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1. Introduction

In 1933 [1] and in 1940 [2] Sir Edward Maitland Wright (1906 - 2005) introduced
to the mathematical literature new special functions which initially were regarded
as some kind of generalization of the Bessel functions. Later on, these functions,
which are named after him, started to be independent special functions and to play
an important role in solution of the linear partial fractional differential equations.
These differential equations describe a wide range of important physical phenomena
that occur in condensed and soft matter physics, geophysics, meteorology, in frac-
tional kinetics and diffusion processes, in statistical mechanics, in socio-economical
models and in many other problems that take place in natural sciences and in
engineering disciplines (see for example [3-17] ).
The Wright functions Wλ,µ(z) are defined in the complex plane C with parame-

ters λ and µ by the power-series:

Wλ,µ(z) =

∞∑
k=0

zk

k! Γ(λk + µ)
. (1)
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They turn out to be entire functions in z ∈ C of order 1/(1 + λ) for λ > −1 and for
any complex µ (here we take µ real, always µ ≥ 0). Thus we note that the Wright
functions are of exponential order only if λ ≥ 0. The case λ = 0 is trivial wince
W0,µ = ez/Γ(µ).
Following Mainardi (see i.e. the appendix F of his 2010 book [12]), taking into

account the different order, we distinguish the Wright functions of the first kind
for λ ≥ 0, and of the second kind for −1 < λ < 0. This distinction between the two
kinds is justified for the differences arising in the asymptotic representation in the
complex domain and in the expression of the corresponding Laplace transforms,
as outlined by Gorenflo, Luchko and Mainardi in [8]. In this paper we restrict
our attention to the Wright functions of the second kind, following the notation
(formerly introduced by Mainardi) of denoting by ν the positive parameter −λ.
Then for our Wright functions of the second kind we take the following definition
in terms of power series

W−ν,µ(z) =

∞∑
k=0

zk

k! Γ(−νk + µ)
, 0 < ν < 1, µ ≥ 0 . (2)

We find worthwhile to add the main integral representation in the complex plane
of these functions that reads

W−ν,µ(z) =
1

2πi

∫
Ha

e ζ + zζν dζ

ζµ
, 0 < ν < 1, µ ≥ 0, (3)

where Ha denotes the Hankel path, that is a loop which starts from −∞ along the
lower side of negative real axis, encircles with a small circle the axes origin and
ends at −∞ along the upper side of the negative real axis.
Concerning the Laplace transforms of the Wright functions of the second kind

we point out the following results recently recalled in the survey by Mainardi and
Consiglio [17].
For z = −x/tν with x > 0, t > 0

L
{
tµ−1W−ν,µ(−x/tν); t→ s

}
= s−µe−x s

ν
, 0 < ν < 1, µ ≥ 0, (4)

and for z = t > 0

L{W−ν,µ(−t); t→ s} = Eν,µ+ν (−s) 0 < ν < 1, µ ≥ 0. (5)

Above we have introduced the Mittag-Leffler function in two parameters α > 0,
β ∈ C defined by its convergent series for all z ∈ C

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, (6)

on which we will return later in Sections 2, 3. We note that in Eqs. (4) and (5)
the arguments are negative so the series of the corresponding Wright functions are
with sing-alternating terms.
In the class of the Wright function of the second kind particular mention is at-

tributed to the two functions obtained when µ = 0 and µ = 1−ν for their relevance
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in time fractional fractional diffusion wave equations. Indeed they are frequently
discussed in the literature of fractional calculus, see i.e. [6-17] and referred to as
the Mainardi auxiliary functions. Their power series representations (depending on
the single parameter ν) read

Fν(z) :=W−ν,0(−z) =
∞∑
k=0

(−z)k

k! Γ(−νk)
, 0 < ν < 1, (7)

and

Mν(z) :=W−ν,1−ν(−z) =
∞∑
k=0

(−z)k

k! Γ(−ν(k + 1) + 1
, 0 < ν < 1. (8)

The Mainardi auxiliary functions are interrelated through the following relation:

Fν(z) = νzMν(z), 0 < ν < 1. (9)

Using the reflection formula for the Gamma function

Γ(ζ) Γ(1− ζ) = π/ sinπζ,

we can re-write Eqs. (7) and (8) in an alternative and more convenient form:

Fν(z) = − 1

π

∞∑
k=1

(−z)k

k!
Γ(νk + 1) sin (πνk), (10)

and

Mν(z) :=
1

π

∞∑
k=1

(−z)k−1

(n− 1)!
Γ(νk) sin (πνk). (11)

From now on we restrict our main attention to the Mainardi auxiliary functions.
For them the Laplace transforms corresponding to (4) (5) take the relevant form:
(i) for the functions Fν

L
{
t−1 Fν(x/t

ν); t→ s
}
= e−x s

ν
, 0 < ν < 1, (12)

L{Fν(t); t→ s} = Eν,ν (−s) 0 < ν < 1, (13)

(ii) for the functions Mν

L
{
t−ν Mν(x/t

ν); t→ s
}
= sν−1e−x s

ν
, 0 < ν < 1, (14)

L{Mν(t); t→ s} = Eν,1 (−s) , 0 < ν < 1. (15)
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In particular, the interest in these functions comes from the fact that their Laplace
transforms are in the form of exponential functions of the type s−µ exp(−sν) with
µ ≥ 0 and 0 < ν < 1 , whose inversion intrigued in the middle of previous cen-
tury a number of well-known mathematicians. It is worthwhile to mention yearly
classical papers of Humbert [18] since 1945, Pollard [19] since 1946, Wlodarski [20]
since 1953, Mikusinski [21-24] in the 1951-1959 period, Wintner [25] since 1956,
Ragab [26] since 1958 and finally Stankovič [27] since 1970. It was Stankovič who
recognized the role of the Wright functions with first parameter negative, that we
have denoted as Wright functions of the second kind.
For the Mainardi auxiliary functions we refer the reader again to [14]: in the time

domain the inverse Laplace transforms were derived in the form of infinite series
representations and read

Fν(t) =

∞∑
k=1

(− t)k

k! Γ(− ν k)
=

1

π

∞∑
k=1

(−1)k+1tk

k!
Γ(ν k + 1) sin(π ν k),

Mν(t) =

∞∑
k=0

(− t)k

k! Γ (− ν( k + 1) + 1)
=

1

π

∞∑
k=1

(− t)k− 1

(k − 1)!
Γ(ν k) sin(π ν k),

Fν(t) = νtMν(t).

(16)

Here particular attention is devoted to the Laplace inversion of exp(−sν) with
0 < ν < 1 because it provides the unilateral (i.e active only for t > 0) stable
density of order ν in the probability theory of Lévy stable distributions. We denote
by fν(t) this function for which Pollard [19] and Mikusinski [24] gave the following
integral representations

fν(t) =
1

π

∫ ∞

0
e−ute−uν cos(πν) sin[uν sin(πν)] du

=
2

π

∫ ∞

0
e−uν cos(πν/2)[cos[uν cos(πν/2)] cos(ut) du .

(17)

Mikusinski [24] was able to present fν(t) also as the finite trigonometric integral

fν(t) =
ν

π(1− ν)t

∫ π

0
ξe− ξdu, where

ξ =
1

tν/(1−ν)

(
sin(νu)

sinu

)ν/(1− ν) sin[(1− ν)u]

sinu
.

(18)

In particular cases when ν = 1/2 the inverse was established by using exponential
and parabolic cylinder functions [14,26] and for ν = 1/3 and ν = 2/3, in terms
of the Airy functions and their first derivatives [11,14]. For ν = 1/4, the solution
was deduced as a sum of three generalized hypergeometric functions, but it is still
uncertain [15]. For rational ν = k/m, k < m, the Laplace inverse of (17) can be
presented in terms of the Meijer’s G and the Fox H functions [15] and for ν = 1/m
using MacRobert’s E function [26].
The inverse operation which restores the original function in the Laplace trans-
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formation is usually the most complicated step in operational calculus because it
involves integration in the complex plane. However, in many cases finding of in-
verse transforms is facilitated if the Laplace transform is a product of two or more
transforms providing that the inverse transforms of them are known. This so-called
product (convolution) theorems for product of two transforms can be written as
(see e.g. [28])

L{f(t)} = F (s),

F (s) = F1(s) · F2(s),

f1(t) = L− 1 {F1(s)} ; f2(t) = L− 1 {F2(s)},

f(t) = f1(t) ⋆ f2(t) =

∫ t

0
f1(u)f2(t− u)du =

∫ t

0
f1(t− u)f2(u)du.

(19)

In 1935 the product theorem was generalized by Efros in the following form [29]

L{f(t)} = F (s).

G(s, λ) = L{g(t, λ)} = H(s) e−λq(s),

L− 1 {H(s)F [q(s)]} =

∫ ∞

0
f(u)g(u, λ) du.

(20)

where H(s) and q(s) are analytic functions. If q(s) = s it is possible to show that
(20) reduces to (19). Wlodarski [20] in 1953 discussed the special case of the Efros
theorem when H(s) is 1/sµ with µ ≥ 0 and q(s) = sν with 0 < ν < 1. As is
demonstrated in this paper, the Wlodarski formula can be applied to the Mainardi
auxiliary functions Mν and Fν . Indeed, letting µ = 1− ν, we obtain

L{g(t)} = G(s) ,

L−1

{
G(sν)

s1−ν

}
=

∫ ∞

0
g(u)L−1

{
exp (−usν)

s1−ν

}
du ; 0 < ν < 1 .

(21)

From [12] we recall for 0 < ν < 1 and λ > 0,

L
{
1

ν
Fν

(
λ

tν

)}
= L

{
λ

tν
Mν

(
λ

tν

)}
=

λ

s1− ν
exp(−λ sν), (22)

so that, by using (21) and (22), the following expressions can be derived for the
auxiliary function Fν(t)

νL−1

{
G(sν)

s1− ν

}
=

∫ ∞

0
g(u)Fν

( u
tν

) du

u
; 0 < ν < 1 (23)

and similarly for the function Mν(t) we have

tνL−1

{
G(sν)

s1− ν

}
=

∫ ∞

0
g(u)Mν

( u
tν

)
du ; 0 < ν < 1. (24)

Thus, if left hand side Laplace transforms in (23) and (24) can be inverted, the
infinite integrals with the functions Fν(t) and Mν(t) can be evaluated.
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The plane of the present paper is herewith illustrated. In the following four sec-
tions we devote our attention to the evaluation of infinite and convolution integrals
by using expressions in (23) and (24) and operational rules of the Laplace trans-
formation.
In section 2 we present available results for elementary functions g(t) for any

ν ∈ (0, 1).
In sections 3,4 we report infinite or convolution integrals associated with the

Mittag-Leffler functions, error function and with the Volterra functions, respec-
tively.
The section 5 is dedicated to the particular case of ν = 1/3, to infinite integrals

with integrands having the modified Bessel functions of the second kind and order
one-third.
In order to clearly illustrate the application of the Efros theorem (in the Wlo-

darski form given in (21)) in evaluation of infinite and convolution integrals, direct
and inverse Laplace transforms are always presented in considered derivations. It
should be also taken into account that all mathematical operations and manipula-
tions with elementary and special functions, integrals and transforms are formal.
Therefore, the validity of derived results is assured by considering the restrictions
usually imposed on the Laplace transforms.
Finally, in section 6, we provide some concluding remarks.

2. Integrals of the Wright functions of the second kind with elementary
functions

In this section we will consider a number of examples with elementary functions.
We outline that all the Laplace transforms were taken from well known tables, see
i.e. [30-33], always letting 0 < ν < 1 and λ > 0 even when not explicitly stated.
As the first example we consider the power function tλ with λ > 0 for which

g(t) = tλ ; λ > 0,

G(s) =
Γ(λ+ 1)

sλ+1
; G(sν) =

Γ(λ+ 1)

s(λ+1)ν

L−1

{
1

s1−ν

Γ(λ+ 1)

s(λ+1)ν

}
= L−1

{
Γ(λ+ 1)

sλν+1

}
=

Γ(λ+ 1) tλν

Γ(λν + 1)
.

(25)

Then, from (23), we have

∫ ∞

0
uλ− 1Fν

( u
tν

)
du =

Γ(λ) tλν

Γ(λν)
; 0 < ν < 1; λ > 0, (26)

and from (24)

∫ ∞

0
uλMν

( u
tν

)
du =

Γ(λ) t(λ+1)ν

ν Γ(λν)
; 0 < ν < 1, λ > 0. (27)
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For particular values of λ we get for 0 < ν < 1 and n = 1, 2, 3, . . .

∫ ∞

0
Fν

( u
tν

) du

u
= ν,

∫ ∞

0
Fν

( u
tν

)
du =

tν

Γ(ν)
,∫ ∞

0
u2n− 1Fν

( u
tν

)
du =

Γ(2n)t2nν

Γ(2nν)
,∫ ∞

0
u2nFν

( u
tν

)
du =

Γ(2n+ 1)t(2n+1)ν

Γ[(2n+ 1)ν]
;

(28)

and similarly from (27)

∫ ∞

0
Mν

( u
tν

)
du = tν ,

∫ ∞

0
uMν

( u
tν

)
du =

t2ν

Γ(ν + 1)
,∫ ∞

0
u2nMν

( u
tν

)
du =

Γ(2n)t(2n+1)ν

ν Γ(2nν)
,∫ ∞

0
u2n+1Mν

( u
tν

)
du =

Γ(2n+ 1) t2(n+1)ν

ν Γ[(2n+ 1)ν]
.

(29)

If both sides of (26) are differentiated with respect to parameter λ we have

∫ ∞

0
uλ−1 lnuFν

( u
tν

)
du =

Γ(λ) tλν {ψ(λ) + ν [ (ln t− ψ(λν)]}
Γ(λν)

, (30)

and similarly from (16) and (27)

∫ ∞

0
uλ−1 lnuFν

( u
tν

)
du =

Γ(λ) t(λ+1)ν {ψ(λ) + ν [ (ln t− ψ(λν)]}
νΓ(λν)

. (31)

The above results can be extended to functions g(t) which are defined at finite
intervals and to step functions jumping at integral values of variable t. Let us start
with the simplest case

g(t) =

{
1, 0 < t < λ,
0, t > λ,

G(s) =
1− e−λs

s
, G(sν) =

1− e−λsν

sν
,

L−1

{
1

s1−ν

1− e−λsν

sν

}
= L−1

{
1

s
− e−λsν

s

} (32)

but, in view of (4) with x = 1,

L
{
W− ν, 1

(
− λ

tν

)}
=

e−λsν

s
, (33)
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and therefore ∫ λ

0
Fν

( u
tν

) du

u
= ν

{
1−W−ν,1

(
− λ

tν

)}
,∫ λ

0
Mν

( u
tν

)
du = tν

{
1−W−ν,1

(
− λ

tν

)}
.

(34)

In next examples will appear convolution integrals.
From

g(t) =

{
1− t, 0 < t < 1,
0, t > 1,

G(s) =
e−s + s− 1

s2
, G(sν) =

e−sν + sν − 1

s2ν
;

L−1

{
1

s1−ν

e−sν + sν − 1

s2ν

}
= L−1

{
1

s
− 1

sν+1
+

1

sν+1

e−sν

s

}
=

1− tν

Γ(ν + 1)
+
tν−1

Γ(ν)
⋆ W−ν,1

(
− 1

tν

)
(35)

we deduce∫ 1

0
(1− u)Fν

( u
tν

) du

u
= ν

{
1− tν

Γ(ν + 1)
+
tν− 1

Γ(ν)
⋆ W− ν, 1(−

1

tν
)

}
,∫ 1

0
(1− u)Mν

( u
tν

)
du = tν

{
1− tν

Γ(ν + 1)
+
tν− 1

Γ(ν)
⋆ W− ν, 1(−

1

tν
).

} (36)

From

g(t) =

0 , 0 < t < λ,
(t− λ)µ

Γ(µ+ 1)
, t > λ,

G(s) =
e−λs

sµ+1
; G(sν) =

e−λsν

s(µ+1)ν

L−1

{
1

s1−ν

e−λsν

s(µ+1)ν

}
= L−1

{
1

sµν
e−λsν

s

}
=
tµν− 1

Γ(µν)
⋆ W− ν, 1(−

λ

tν
)

(37)

it is a possible to derive the following integral identities with µ > 0 and 0 < ν < 1,

∫∞
λ (t− λ)µFν

( u
tν

) du

u
=
νΓ(µ+ 1)

Γ(µν)
tµν− 1 ⋆ W− ν, 1

(
− λ

tν

)
,∫∞

λ (t− λ)µMν

( u
tν

)
du =

Γ(µ+ 1)

Γ(µν)
t(µ+ 1)ν−1 ⋆ W− ν, 1

(
− λ

tν

)
.

(38)

In the next two examples the cases of exponential functions are illustrated.

g(t) = e−λt ,

G(s) =
1

s+ λ
, G(sν) =

1

sν + λ
,

L−1

{
1

s1−ν

1

sν + λ

}
= L−1

{
sν−1

sν + λ

}
.

(39)
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Now, taking into account the Mittag-Leffler function, see e.g. [14,34,35] we recall

L{Eν(−λtν)} =
sν−1

sν + λ
, Eν(z) =

∞∑
k=0

zk

Γ(kν + 1)
. (40)

Thus, as expected, the Laplace transforms of the Mainardi functions are expressed
in terms of the Mittag-Leffler functions,∫ ∞

0
e−λuFν

( u
tν

) du

u
= ν Eν(−λtν),

∫ ∞

0
e−λuMν

( u
tν

)
du = tν Eν(−λtν). (41)

The shifted increasing and decreasing exponential functions are considered in the
following two examples. From

g(t) =

{
0 0 < t < λ,

1− e−(t−λ) t > λ;

G(s) =
e−λs

s(s+ 1)
; G(sν) =

e−λsν

sν(sν + 1)

L−1

{
1

s1−ν

e−λsν

sν(sν + 1)

}
= L−1

{
1

sν− 1

sν− 1

(sν + 1)

e−λsν

s

}
=

tν−2

Γ(ν − 1)
⋆ Eν(−tν) ⋆ W−ν,1

(
− λ

tν

)
.

(42)

we have the convolution of three functions.∫ ∞

λ
[1− e− (u−λ)]Fν

( u
tν

) du

u
=

ν

Γ(ν − 1)

{
[tν− 2 ⋆ Eν(− tν)] ⋆ W−ν,1(−

λ

tν
)

}
∫ ∞

λ

[
1− e− (u−λ)

]
Mν

( u
tν

)
du =

tν

Γ(ν − 1)

{
[tν− 2 ⋆ Eν(− tν)] ⋆ W− ν, 1(−

λ

tν
)

}
(43)

Similarly from

g(t) =

{
0, 0 < t < λ ,

e−(t−λ), t > λ ;

G(s) =
e−λs

(s+ 1)
; G(sν) =

e−λsν

(sν + 1)
,

L−1

{
1

s1−ν

e−λsν

(sν + 1)

}
= L−1

{
sν− 1

(sν + 1)
e−λsν

}
= Eν(− tν) ⋆ f(t, λ)

f(t, λ) = L−1
{
e−λsν

}
=

1

t
W− ν,0(−

ν

tν
)

(44)

it is possible to obtain∫ ∞

λ
e− (u−λ) Fν

( u
tν

) du

u
= νEν(− tν) ⋆ f(t, λ),∫ ∞

λ
e− (u−λ)Mν

( u
tν

)
du = tνEν(− tν) ⋆ f(t, λ),

(45)

where the function f(t, λ) is the inverse Laplace transform of the exponential func-
tion, see (17).
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The next group of elementary functions are the logarithmic functions and in the
simplest case from

g(t) = ln t ; C = eγ

G(s) = − ln(Cs)

s
; G(sν) = − ln(Csν)

sν

L−1

{
1

s1−ν

ln(Csν)

sν

}
= L−1

{
−(1− ν) lnC + ν ln(Cs)

s

}
= (ν − 1)γ + ν ln t

.

(46)
where γ is the Euler constant. it follows that∫ ∞

0
lnuFν

( u
tν

) du

u
= ν(ν − 1)γ + ν ln tν ,∫ ∞

0
lnuMν

( u
tν

)
du = tν [(ν − 1)γ + ln tν ].

(47)

In the more complex case

g(t) = tλ− 1 ln t ; λ > 0 ; 0 < ν < 1

G(s) =
Γ(λ)

sλ
[ψ(λ)− ln s ] ; G(sν) =

Γ(λ) [ψ(λ)− ν ln s]

sλν

Γ(λ)L−1

{
1

s1−ν

[ψ(λ)− ν ln s]

sλν

}
= Γ(λ)L−1

{
ψ(λ) + γν

s(λ− 1)ν+1
− ν

s(λ− 1)ν

ln(Cs)

s

}
=

Γ(λ)[ψ(λ) + γν] t(λ−1)ν

Γ[(λ− 1)ν + 1]
+

Γ(λ) t(λ−1)ν−1

Γ[(λ− 1)ν]
⋆ ln tν

(48)
the final expressions for integrals of the functions Fν(t) and Mν(t) are

∫ ∞

0
uλ− 1 ln t Fν

( u
tν

) du

u
=
νΓ(λ)[ψ(λ) + γν] t(λ−1)ν

Γ[(λ− 1)ν + 1]
+

νΓ(λ)

Γ[(λ− 1)ν]
[t(λ−1)ν− 1 ⋆ ln tν ]∫ ∞

0
uλ− 1 ln tMν

( u
tν

)
du =

Γ(λ)[ψ(λ) + γν] tλν

Γ[(λ− 1)ν + 1]
+

Γ(λ)tν

Γ[(λ− 1)ν]
[ t(λ−1)ν− 1 ⋆ ln tν ]

(49)

The last groups of elementary functions to be considered are trigonometric and
hyperbolic functions. From

g(t) = sin(λt) ; 0 < ν < 1

G(s) =
λ

s2 + λ2
; G(sν) =

λ

s2ν + λ2

λL−1

{
1

s1−ν

1

s2ν + λ2

}
= λL−1

{
1

sν
s2ν− 1

s2ν + λ2

}
=

λ

Γ(ν)
tν− 1 ⋆ E2ν(−λ2t2ν)

(50)
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the following integral identities are derived∫ ∞

0
sin(λu)Fν

( u
tν

) du

u
=

λν

Γ(ν)
[tν− 1 ⋆ E2ν(−λ2t2ν)]

∫ ∞

0
sin(λu)Mν

( u
tν

)
du =

λtν

Γ(ν)
[tν− 1 ⋆ E2ν(−λ2t2ν)]

(51)

By changing variable of integration x = t(cos θ)2, all convolution integrals can be
expressed as in terms of finite trigonometric integrals. For example, the convolution
integral in (51) becomes

tν− 1 ⋆ E2ν(−λ2t2ν) =
∫ t

0
(t− x)ν− 1E2ν(−λ2x2ν) dx =∫ π/2

0
sin(2θ)(sin θ)2(ν− 1)E2ν [−λ2t2ν(cos θ)4ν ] dθ

(52)

In an analogy with (50), for the hyperbolic cosine function, the change is only in
the sign

g(t) = sinh(λt) ; 0 < ν < 1

G(s) =
λ

s2 − λ2
; G(sν) =

λ

s2ν − λ2

λL−1

{
1

s1−ν

λ

s2ν − λ2

}
= λL−1

{
1

sν
s2ν− 1

s2ν − λ2

}
=
λtν− 1

Γ(ν)
⋆ E2ν(λ

2t2ν)

(53)

and

∫∞
0 sinh(λu)Fν

( u
tν

) du

u
=

λν

Γ(ν)
[tν− 1 ⋆ E2ν(λ

2t2ν)]∫ ∞

0
sinh(λu)Mν

( u
tν

)
du =

λtν

Γ(ν)
[tν− 1 ⋆ E2ν(λ

2t2ν)]

(54)

In the case of cosine function, from

g(t) = cos(λt) ; 0 < ν < 1

G(s) =
s

s2 + λ2
; G(sν) =

sν

s2ν + λ2

L−1

{
1

s1−ν

sν

s2ν + λ2

}
= L−1

{
s2ν− 1

s2ν + λ2

}
= E2ν(−λ2t2ν)

(55)

we have ∫ ∞

0
cos(λu)Fν

( u
tν

) du

u
= νE2ν(−λ2x2ν)∫ ∞

0
cos(λu)Mν

( u
tν

)
du = tνE2ν(−λ2x2ν)

(56)
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Similarly as in (55) and (56)

g(t) = cosh(λt) ; 0 < ν < 1

G(s) =
s

s2 − λ2
; G(sν) =

sν

s2ν − λ2

L−1

{
1

s1−ν

sν

s2ν − λ2

}
= L−1

{
s2ν− 1

s2ν − λ2

}
= E2ν(λ

2t2ν)

(57)

for the hyperbolic cosine function we have∫ ∞

0
cosh(λu)Fν

( u
tν

) du

u
= νE2ν(λ

2x2ν)∫ ∞

0
cosh(λu)Mν

( u
tν

)
du = tνE2ν(λ

2x2ν)

(58)

The direct and inverse Laplace transforms in the case of the product of trigono-
metric and hyperbolic sine functions are

g(t) = sin(λt) sinh(λt) ; 0 < ν < 1

G(s) =
2λ2s

s4 + 4λ4
; G(sν) =

2λ2sν

s4ν + 4λ4

2λ2L−1

{
1

s1−ν

sν

s4ν + 4λ4

}
= 2λ2L−1

{
s4ν− 1

s2ν(s4ν + 4λ4)

}
=

2λ2

Γ(2ν)
[t2ν− 1 ⋆ E4ν(− 4λ4t4ν)]

(59)

and therefore∫ ∞

0
sin(λu) sinh(λu)Fν

( u
tν

) du

u
=

2λ2νt2ν−1

Γ(2ν)

[
t2ν−1 ⋆ E4ν(−4λ4t4ν)

]
∫ ∞

0
sin(λu) sinh(λu)Mν

( u
tν

)
du =

2λ2tν

Γ(2ν)

[
t2ν−1 ⋆ E4ν(−4λ4t4ν)

]
.

(60)

For the product of trigonometric and hyperbolic cosine functions we have

g(t) = cos(λt) cosh(λt) ; 0 < ν < 1,

G(s) =
s3

s4 + 4λ4
; G(sν) =

s3ν

s4ν + 4λ4

L−1

{
1

s1−ν

s3ν

s4 + 4λ4

}
= L−1

{
s4ν− 1

s4ν + 4λ4

}
= E4ν(− 4λ4t4ν)

(61)

and therefore ∫ ∞

0
cos(λu)(cosh(λu)Fν

( u
tν

) du

u
= νE4ν(−4λ4x4ν),∫ ∞

0
cos(λu)(cosh(λu)Mν

( u
tν

)
du = tνE4ν(−4λ4x4ν).

(62)
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3. Integrals of the Wright functions of the second kind with the
Mitag-Leffler functions and the error function

The Laplace transform of the two parameter Mittag-Leffler function is [14,34,35]

L
{
tβ−1Eα,β(±λtα)

}
=

sα−β

sα ∓ λ
, Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
. (63)

This permits to obtain from (63)

g(t) = tβ−1Eα,β(±λtα) ; 0 < ν < 1,

G(s) =
sα−β

sα ∓ λ
; G(sν) =

s(α−β)ν

sαν ∓ λ
,

L−1

{
1

s1−ν

s(α−β)ν

sαν ∓ λ

}
= L−1

{
sαν− [(β− 1)ν+1]

sαν ∓ λ

}
= t(β−1)ν Eαν,(β−1)ν+1(±λtα),

(64)

and using (23) and (24)

∫ ∞

0
uβ− 1Eα,β(±λuα)Fν

( u
tν

) du

u
= ν t(β− 1)νEαν,(β− 1)ν+1(±λtα),∫ ∞

0
uβ− 1Eα,β(±λuα)Mν

( u
tν

)
du = tβνEαν,(β− 1)ν+1(±λtα).

(65)

Thus, in both sides of expressions (65) appear the Mittag-Leffler functions. Evi-
dently, for β = 1 they are reduced to the classical Mittag-Leffler functions

∫ ∞

0
Eα(±λuα)Fν

( u
tν

) du

u
= νEαν (±λtα),∫ ∞

0
Eα(±λuα)Mν

( u
tν

)
du = tνEαν(±λtα),

(66)

and for β = α

∫ ∞

0
uα− 1Eα,α(±λuα)Fν

( u
tν

) du

u
= νt(α− 1)νEαν,(α− 1)ν+1(±λtα),∫ ∞

0
uα− 1Eα,α(±λuα)Mν

( u
tν

)
du = tανEαν,(α− 1)ν+1(±λtα).

(67)

If β = α+ 1 we have

∫ ∞

0
uαEα,α+1(±λuα)Fν

( u
tν

)
du = ν tανEαν,αν+1(±λtα),∫ ∞

0
uαEα,α+1(±λuα)Mν

( u
tν

)
du = t(α+1)νEαν,αν+1(±λtα).

(68)
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In the case β = 1/2, in the integrands of (66) - (68), the Mittag-Leffler functions
are expressed then by the error functions [35]

E1/2(±z) = ez
2

[1± erf(z)] ; z = λuα,

E1/2,1/2(±z) =
{

1√
z
± zez

2

[1± erf(z)]

}
,

E1/2,3/2(z) =
ez√
z
erf(z).

(69)

If β is positive integer, the Mittag-Leffler functions are known to be expressed by
elementary functions [36].
The Laplace transform of the error function is

g(t) = erf

(
λ

2t1/2

)
; 0 < ν < 1,

G(s) =
1− e−λs1/2

s
; G(sν) =

1− e−λsν/2

sν

L−1

{
1

s1− ν

1− e−λsν/2

sν

}
= L−1

{
1

s
− e−λsν/2

s

}
= 1−Wν/2,1

(
− λ

tν/2

)
,

(70)

which yields∫ ∞

0
erf

(
λ

2u1/2

)
Fν

( u
tν

) du

u
= ν

{
1−W−ν/2,1

(
− λ

tν/2

)}
,∫ ∞

0
erf

(
λ

2u1/2

)
Mν

( u
tν

)
du = tν

{
1−W−ν/2,1

(
− λ

tν/2

)} (71)

4. Integrals of the Wright functions of the second kind with the Volterra
functions.

The Volterra functions are defined by the following integrals [36]

ν(t) =

∫ ∞

0

tu

Γ(u+ 1)
du

ν(t, α) =

∫ ∞

0

tu+α

Γ(u+ α+ 1)
du

µ((t, β, α) =

∫ ∞

0

uβtu+α

Γ(β + 1)Γ(u+ α+ 1)
du

(72)

and their Laplace transforms are

L{ν(λt)} =
1

s ln
( s
λ

) ; λ > 0

L{ν(λt, α)} =
λα

sα+1 ln
( s
λ

)
L{µ((λt, β, α)} =

λα

sα+1 ln
( s
λ

)β+1

(73)
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This form of the Laplace transforms permits to express the integrals of the Volterra
functions with the Wright functions of the second kind also in terms of the Volterra
functions. From

g(t) = ν(λt) ; λ > 0 ; 0 < ν < 1

G(s) =
1

s ln
( s
λ

) ; G(sν) =
1

sν ln

(
sν

λ

)
L−1

{
1

s1−ν

1

sν ln[(s/λ1/ν)ν ]

}
= L−1

{
1

νs ln(s/λ1/ν)

}
=

1

ν
ν(λ1/νt)

(74)

it follows that ∫ ∞

0
ν(λu)Fν

( u
tν

) du

u
= ν(λ1/νt)∫ ∞

0
ν(λu)Mν

( u
tν

)
du =

tν

ν
ν(λ1/νt)

(75)

Similarly from

g(t) = ν(λt, ρ) ; λ, ρ > 0 ; 0 < ν < 1

G(s) =
λρ

sρ+1 ln
( s
λ

) ; G(sν) =
λρ

s(ρ+1)ν ln

(
sν

λ

)
λρL−1

{
1

s1−ν

1

s(ρ+1)ν ln[(s/λ1/ν)ν ]

}
= λρL−1

{
1

νsρν+1 ln(s/λ1/ν)

}
=

λρ

ν
ν(λ1/νt, ρν)

(76)

we have ∫ ∞

0
ν(λu, ρ)Fν

( u
tν

) du

u
= λρν(λ1/νt, ρν)∫ ∞

0
ν(λu, ρ)Mν

( u
tν

)
du =

λρtν

ν
ν(λ1/νt, ρν)

(77)

Finally, the Laplace transform of the generalized Volterra function is

g(t) = µ(λt, ξ, ρ) ; λ, ρ, ξ > 0 ; 0 < ν < 1

G(s) =
λρ

sρ+1
[
ln
( s
λ

)]ξ+1
; G(sν) =

λρ

s(ρ+1)ν

[
ln

(
sν

λ

)]ξ+1

λρL−1

{
1

s1−ν

1

s(ρ+1)ν{ln
[
(s/λ1/ν)ν

]
}ξ+1

}
=

λρ

νξ+1
L−1

{
1

sµν+1
[
ln(s/λ1/ν)

]ξ+1

}
=

λρ

νξ+1
µ(λ1/νt, ξ, ρν)

(78)
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and (78) yields ∫ ∞

0
µ(λu, ξ, ρ)Fν

( u
tν

) du

u
=

λρ

νξ
µ(λ1/νt, ξ, ρν)∫ ∞

0
µ(λu, ξ, ρ)Mν

( u
tν

)
du =

λρtν

νξ+1
µ(λ1/νt, ξ, ρν)

(79)

In different, but in an equivalent form, the integrals in (79) were also derived by
Ansari [37].
If the Volterra functions are multiplied by tn with n = 1, 2, 3, . . . , their Laplace

transforms should be differentiated n times [28,36]. Only the simplest case of (76)
with n = 1 and λ = 1 is presented here

L{tν(t, ρ)} = − d

ds

{
1

sρ+1 ln s

}
=

ρ+ 1

sρ+2 ln s
+

1

sρ+2(ln s)2
(80)

Using this and the inverse Laplace transform from (73)

g(t) = tν(t, ρ) ; ρ > 0 ; 0 < ν < 1

G(s) =
ρ+ 1

sρ+2 ln s
+

1

sρ+2(ln s)2
; G(sν) =

ρ+ 1

νs(ρ+2)ν ln s
+

1

ν2s(ρ+2)ν(ln s)2

L−1

{
1

s1−ν

[
ρ+ 1

νs(ρ+2)ν ln s
+

1

ν2s(ρ+2)ν(ln s)2

]}
=

L−1

{
ρ+ 1

νs(ρ+1)ν+1 ln s
+

1

ν2s(ρ+1)ν+1(ln s)2

}
=

ρ+ 1

ν
ν[t, (ρ+ 1)ν] +

1

ν2
µ[t, 1, (ρ+ 1)ν]

(81)
we have∫ ∞

0
ν(λu, ρ)Fν

( u
tν

)
du = (ρ+ 1) ν[t, (ρ+ 1)ν] +

1

ν
µ[t, 1, (ρ+ 1)ν]∫ ∞

0
uν(λu, ρ)Mν

( u
tν

)
du = tνν[t, (ρ+ 1)ν] +

1

ν
µ[t, 1, (ρ+ 1)ν]

(82)

5. Integrals of the modified Bessel functions of the second kind and order
one-third

Derived results in previous sections are of general character for any value of ν ∈
(0, 1). As already mentioned, in some particular cases of ν they can be expressed
by elementary or by special functions, see for example [11] and [12]:

M1/2(t) =
2

t
F1/2(t) =

1√
π
e− t2/4

M1/3(t) =
3

t
F1/2(t) = 32/3Ai

(
t

31/3

)
M2/3(t) =

3

2t
F1/2(t) =

{
1

31/3
Ai

(
t2

34/3

)
− 31/3Ai′

(
t2

34/3

)}
e−2 t3/27

(83)
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Introducing these in (83), or other known in the literature results permits to present
derived above integrals in an explicit form.
This is illustrated here for ν = 1/3, and only for the power functions tµ. If the

Airy functions in (83) are replaced by the modified Bessel functions of the second
kind and order one-third, we have

F1/3

( u

t1/3

)
=

u3/2

3πt1/2
K1/3

(
2u3/2√
27t

)
M1/3

( u

t1/3

)
=

u1/2

πt1/6
K1/3

(
2u3/2√
27t

) (84)

and their Laplace transform are

L
{

λ3/2

3πt3/2
K1/3

(
2λ3/2√
27t

)}
= e−λs1/3

L
{
λ3/2

πt1/2
K1/3

(
2λ3/2√
27t

)}
=
λe−λs1/3

s2/3

(85)

Thus, equation (22) can be written as

L
{
1

t
F1/3(

λ

t1/3
)

}
= L

{
λ

3t4/3
M1/3(

λ

t1/3
)

}
= e−λs1/3 ; λ > 0

L
{
3F1/3(

λ

t1/3
)

}
= L

{
λ

t1/3
M1/3(

λ

t1/3

}
=

λ

s2/3
e−λ s1/3

(86)

If the form of integration variable of the modified Bessel functions is the same
as in (84), the infinite integrals in (25) - (31) become

∫ ∞

0

√
uK1/3

(
2u3/2√
27t

)
du = π

√
t ;

∫ ∞

0
u3/2K1/3

(
2u3/2√
27t

)
du =

3πt5/6

Γ

(
1

3

)
∫ ∞

0
u2n+ 1/2K1/3

(
2u3/2√
27t

)
du =

3πΓ(2n)t2n/3+1/2

Γ

(
2n

3

)
∫ ∞

0
u2n+ 3/2K1/3

(
2u3/2√
27t

)
du =

3πΓ(2n+ 1)t2n/3+5/6

Γ

(
2n+ 1

3

)
∫ ∞

0
uλ+ 1/2K1/3

(
2u3/2√
27t

)
du =

3πΓ(λ)tλ/3+1/2

Γ

(
λ

3

)

(87)

However, if the integration variable is changed, then these integrals take much
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simpler forms

∫ ∞

0
K1/3(x) dx =

π√
3

;

∫ ∞

0
x2/3K1/3(x) dx =

22/3π

31/2Γ

(
1

3

)
∫ ∞

0
x4n/3K1/3(x)dx =

24n /3πΓ(2n)

32n− 1/2Γ

(
2n

3

)
∫ ∞

0
x(4n+ 2)/3K1/3(x) dx =

2(4n+ 2)/3πΓ(2n+ 1)

32n+ 1/2Γ

(
2n+ 1

3

)
∫ ∞

0
xλK1/3(x) dx =

2λ πΓ

(
3λ

2

)
3(3λ− 1)/2Γ

(
λ

2

)

(88)

It is possible significantly to increase a number of evaluated the modified Bessel
function of second kind integrals if integrals in (87) are differentiated with respect
to parameters λ and t. This can be performed by considering also properties of
these functions [38,39]

K− ν(z) = Kν(z)

Kν(z) =
z

2ν
[Kν+1(z)−Kν− 1(z)]

dKν(z)

dz
=
ν

z
Kν(z)−Kν+1(z)

dKν(z)

dz
= − [

ν

z
Kν(z) +Kν− 1(z)]

(89)

Starting with (87) and by using equations in (89) with ν = 1/3, the integrals with
2/3 and 4/3 orders are determined. If this evaluation process is continued, it is
possible to obtain integrals with n + 1/3 and n + 2/3 with n = 1, 2, 3, . . . orders.
It is worthwhile to mention that infinite integrals of the modified Bessel functions
of second kind with 1/3 and 2/3 orders can be is determined in an alternative way
by using the substitution formulas for the inverse Laplace transforms [28]

L{h(t)} = H(s),

L− 1
{
H(s1/3)

}
=

1

3π

∫ ∞

0
h(u)

(u
t

)3/2
K1/3

(
2u3/2√
27t

)
du,

L− 1

{
H(s1/3)

s2/3

}
=

1

π

∫ ∞

0
h(u)

√
u

t
K1/3

(
2u3/2√
27t

)
du,

L− 1

{
H(s1/3)

s2/3

}
=

1√
3π

∫ ∞

0
h(u)

(u
t

)
K2/3

(
2u3/2√
27t

)
du.

(90)
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6. Conclusions

At first we have recalled the main definitions and properties for the so-called
Mainardi auxiliary functions Fν(t) and Mν(t) with 0 < ν < 1, that are note-
worthy examples of the Wright functions of the second kind. Then we have demon-
strated that, by applying the Efros theorem in the form established by Wlodarski,
it is possible to derive many infinite integrals, finite integrals and integral iden-
tities involving these functions. In evaluated integral identities, the Mittag-Leffler
functions appear frequently in convolution integrals, pointing out the connection
between these functions with the Wright functions of the second kind. Indeed our
derived integrals of the Wright functions of second kind include in integrands ele-
mentary functions (power, exponential, logarithmic, trigonometric and hyperbolic
functions) and the error functions, the Mittag-Leffler functions and the Volterra
functions. Finally, our general results are illustrated in detail by presenting the
particular case of integrals with the modified Bessel function of the second kind
and order one-third.
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velle série, 10 (1970), 113–124.

[28] Apelblat, A. Laplace Transforms and Their Applications. Nova Science Publishers, Inc., New
York, 2012.

[29] Efros, A.M. Some applications of operational calculus in analysis. Mat. Sbornik, 42 (1935), 699–
705.
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