.

(22)
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Substituting (22) into (21) we get

E0
3333u3(x3, t) + p0333χ(x3, t) + q0333η(x3, t)

− ρ

1− κ

∫ x3

L
(x1−κ

3 − y1−κ)ü3(y, t)dy

= − 1

1− κ

∫ x3

L
(x1−κ

3 − y1−κ)Φ3(y, t)dy

+
x1−κ
3 − L1−κ

(1− κ)L1−κ

(
ρ

∫ L

0
y1−κü3(y, t)dy −

∫ L

0
y1−κΦ3(y, t)dy

)
.

(23)

Similarly, from (15) and (16) we can express χ and η by u3 as follows

χ(x3, t) =
ξ033p

0
333 − ã033q

0
333

ξ033ς
0
33 − (ã033)

2
u3(x3, t)

− 1

1− κ

ξ033
ξ033ς

0
33 − (ã033)

2

∫ x3

L
(x1−κ

3 − y1−κ)fe(y)dy

− 1

ξ033ς
0
33 − (ã033)

2

c21
1− κ

(x1−κ
3 − L1−κ)− c22

ξ033ς
0
33 − (ã033)

2
.

(24)

η(x3, t) =
ã033p

0
333 − ς033q

0
333

(ã033)
2 − ξ033ς

0
33

u3(x3, t)

− 1

1− κ

ã033
(ã033)

2 − ξ033ς
0
33

∫ x3

L
(x1−κ

3 − y1−κ)fe(y)dy

− 1

(ã033)
2 − ξ033ς

0
33

c31
1− κ

(x1−κ
3 − L1−κ)− c32

ξ033ς
0
33 − (ã033)

2
.

(25)

Using boundary conditions (18) from (24) and (25) we get

c21 =
ξ033
L1−κ

∫ L

0
y1−κfe(y)dy, c22 = 0,

c31 =
ã033
L1−κ

∫ L

0
y1−κfe(y)dy, c32 = 0.

(26)

Finally, using (26) we have

χ(x3, t) =
1

ξ033ς
0
33 − (ã033)

2
×[

(ξ033p
0
333 − ã033q

0
333)u3(x3, t)−

ξ033
1− κ

∫ x3

L
(x1−κ

3 − y1−κ)fe(y, t)dy

− ξ033(x
1−κ
3 − L1−κ)

(1− κ)L1−κ

∫ L

0
y1−κfe(y, t)dy

]
,

(27)
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η(x3, t) =
−1

ξ033ς
0
33 − (ã033)

2
×[

(ã033p
0
333 − ς033q

0
333)u3(x3, t)−

ã033
1− κ

∫ x3

L
(x1−κ

3 − y1−κ)fe(y, t)dy

− ã033(x
1−κ
3 − L1−κ)

(1− κ)L1−κ

∫ L

0
y1−κfe(y, t)dy

]
.

(28)

If we substitute (27) and (28) into (23) we obtain

u3(x3, t) + ρ

∫ L

0
K(x3, y)ü3(y, t)dy = −A2

∫ L

0
K(x3, y)fe(y, t)dy

+

∫ L

0
K(x3, y)Φ3(y, t)dy,

(29)

where

K(x3, y) =
1

(1− κ)A1L1−κ
×

{
y1−κ(L1−κ − x1−κ

3 ), 0 ≤ y ≤ x3,

x1−κ
3 (L1−κ − y1−κ), x3 ≤ y ≤ L,

(30)

A1 = E0
3333 +

(p0333)
2ξ033 − 2p0333q

0
333ã

0
33 + (q0333)

2ς033
ξ033ς

0
33 − (ã033)

2
, (31)

A2 =
p0333ξ

0
33 − q0333ã

0
33

ξ033ς
0
33 − (ã033)

2
. (32)

It can be easily proof, that K(x3, y) is a symmetric kernel (see [9]).
Furthermore, all of the eigenvalues of K(x, t) are real
Using (27) and (28) we obtain

χ,3(x3, t) =
1

(ξ033ς
0
33 − (ã033)

2)xκ3

[
(p0333ξ

0
33 − q0333ã

0
33)u3,3(x3, t)x

κ
3

+ξ033

∫ L

x3

fe(y, t)dy −
ξ033
L1−κ

∫ L

0
y1−κfe(y, t)dy

]
,

(33)

η,3(x3, t) = − 1

(ξ033ς
0
33 − (ã033)

2)xκ3

[
(ã033p

0
333 − ς033q

0
333)u3,3(x3, t)x

κ
3

+ã033

∫ L

x3

fe(y, t)dy −
ã033
L1−κ

∫ L

0
y1−κfe(y, t)dy

]
.

(34)

Substitution of (33)-(34) into (14) gives us the following equation:

[A1u3,3x
κ
3 ],3 − ρü3 = F (x3, t), (35)
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where

F (x3, t) := A2fe(x3, t)− Φ3(x3, t). (36)

Let us firstly assume that fe(x3, t) ≡ 0 and Φ3(x3, t) ≡ 0 for all x3 ∈ [0, L] and
t > 0. Thus from (36):

F (x3, t) ≡ 0. (37)

If we look for u3(x3, t) in the following form:

u3(x3, t) = X(x3)T (t) (38)

then from (35), (37) and (38) we get

T̈ (t)

T (t)
=

A1(X,3(x3)x
κ
3),3

ρX(x3)
= −λ2 = const. (39)

In view of boundary conditions (18) from (38) we have

X(0) = X(L) = 0. (40)

Therefore, from (29), (38) and (39) we obtain

T̈ (t)

T (t)
= −λ2 = − X(x3)

ρ
∫ L
0 K(x3, y)X(y)dy

(41)

and

X(x3) = λ2ρ

∫ L

0
K(x3, y)X(y)dy. (42)

Let us prove the following two lemmas:

Lemma 2.1: Number of λ2
n eigenvalues of the equation (42) is not finite.

Proof : Assume, for the sake of contradiction, that the number of λ2
n is finite, and

n = 1,m. Then K(x3, y) can be written as (see, e.g., [9], [27], [31]):

K(x3, y) =

m∑
n=1

Xn(x3)Xn(y)

λ2
n

,

where Xn(x3) ∈ C2(]0, L[). Thus

K(x3, y) ∈ C2(]0, L[). (43)

Then

K ′(x3, y)
∣∣
y→x− −K ′(x3, y)

∣∣
y→x3+

= −x−κ
3

A1
,
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i.e., K(x3, y) /∈ C2(]0, L[) that contradicts (43). �

Lemma 2.2: The solution of the problem is oscillatory.

Proof : From (39) we have

X(x3) = − A1

λ2ρ
(X,3(x3)x

κ
3),3. (44)

Without loss of generality Xn(x3) be orthonormalized eigenfunctions of (44) (see,
e.g., [9], [27], [31]), then

λ2
nXn(x3) = −A1

ρ
(Xn,3(x3)x

κ
3),3.

If we multiply both sides of the last expression by Xn(x3) and integrate from 0 to
L, we get

λ2
n = −A1

ρ

∫ L

0
Xn(x3)(Xn,3(x3)x

κ
3),3dx3 =

A1

ρ

∫ L

0
(Xn,3x

κ/2
3 )2dx3.

On the other hand, from (17) and (31) we have

A1 = D(ξ033ς
0
33 − (ã033)

2) > 0.

Thus, λ2
n > 0. �

Using the result of Lemma 2.2 the solutions of (41) for functions Tn(t) with
corresponding eigenvalues λ2

n are:

Tn(t) = bn1sin(λ
2
nt) + bn2cos(λ

2
nt).

Together with (38) this gives us a formal expression for u3(x3, t):

u3(x3, t) =

∞∑
n=1

Xn(x3)
(
bn1sin(λ

2
nt) + bn2cos(λ

2
nt)

)
. (45)

If we formally take the derivative of (45) with respect to time t we obtain

du3(x3, t)

dt
=

∞∑
n=1

λ2
nXn(x3)

(
bn1cos(λ

2
nt)− bn2sin(λ

2
nt)

)
. (46)

In view of initial conditions (19)-(20) from (45) and (46) we formally have

φ1(x3) =

∞∑
n=1

Xn(x3)b
n
2 , (47)
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φ2(x3) =

∞∑
n=1

λ2
nXn(x3)b

n
1 . (48)

To find expressions for bn1 and bn2 let us assume

Ψα(x3) :=
A1

ρ
(φα,3(x3)x

κ
3),3 ∈ C([0, L]), α = 1, 2. (49)

If we integrate (49) from L to x3, divide both sides of the obtained equation by x3
and integrate the result a second time from L to x3, under the boundary conditions
(18) we get

φα(x3) = −ρ

∫ L

0
K(x3, y)Ψα(y)dy, α = 1, 2, (50)

where K(x3, y) is defined by (30).
Since Ψi(ξ) ∈ C([0, L]) and K(x3, ξ) ∈ C([0, L] × [0, L]) is symmetric, φα(x3)

can be represented as the following absolutely and uniformly convergent series on
the interval [0, L] (see, e.g., [9], [27], [31]):

φα(x3) =

∞∑
n=1

(∫ L

0
φα(y)Xn(y)dy

)
Xn(x3), α = 1, 2. (51)

Finally, (51) together with (47) and (48) gives us:

bn1 =
1

λ2
n

∫ L

0
φ2(y)Xn(y)dy, (52)

bn2 =

∫ L

0
φ1(y)Xn(y)dy, (53)

Absolute and uniform convergence of the series in the right-hand side (RHS) of
(45) and (46), as well as of the series for xκu3,3(x3, t) and (xκu3,3(x3, t)),3 in case
of homogeneous problem (see eq. (37)) is proved in Section 2.2.
Now, let us consider the case when fe(x3, t) ̸≡ 0 and Φ3 ̸≡ 0. Additionally, let us

firstly consider the problem when φi(x3) given by initial conditions (19)-(20) are
equivalently zero on the interval x3 ∈ [0, L].
Let F (x3, t) ∈ L2([0, L]). Then F (x3, t) can be represented as:

F (x3, t) =

∞∑
n=1

cnϕn,

where ϕn form an orthogonal family in L2([0, L]). Then, F (x3, t) can be represented
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as a uniformly convergent series:

F (x3, t) =

∞∑
n=1

(F (x3, t), Xn(x3))Xn(x3)

=

∞∑
n=1

(∫ L

0
F (x3, t)Xn(x3)dx3

)
Xn(x3)

=

∞∑
n=1

Fn(t)Xn(x3),

(54)

where

Fn(t) =

∫ L

0
F (x3, t)Xn(x3)dx3. (55)

We look for the solution in the form:

u3(x3, t) =

∞∑
n=1

un(x3, t), (56)

where un(x3, t) is a solution of the problem with F (x3, t) replaced by Xn(x3)Fn(t).
Using the method of separation of variables we can write:

un(x3, t) = Xn(x3)T1n(t). (57)

Then from equation (35) we have

(A1Xn,3(x3)x
κ
3),3

Xn(x3)
=

ρT̈1n(t) + Fn(t)

T1n(t)
= −λ2

n, (58)

where Xn(x3) satisfies (42).
If we solve (58) for Tin(t) using the method of variation of parameters, then from

(56), (57) and initial-boundary conditions, T1n can be written as:

T1n =

√
ρ

λ2
n

∫ t

0
Fn(τ)sin

(
λ2
n√
ρ
(t− τ)

)
dτ. (59)

Furthermore, from (57) and (59) we get the following series for u3(x3, t):

u3(x3, t) =

∞∑
n=1

√
ρ

λ2
n

Xn(x3)

∫ t

0

[∫ L

0
F (ξ, τ)Xn(ξ)dξ

]
sin

(
λ2
n√
ρ
(t− τ)

)
dτ. (60)

If F (., t) ∈ C([0, L]) and F (x3, .) ∈ C(t > 0) ∩ C1(t > 0) ∩ C2(t > 0), the proofs
of absolute and uniform convergence of the series in the right-hand side of (60), of
its first and second order derivatives with respect to time, as well as of the series
for xκu3,3(x3, t) and (xκu3,3(x3, t)),3 are given in Section 2.2.2.



132 Lecture Notes of TICMI

Finally, if φi(x3) ̸≡ 0 then the solution can be expressed as:

u3(x3, t) =

∞∑
n=1

un(x3, t), (61)

where

un(x3, t) = Xn(x3)(Tn + T1n),

Xn(x3)Tn is here given by (45) and Xn(x3)T1n is given by (60).
The solutions for χ and η can be found by direct substitution of (61) into (24)

and (25), correspondingly. The conditions for Φ1 and Φ2 can be found from (9):

Φα = −(Eα333u3,3 + p3α3χ,3 + q3α3η,3),3, α = 1, 2, (62)

where χ,3 and η,3 are given by (33) and (34), correspondingly. The expression for
u3,3 can be obtained from (61):

u3,3(x3, t) =

∞∑
n=1

Xn,3(Tn + T1n),

where

Xn,3(x3) = − 1

xκ3

ρλ2
n

A1

∫ L

0
K1(x3, ξ)Xn(ξ)dξ (63)

and

K1(x3, ξ) =


ξ1−κ

L1−κ
, 0 ≤ ξ < x3,

ξ1−κ

L1−κ
− 1, x3 ≤ ξ ≤ L.

We get expression (63) from (39) using boundary conditions (18).

2.2. Absolute Uniform Convergence of the Solution

Remark 1 : For simplicity, throughout the following proofs, functions in LHS of
inequalities mean the corresponding series.

2.2.1. Convergence of the solution of homogeneous differential equation

Theorem 2.3 : The series in RHS of (47) and (48) are absolutely and uniformly
convergent on x3 ∈ [0, L].
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Proof : From (39) and (52) we have

bn1 = − A1

λ4
nρ

∫ L

0
(Xn,3(x3)x

κ
3),3 φ2(x3)dx3

=
A1

λ4
nρ

∫ L

0
Xn,3(x3)x

κ
3φ2,3(x3)dx3 = − A1

λ4
nρ

∫ L

0
Xn(x3)φ2(x3)dx3.

(64)

Analogously:

bn2 = − A1

λ2
nρ

∫ L

0
Xn(x3)φ1(x3)dx3. (65)

As the series given in RHS of (51) is absolutely and uniformly convergent on [0, L],
and K(x3, ξ) ∈ C([0, L]× [0, L]), from (42) and (65) we have

|φ1| ≤
∞∑
n=1

|Xn(x3)b
n
2 | =

∞∑
n=1

∣∣∣∣λ2
nρ

∫ L

0
K(x3, y)Xn(y)b

n
2dy

∣∣∣∣
≤ |A1|

∞∑
n=1

∣∣∣∣∫ L

0
K(x3, y)

[∫ L

0
Xn(ξ)φ1(ξ)Xn(y)dξ

]
dy

∣∣∣∣
≤ |A1|

∫ L

0
|K(x3, y)|

∞∑
n=1

∣∣∣∣∫ L

0
Xn(ξ)φ1(ξ)Xn(y)dξ

∣∣∣∣ dy
≤ |A1|

∫ L

0
|K(x3, y)|M(y)dy ≤ |A1|M

∫ L

0
|K(x3, y)|dy < ∞,

where

M(y) =

∞∑
n=1

∣∣∣∣∫ L

0
Xn(ξ)φ1(ξ)Xn(y)dξ

∣∣∣∣ .
RHS of last expression is absolutely and uniformly convergent on [0, L] and M =
max
0≤y≤L

M(y). Analogously using (64) we have

|φ2| ≤
∞∑
n=1

∣∣λ2
nXn(x3)b

n
1

∣∣ < ∞.

�

Theorem 2.4 : The series in RHS of (45), as well as its first and second order
derivatives with respect to time t is absolutely and uniformly convergent on x3 ∈
[0, L].
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Proof : From (45), using results from Theorem 2.3, we have

|u3(x3, t)| ≤
∞∑
n=1

|Xn(x3)||bn1 |
∣∣sin (

λ2
nt
)∣∣+ ∞∑

n=1

|Xn(x3)||bn2 |
∣∣cos (λ2

nt
)∣∣

≤ 1

λ0

∞∑
n=1

∣∣λ2
nXn(x3)b

n
1

∣∣+ ∞∑
n=1

|Xn(x3)b
n
2 | < ∞.

From (46) and absolute uniform convergence of the series in RHS of (51) we have

|u̇3(x3, t)| ≤
∞∑
n=1

λ2
n|Xn(x3)||bn1cos(λ2

nt)|+
∞∑
n=1

λ2
n|Xn(x3)||bn2sin(λ2

nt)|

≤ A1

λ2
0ρ

∞∑
n=1

|Xn(x3)|
∣∣∣∣∫ L

0
Xn(ξ)φ2(ξ)dξ

∣∣∣∣+ A1

λ0ρ

∞∑
n=1

|Xn(x3)|
∣∣∣∣∫ L

0
Xn(ξ)φ1(ξ)dξ

∣∣∣∣
≤ A1

λ2
0ρ

M2(x3) +
A1

λ0ρ
M1(x3) < ∞,

where λ2
0 := min

n
λ2
n and

Mα(x3) :=

∞∑
n=1

|Xn(x3)|
∣∣∣∣∫ L

0
Xn(ξ)φα(ξ)dξ

∣∣∣∣ . (66)

Analogously,

|ü3(x3, t)| ≤
A1

λ0ρ

∞∑
n=1

|Xn(x3)|
∣∣∣∣∫ L

0
Xn(ξ)φ2(ξ)dξ

∣∣∣∣
+

A1

ρ

∞∑
n=1

|Xn(x3)|
∣∣∣∣∫ L

0
Xn(ξ)φ1(ξ)dξ

∣∣∣∣ < ∞.

�

Remark 2 : As it was proved in Lemma 2.1, eigenvalues λ2
n are infinite in number.

Furthermore, it was stated, that the kernel K(x3, y) given by (30) is symmetric.
In ([31]) it is shown, that in case of symmetric kernel, to each eigenvalue belongs
the normalized orthogonal system of eigenfunctions and there exists at least one
eigenvalue. Additionally, if they are infinite in number, they form a denumerable
set and they may be arranged in the order of magnitude of their absolute values:

|λ2
1| ≤ |λ2

2| ≤ ... ≤ |λ2
n| ≤ ....

Consequently, we can chose λ2
0 such that λ2

0 := min
n

λ2
n.

Theorem 2.5 : The corresponding series of xκ3u3,3(x3, t) is absolutely and uni-
formly convergent on x3 ∈ [0, L].
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Proof : Together with (45) and (64)-(65):

|xκ3u3,3 (x3, t)| =

∣∣∣∣∣xκ3
∞∑
n=1

Xn,3(x3)
(
bn1sin

(
λ2
nt
)
+ bn2cos

(
λ2
nt
))∣∣∣∣∣

=

∣∣∣∣∣ ρ

A1

∞∑
n=1

λ2
n

∫ L

0
K1(ξ)Xn(ξ)

(
bn1sin

(
λ2
nt
)
+ bn2cos

(
λ2
nt
))

dξ

∣∣∣∣∣
≤ M

[
1

λ2
0

∞∑
n=1

∫ L

0

∣∣∣∣Xn(ξ)

∫ L

0
Xn(η)φ2(η)dη

∣∣∣∣ dξ
+

∞∑
n=1

∫ L

0

∣∣∣∣Xn(ξ)

∫ L

0
Xn(η)φ1(η)dη

∣∣∣∣ dξ
]

≤ M

[
M2

λ0
+M1

]
< ∞,

where M := max
ξ

K1(ξ), Mα, α = 1, 2 is defined by (66). �

Theorem 2.6 : The corresponding series of (xκ3u3,3(x3, t)),3 is absolutely and uni-
formly convergent on x3 ∈ (0, L].

Proof : Using the result of Theorem 2.5 and proceeding in the same way, we get∣∣∣(xκ3u3,3(x3, t)),3∣∣∣ = ∣∣κxκ−1
3 u3,3 + xκ3u3,33

∣∣
≤ 2κρ

x3A1

∣∣∣∣∣
∞∑
n=1

λ2
n

∫ L

0
K1(ξ)Xn(ξ) (b

n
1sin (λnt)

+bn2cos (λnt)) dξ| ≤
2κC∗

x3
,

where C∗ is a constant such that |xκu3,3(x3, t)| ≤ C∗ (see Theorem 2.5). �

2.2.2. Convergence of the solution of non-homogeneous differential equation

Remark 3 : Note, that from (42) and (54) F (x3, t) can be written in the form:

F (x3, t) =

∫ L

0
K(x3, y)g(x3, y, t)dy,

where g(x3, y, t) ∈ C([0, L], [0, L], t > 0).

Theorem 2.7 : If F (x2, t) ∈ C([0, L], t > 0), the series in RHS of (60) is abso-
lutely and uniformly convergent on x3 ∈ [0, L].

Proof :

|u3(x3, t)| ≤

∣∣∣∣∣1ρ
∫ t

0

∞∑
n=1

(
1

λ2
n

∫ L

0
F (ξ, τ)Xn(x3)(ξ)dξ

)
Xn(x3)

∣∣∣∣∣ .
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If conditions of the theorem hold for F (x3, t) then by virtue of Remark 3 (see, e.g.,
[9], [27], [31])

∞∑
n=1

(∫ L

0
F (ξ, τ)Xn(x3)(ξ)dξ

)
Xn(x3)

is absolutely and uniformly convergent on [0, L], thus

∞∑
n=1

(∫ L

0
F (ξ, τ)Xn(x3)(ξ)dξ

)
Xn(x3) ≤ c(τ)

and

|u3(x3, t)| ≤
∣∣∣∣ 1

ρλ2
0

∫ t

0
c(τ)dτ

∣∣∣∣ < ∞, λ2
0 := min

n
λ2
n.

�

Theorem 2.8 : If F (., t) ∈ C([0, L]) and F (x3, .) ∈ C(t > 0)∩C1(t > 0)∩C2(t >
0) then first and second order derivatives of the series given in RHS of (60) with
respect to time is absolutely and uniformly convergent on x3 ∈ [0, L].

Proof : Similarly to the proof of Theorem (2.7) we have

|u̇3(x3, t)| ≤

∣∣∣∣∣1ρ
∫ t

0

∞∑
n=1

(
1

λ2
n

∫ L

0
Ḟ (ξ, τ)Xn(x3)(ξ)dξ

)
Xn(x3)

∣∣∣∣∣
+

∣∣∣∣∣1ρ
∫ t

0

∞∑
n=1

(∫ L

0
F (ξ, τ)Xn(x3)(ξ)dξ

)
Xn(x3)

∣∣∣∣∣ < ∞.

�

Theorem 2.9 : If F (x2, t) ∈ C([0, L], t > 0), the corresponding series of
xκ3u3(x3, t) is absolutely and uniformly convergent on x3 ∈ [0, L].

Proof : Similarly to the proof of Theorem 2.7:

|xκ3u3(x3, t)| ≤
∣∣∣∣ xκ3ρλ2

0

∫ t

0
c(τ)dτ

∣∣∣∣ < ∞.

�

Theorem 2.10 : If F (x2, t) ∈ C([0, L], t > 0), the corresponding series of
(xκ3u3(x3, t)),3 is absolutely and uniformly convergent on x3 ∈ (0, L].

Proof : Similarly to the proofs of Theorem 2.7 and Theorem 2.9 we can show that

|(xκ3u3(x3, t)),3| ≤
∣∣∣∣ xκ3ρλ2

0

∫ t

0
c(τ)dτ

∣∣∣∣+ ∣∣∣∣κxκ−1
3

ρλ2
0

∫ t

0
c(τ)dτ

∣∣∣∣ < ∞.

�
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3. Conclusions

A problem for non-homogeneous piezoelectric elastic rod is studied in the case when
constitutive coefficients vary from zero as power function of spatial variable x3, i.e.
equal to const. × xκ3 , κ = const. ∈ [0, 1). It is assumed that all other functions
depend on time t and/or spatial variable x3, with prescribed charge density (fe)
and volume force component (Φ3). The well-posedness of initial-boundary value
problem is studied. The conditions on the volume force components Φ1 and Φ2

which guarantee the deformation under consideration are established.
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