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Abstract. This edition of the Lecture Notes of TICMI is devoted to the problems of 

study of nonlinear wave structures of the soliton and vortex types in complex 

continuous media including theory and simulation of these processes and also some 

applications of the results in real physical media such as space plasma and plasma of the 

ionosphere and magnetosphere of the Earth. 

The results obtained in the collaborative works of the Kazan Federal University, 

Russia and I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State 

University, Georgia are presented. Some of them were discussed on special session of 

the VIII Annual Meeting of the Georgian Mechanical Union dedicated to the 110th 

Birthday Anniversary of Ilia Vekua on September 27-29, 2017, Tbilisi, Georgia. 

This edition consists of two parts devoted to the nonlinear wave structures and 

vortical structures in complex continuous media, respectively. In the first part the theory 

of the Belashov-Karpman (BK) system for its two partial cases describing by the two- 

and three-dimensional (2D and 3D) generalized Kadomtsev-Petviashvili (GKP) 

equation and the 3D derivative nonlinear Schrödinger (3-DNLS) equation, including the 

problem of stability of multidimensional solutions of these equations, and the problem 

of classification of the solutions of the GKP-class equations on the basis of methods of 

qualitative and asymptotic analysis is considered. Special Section is devoted to 

consideration of applications of the theory to the problems of the dynamics of nonlinear 

ion-acoustic waves in a unmagnetized plasma in view of relativistic effects, evolution of 

3D nonlinear fast magnetosonic (FMS) and Alfvén waves in the magnetized plasma of 

the ionosphere and magnetosphere, and also to the problem of study on 2D internal-

gravity waves and travelling ionospheric disturbances at heights of the ionosphere F-

region. 

In the second part of this book the results of analysis and numerical simulation of 

evolution and interaction of the N-vortex structures of various configuration and 

different vorticities in the continuum including atmosphere, hydrosphere and plasma on 

the basis of modified contour dynamic (CD) method are presented. In particular, some 

of the results on 2D and 3D simulation of such vortical objects and phenomena as the 

atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex 

interaction and also interaction in the systems of a type of “hydrodynamic vortex – dust 

particles” are presented. The applications of undertaken approach to the problems of 

such plasma systems as streams of charged particles in a uniform magnetic field and 

plasma clouds in the ionosphere are also considered in special Section.  

         In both parts of the book it is shown that the results presented here have obvious 

applications in studies of the dynamics of the nonlinear wave structures of the soliton 

and vortex types in atmosphere, hydrosphere and plasma. 
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Preface 

 

This edition of the Lecture Notes of TICMI is devoted to the problems of study of 

nonlinear wave structures of the soliton and vortex types in complex continuous media 

including theory and simulation of these processes and also some applications of the 

results in real physical media such as space plasma and plasma of the ionosphere and 

magnetosphere of the Earth. 

We present here the results obtained in our works in collaboration with the Kazan 

Federal University, Russia and I. Vekua Institute of Applied Mathematics, I. 

Javakhishvili Tbilisi State University, Georgia. Some of them were discussed on special 

session of the VIII Annual Meeting of the Georgian Mechanical Union dedicated to the 

110th Birthday Anniversary of Ilia Vekua on September 27-29, 2017, Tbilisi, Georgia. 

This edition consists of two parts devoted to the nonlinear wave structures and 

vortical structures in complex continuous media, respectively. 

In the first part we consider the theory of the Belashov-Karpman (BK) system for 

its two partial cases described by the two- and three-dimensional (2D and 3D) 

generalized Kadomtsev-Petviashvili (GKP) equation and the 3D derivative nonlinear 

Schrödinger (3-DNLS) equation, including the problem of stability of multidimensional 

solutions of these equations, and the problem of classification of the solutions of the 

GKP-class equations on the basis of methods of qualitative and asymptotic analysis. 

Section 1.4 is devoted to consideration of applications of the theory to the problems of 

the dynamics of nonlinear ion-acoustic waves in an unmagnetized plasma in view of 

relativistic effects, evolution of 3D nonlinear fast magnetosonic (FMS) and Alfvén 

waves in the magnetized plasma of the ionosphere and magnetosphere, and also to the 

problem of study on 2D internal-gravity waves and travelling ionospheric disturbances 

at heights of the ionosphere F-region. 

In the second part of this book the results of analysis and numerical simulation on 

the basis of modified contour dynamic (CD) method (Sect. 2.3) of evolution and 

interaction of the N-vortex structures of various configuration and different vorticities in 

the continuum including atmosphere, hydrosphere and plasma are presented. In 

particular, in Sect. 2.5 we present some of our results on 2D and 3D simulation of such 

vortical objects and phenomena as the atmospheric synoptic vortices of cyclonic types 

and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a 

type of “hydrodynamic vortex – dust particles”. The applications of undertaken 

approach to the problems of such plasma systems as streams of charged particles in a 

uniform magnetic field and plasma clouds in the ionosphere are also considered in Sect. 

2.5.  

In both parts of the book it is shown that the results presented here have obvious 

applications in studies of the dynamics of the nonlinear wave structures of the soliton 

and vortex types in atmosphere, hydrosphere and plasma. 

It is our pleasure to thank George Jaiani for his stimulating interest to the topic in 

our results, and especially Natalia Chinchaladze for her initiation of this edition, fruitful 

consultations and help in the edition preparation. 

This work was partially supported by the Shota Rustaveli National Science 

Foundation (SRNF), grant № FR17_252 and Russian Government Program of 

Competitive Growth of Kazan Federal University. 

Authors 
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1. NONLINEAR WAVE STRUCTURES OF THE SOLITON TYPE IN 

COMPLEX CONTINUOUS MEDIA  

 

1.1. Basic equations. The BK system. The GKP and the 3-DNLS equations 

 

In this Section, we derive the generalized Kadomtsev-Petviashvili (GKP) equation 

by introducing into classic KP equation the higher order dispersion correction, the terms 

describing dissipation of the viscous type, as well as an instability and stochastic 

fluctuations of the wave field. We then reduce this equation to a simplified form, 

allowing its subsequent analysis (Sect. 1.1.1). Furthermore, in Sect. 1.1.2, we derive the 

three-dimensional (3D) derivative nonlinear Schrödinger (3-DNLS) equation from the 

full set of the plasma one-fluid magnetohydrodynamic (MHD) equations, and then, 

using the scale transforms, reduce it to a dimensionless form convenient for further 

analysis. Also, a generalization of 3-DNLS equation in the presence of dissipation in a 

medium is considered. Finally, in Sect. 1.1.3, we write the Belashov-Karpman (BK) 

system which includes both cases, namely: GKP and 3-DNLS equations. 

1.1.1 Generalized KP Equation 

In [27], [40] we derived the KdV equation from the full set of the hydrodynamic 

equations: 

 
  ,0

,0)/( 2


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Here eqs. (1.1.1) are the equation of motion and the continuity equation for the 

generalized velocity and density, eqs. (1.1.2) and (1.1.3) are the equation of motion for 

potential and the Laplace equation, respectively. 

In dependence on physical sense of functions and variables eqs. (1.1.1)-(1.1.4) 

describe different physical systems, for example: 

▪ the surface waves in the water, in this case: H is the depth and , с()  is the 

phase velocity of the waves; gHcc  0)( for small-amplitude waves; 

▪ the ion-acoustic (IA) waves in a collisionless plasma:  is the plasma (gas) density 

and с() is the phase velocity of the ion sound; mTccc es /)( 0  for the 

long-wavelength linear waves, where Te is the electron temperature in energy units 

(Boltzmann constant equals unity), and mi  is the ion mass; 



Lecture Notes of TICMI, vol. 18, 2017 

10 

 

▪ the magnetosonic (MS) waves in a magnetized plasma: H is (the strength of) the 

external magnetic field and mnHvHcc A  4/)()( is the Alfvén velocity, in 

this case usually the plasma density iimnnm 
 
where ni  is the ion density. 

For the surface waves in shallow water, v is the hydrodynamic velocity in the wave (the 

“mass” velocity); for the IA waves it is the ion velocity, for the MS waves

0~ / HHhv 
 
is the wave magnetic field normalized to the external magnetic field. 

Further, in [27],[40] we generalized this type of derivation for the systems 

described by the classic two-dimensional (2D) and 3D KP equations:  

,3






x

xxt dxuuuuu                                  (1.1.5) 

where 22
zy   and 2

y  for 3D and 2D cases, respectively. 

However, as is known [15], for some cases the coefficient at the third-order 

derivative in the KP-class equations can be negligible or even exactly equal to zero (this 

takes place, for example, for the gravity-capillary wavesin shallow water when 

gH  /32 , and for the FMS waves propagating at the angles close to 

ei
mm /arctg  with respect to an external magnetic field B, see [27]. Nevertheless, 

this does not mean total disappearance of the effects of the medium’s dispersion: the 

equilibrium between the nonlinear and dispersive processes in this case can still be 

recovered by invoking higher order terms in the expansion of the full dispersion 

equation in the powers of the wave number k. As a result, for equations of the KP class 

dispersive correction terms proportional to the fifth derivative ux
5  appear in the left-

hand side of (1.1.5), often playing the decisive role in the dynamics of multidimensional 

solitons (see, for example, [61],[62] and Sects. 1.4.2 and 1.4.4). 

When dissipation cannot be neglected, eq. (1.1.5) should be supplemented by the 

corresponding term. Since we consider here the hydrodynamic approximation when, for 

example, for waves in a plasma 
2/12

0
1 )/4(~ emen 

, we are limited in our study 

with the effects of dissipative processes of the so-called viscous type (assuming that the 

Landau damping can be neglected) on the structure and evolution of nonlinear waves 

and solitons. In this case, for the ion plasma oscillations when the wave frequency (and 

the characteristic times of the processes) is significantly less than the electron plasma 

frequency, e0 , the dissipative effects associated with the processes of relaxation 

in the medium lead to the imaginary term of the type 
2
xki

 
in the dispersion equation  

 2222
0 2/1 xxx kkkkc   , 

and the KP equation takes the form 

 
2/                           

,

0

532

c

uuuuuuu xxxxtx



                   (1.1.6) 

and we call it the generalized KP equation or the GKP equation. It has the same degree 

of universality, as the standard KdV and KP equations in the sense that it is valid always 

when the dispersion law is given by 

  0
42

0
22

0 //2/1 ckkckikkkc xxxxx   .             (1.1.7) 
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The 2D and 3D eq. (1.1.6) has wide applications in the physics of nonlinear 

dispersive waves, and we will show it in Sect. 1.4.  

For convenience of further analysis when  = 0, we transform eq. (1.1.6) using 

changes  ,sxx  ,2/1 ysy  ,2/1 zsz  ,)/6(, uustt  4/1
s . Thus 

the basic equation in this case can be written as 

  ,6 532 uuuuuuu xxxxtx                          (1.1.8) 

where )(sgn,, 21   ss . In Sect. 1.2, we study analytical approaches to 

the problem of stability of multidimensional solitons and nonlinear wave packets 

described by equations of the GKP class in the form (1.1.8). In Sect. 1.3 we investigate 

the classes of possible solutions and their asymptotics employing the methods of 

qualitative analysis (usually used in the theory of dynamic systems) as well as the 

asymptotic analysis (when x ) of the structure of the solutions. 

1.1.2. The 3-DNLS equation 

       In [27],[40] we introduced the derivative nonlinear Schrödinger (DNLS) equation, 

omitting its detailed derivation, and considered it as an integrability condition for two 

linear differential equations. Since we investigate multidimensional systems (and would 

like to emphasize the physics of phenomena described by this equation more clearly) 

here, we present a brief derivation of the three-dimensional DNLS (3-DNLS) equation.  

Here, we write the full set of the one-fluid MHD equations assuming that 
22
xkk   

(in this case we can change x x̂  in the MHD equations [34]: 

  hv xAxxt vv  
2

,                                       (1.1.9) 

    22 2/ hxAxxxt vvv  ,                              (1.1.10) 

 hvh xxt v  ,                                         (1.1.11) 

  0 xxt v ,                                         (1.1.12) 

where 0/ B Bh  is the dimensionless perturbation of the perpendicular magnetic field. 

Following [27], consider dependence of all functions in these equations on t and x in the 

form ),( ttvxff A , where the first argument is due to nonlinear effects. Since 

perturbations of the density  and the x-component of the velocity vx are also stipulated 

by the presence of the nonlinearity of the medium, it is possible to approximate 

xAt v  . 

Thus, integrating (1.1.12) and taking into account that 0
||
lim 

x
, we find  

 Ax vv /10  .                                           (1.1.13) 

Furthermore, by neglecting the small term on the order of 
2
xv  on the left-hand side of 

(1.1.10), and applying the same assumptions as above, we obtain from (1.1.10) 

  22/ hAx vv  .                                             (1.1.14) 

According to relation (1.1.14), the plasma is pushed away by the wave field in the 

direction of the wave propagation thus forming the “Alfvén wind” with the effect of the 

ponderomotive force [27]. Substituting relations (1.1.13) and (1.1.14) into (1.1.9) and 

(1.1.10), taking into account the parabolic equation for the magnetic field B (see, e.g., 
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[86],[21]), and retaining the dispersion effects, we find that the equation for the 

dimensionless perpendicular magnetic field zy hihh   is given by 

       hrhrihhrh AxAxAtix
2222

0 2//2  ,            (1.1.15) 

where iAA vr 0/ . Eq. (1.1.15) describes the left-circularly polarized wave mode; for 

the right-circularly polarized mode we have the “minus” sign in front of the dispersion 

term. It is possible to incorporate the sign of the nonlinearity by the factor s = 1 in 

front of the nonlinear term. Thus after introducing 2/Ar , converting to the 

dimensionless variables ,2/tt iH ,/ Arxx ,/2 Ar  rr iHAA vr  /
   

 and 

integrating in x, we find that the 3-DNLS equation in the reference frame moving in the 

positive direction of the x-axis with the Alfvén velocity can be written as 

   


x

xxt dxhhihhsh 22
,                         (1.1.16) 

where the upper(lower) sign of the factor 1  corresponds to the right(left)-circularly 

polarized wave mode, respectively.  

When the dissipation effects cannot be neglected, (1.1.16) should be supplemented 

by the proper term. Taking into account the hydrodynamic approximation considered in 

this Section (when e0 ) it is thus sufficient to limit the study (of the influence of 

dissipation on the structure and evolution of nonlinear waves) to only processes of the 

“viscous” type [15] (e.g., taking place in a plasma for the ion oscillations), with the 

inverse times being much less than the electron plasma frequency, i.e., 
2/12

0
1 )/4( emen  (in this case, for ie TT   the Landau damping is small). Thus, 

dissipative effects associated with such type of relaxation process lead to appearance of 

the imaginary term 
2
xki  in the dispersion equation. Accordingly, the Burgers-type 

term ux
2  has to be included into the left-hand side of (1.1.16). In this case, the 

coefficient 

  


 

0

2
0

2
0 )()2/( dcc  

defines the logarithmic damping rate and, as it is shown in [27], is the characteristic rate 

of the relaxation damping of the “sound” wave. Here, c  and 0c  are the velocities of 

the high- and low-frequency “sound” mode and  is the function defining the relaxation 

process. Thus the 3-DNLS equation generalized by the viscous type dissipative term can 

be written as 

   


x

xxxt dxhhhihhsh 222
 .                   (1.1.17) 

For this equation, taking into account Avcc  00 ,2/ , and (formally) 

0,0, cskx  , the dispersion relation has the following form 

.               (1.1.18) 

We note here that the 3D eq. (1.1.17) (as well as the GKP equation (1.1.6) is not 

completely integrable and for its solution it is necessary to use numerical methods 

developed in [27],[40],[34]. It is also necessary to take into account, that even for the 

1D equation (1-DNLS equation), the solutions cannot always be obtained analytically in 

the closed form, since the use of the known inverse scattering transform (IST) procedure 

requires rather strong limits on the initial and boundary conditions (first of all, on the 

      v k k k i k v k vA x x x A x A1 22 2/ / /
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localization of the potential h(x, t) at any time moment and 0)0,( xh when 0x ) 

[27]. Thus development of numerical codes for the integration of the DNLS-type 

equations is an important and actual issue, and we use them for numerical modeling of 

the dynamics of the Alfvén waves in Sect. 1.4.3. 

1.1.3. The BK system 

      In [28] we introduced the system describing the dynamics of a wide class of 

multidimensional nonlinear wave processes (known now as the Belashov-Karpman 

(BK) system): 

22,,),(A zy

x

t udxffuutu  


           (1.1.19) 

which with the operator   

)(),(A 32
xxxxuut                             1.1.20) 

turns into the GKP equation and in case when 1/4 2  BnT  for MceBB /  

(here M is the ion mass), 1Dk  describes propagation of the fast magnetosonic 

(FMS) waves in the magnetized plasma with 22
 kk x , Ax cv   near the cone of 

2/1)/(arctan mM  where M is the ion mass [13]. In this case function u has a sense 

the dimensionless amplitude of the magnetic field of the wave, BBh /~ , the 

coefficients at the terms describing nonlinearity, dissipation and dispersion effects, 

respectively, are defined by values of plasma parameters and angle between magnetic 

field and wave vector, ),( kB . In the opposite case, when the operator  

)(||3),(A 222  iupsut xx                              (1.1.21) 

in eq. (1.1.19) turns into the 3-DNLS equation and in case when 1  describes the 

dynamics of the finite-amplitude Alfvén waves propagating near-to-parallel to B for 

|1|2/)(  BiBBhu zy , 0/ B Bh  where )1( iep  , and e is "an 

eccentricity" of the polarization ellipse of the Alfvén wave [34]. The upper and lower 

signs of 1  correspond to the right and left circularly polarized wave, respectively; 

sign of nonlinearity is accounted by the coefficient )1(sgn ps  = 1 in the nonlinear 

term: 2/Ar , iAA vr 0/ . 

In the next Sections we will consider both cases for the BK system including the 

GKP equation (1.1.19), (1.1.20) and the 3-DNLS equation (1.1.19), (1.1.21). 

 

1.2. Problem of stability of multidimensional solutions of the GKP and 3-DNLS 

equations  

 

     In this Section the problem of stability of the multidimensional solutions of the BK 

class equations describing the nonlinear waves which are formed on the low-frequency 

branch of oscillations in plasma for cases when 1/4β 2  BnT and 1β   is 

studied. In first case, for 1,/  DB kMceB  the FMS waves are excited, and 

their dynamics under conditions 22

 kk x , Ax cv   near the cone of 

2/1)/(arctan mM , is described by the equation of the BK class known as the GKP 

equation for the magnetic field BBh /~  with due account of the high order dispersive 

correction defined by values of plasma parameters and angle ),( kB . In another case, 
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the dynamics of the finite-amplitude Alfvén waves propagating near-to-parallel to B is 

described by the equation of the same class known as the 3-DNLS equation for 

|1|2/)(  BiBBh zy . To study the stability of multidimensional solutions in both 

cases the method of investigation of the Hamiltonian bounding with deformation 

conserving momentum by solving the variation problem is used. As a result, we have 

obtained the conditions of existence of the 2D and 3D soliton solutions in the BK 

system for cases of the GKP and 3-DNLS equation (i.e. for the FMS and Alfvén waves, 

respectively) in dependence on the equations’ coefficients, i.e. on the parameters of both 

plasma and wave. 

1.2.1. Introduction. Basic equations 

In this Section we study the stability of the multidimensional solitons forming on the 

low-frequency branch of oscillations in a plasma for cases 1/4 2  BnT  and 

1 . These oscillations are described by the Belashov-Karpman (BK) class of eqs. 

(1.1.19)  

fuutut  ),(A                                               (1.2.1) 

when operator A(t, u) takes the form (1.1.20) and form (1.1.21), respectively. As we 

have noted in Sect. 1.1.3, in the first case the system (1.1.19) when 

1,/  DB kMceB  is the generalized Kadomtsev-Petviashvili (GKP) equation  

  ,532 uuuuuuu xxxxtx                        (1.2.2) 

2/0c , which is valid when the dispersion relation has form (1.1.7) and describes 

propagation of the FMS waves with 22
 kk x , Ax cv   in magnetized plasma for the 

dimensionless amplitude of the magnetic field of the wave, BBh /~  [13]. In the 

second case we have the 3-dimensional derivative nonlinear Schrödinger (3-DNLS) 

equation  

 

iHAAA

x

xxxt

vrr

dxhhhihhsh



  


/,2/                

,222

                       (1.2.3) 

where s = 1, 1  with dissipative factor  

  


 

0

2
0

2
0 )()2/( dcc . 

Equation (1.2.3) is valid when the dispersion relation has form (1.1.18) and describes 

propagation of the finite-amplitude Alfvén waves near-to-parallel to magnetic field B 

for the dimensionless function  |1|2/)(  BiBBhu zy  [31]. 

The sets of eqs. (1.1.19), (1.1.20) [or eq. (1.2.2)] and (1.1.19), (1.1.21) [or eq. 

1.2.3)] are not completely integrable ones, and a problem of existence of 

multidimensional stable soliton solutions requires especial investigation. Let us consider 

the problem of stability of possible multidimensional solutions for two particular cases 

of the BK system mentioned above which correspond two branches of oscillations in 

space plasma. Let us assume that dissipation is absent in the medium, i.e. =0 in eqs. 

(1.2.2) and (1.2.3). At first, for the whole diapason of the dispersion coefficients' change 

we will give the estimations and formulate the sufficient conditions of stability of the 
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GKP equation solutions in the two-dimensional (2D) and three-dimensional (3D) 

geometry on the basis of transformational properties of the Hamiltonian. Further, we 

will consider the same problem for the 3-DNLS equation in the 3D geometry. 

1.2.2. Case of the GKP equation 

     To study the solutions stability, performing the coordinate transformation (see Sect. 

1.1.1), rewrite  eq. (1.2.2) with ν=0  in form 

  ,6 53 uuuuuu xxxtx                                   (1.2.4) 

where   sgn,|| 2/1 . Note that (1.2.4) is now the Hamiltonian equation. 

Rewriting it into the form 

H( xtu 




 )('(')/ xxu ')/H dxu ,                          (1.2.5) 

with  the Hamiltonian 

      













  rduvuu xxx

32222

2

1

22
H                   (1.2.6) 

and uvx  2
, we obtain the Hamiltonian equation where the continuum of values, 

u M, plays the role of the point coordinates in the phase space M, the matrix 

)'(')',( xxxx   is skew-symmetric and, because of the inversibility of the operator 

x  
on the decreasing functions for | x |  ,  is a non-degenerate one on u. Thus the 

Hamiltonian structure can be represented by the Poisson bracket [27] 

  M,,)/()/(, 




 RSdxuRuSRS x , 

with S;R M, which satisfies the Jacobi’s identity since  does not depend on the point 

u in the space M. 

The problem of the stability of the soliton-like solutions of (1.2.5) was studied 

before in [11] on the basis of an analysis of transformational properties of the 

Hamiltonian (1.2.6) in the 2D and 3D geometry ( 0z and 0 zy , respectively) for 

0,1 
  (corresponding to different types of the medium). 

The stationary solutions of  eq. (1.2.4) are defined from the variation problem,  

0)v(H  xP                                              (1.2.7) 

where  rduPx
2

2

1  is the momentum projection onto the x axis, v is a Lagrange's 

factor, which illustrates the fact that all finite solutions of eq. (1.2.4) are the stationary 

points of the Hamiltonian for fixed  Px . 

Consider now the problem of stability. In a dynamic system, according to  

Lyapunov’s theorem, the stationary points corresponding to the maximum or minimum 

of the Hamiltonian H are absolutely stable. If an extremum is local then the locally 

stable solutions are possible. The unstable states correspond to the monotonous 

dependence of H on its variables, i.e., those cases when the stationary point is the saddle 

point. According to that, all we need is to prove that the Hamiltonian H is limited from 

below for the fixed Px. 
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Similar to what was done for the classic KP equation in [70], we consider the scale 

transformations in the real vector space R, 

)/,/(),( 2/)1(2/1  


 rr xuxu d                                  (1.2.8) 

(where d is the dimension of the problem, and R, ) which conserves the 

momentum Px. The Hamiltonianas a function of the parameters ,  now takes the 

form 

42)1(21222)H(   ecba, /d/ ,                        (1.2.9) 

where 

    ,,)()2/1(,)()2/( 322
rrr ducdvbdua xx  

  rdue x
22 )()2/( . 

The necessary conditions for the existence of  Hamiltonian’s extremum are given by 

0H   
and 0H  ,                                          (1.2.10) 

The latter enables us to obtain the extremum’s coordinates, ),( ji  , if it exists. Holding 

the inequalities 

0),(H

,0
),(H),(H

),(H ),(H

2

22

22














ji

jiji

jiji

                           (1.2.11) 

guarantees that the corresponding quadratic form is the positively definite one and 

therefore these inequalities give the sufficient condition of the existence of the (local) 

minimum at the point ),( ji  . 

Consider eq. (1.2.2) for d = 2, i.e., with 0z . In this case eqs. (1.2.10) form the 

following set [11],[27]: 

   

   ./4

,

,0232/

3/152

2

344







cb

t

eattbcG

                            (1.2.12) 

Analysis of (1.2.12) shows (see Appendix) that it has one positive root, t   R, for every 

quadruple of the functions a, b, c, e R in the case e >0 and any a; two positive roots, 

t1,2  R, for e <0 and a >0; and in the case e <0,  a 0 we have tR. 

Inequalities (1.2.11) for d = 2, taking into account expressions (1.2.12), lead to 

,0)( 3
14

2
13

22
12

33
11  eCtaeCetaCtaCG                     (1.2.13) 

,0)( 3
24

2
23

22
22

33
21  eCtaeCetaCtaCG                     (1.2.14) 

where Cnm>0 are constants. It follows that conditions (1.2.11) are fulfilled on the set 

RtS  of solutions of the set (1.2.12) for e >0 and a 0, and, consequently, the 

Hamiltonian ),H(   is bounded from below. Solving (1.2.13) and (1.2.14) in the R-

space for e>0 and a<0, we obtain for  ttt ASS )2.13()1.13( R  that 
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    ,)3/cos(23sup 1
1211

1
11 eaCCCAt




 
and 0inf tA  (t=0 is not the root of the 

set (1.2.12) and we therefore discard it). Here,  

  2/1
1311

2
121 3 CCCC   and 1    












14
2
11

2
1

2
1212

13
1

2732cosArc CCCCCC . 

Taking into account (A4) (see Appendix; note that   tt AS ), we conclude that 

for e >0 and a <0, the sufficient condition of the existence of the local minimum of 

),H(   is the relation tt AS  , i.e., 

    2/3/cos6)/)(/( 1211
1

11
4/1 CCCebca 


.                     (1.2.15) 

Analogously, considering inequalities (1.2.13)-(1.2.14) for the case e <0 and a >0, we 

obtain  

)1(inf tB         


1
1

11
)1(1

2222
1

21 23sup,3/cosh23 CCBeaCCC t  

 3/43/cos 1   ,1
12 eaC      


3/23/cos23inf 11

1
11

)2( CCBt  eaC 1
12

 , 

where 

)2()1(
tt BB  ;)2.13()1.13( R ttt ASS   2/1

2321
2
222 3 CCCC  ; 

   2
2222

13
22 2coshAr CCC


  24

2
21

2
2 273 CCC  .. 

Taking into account equalities (A8) we get ,)1()1()1(
ttttt BSBSB  and tt SB )2(

= . Then in (A5), by changing a4b/c4e243-3Q 1 (Q >1) and using inequalities (A7), 

we obtain Q = 283-3 (T+2)/T2 (T 1)1(inf  aeBt ). This corresponds to the sufficient 

condition of the existence of the local minimum of the Hamiltonian ),H(  , namely 

)1(infinf tt BS  , which can now be rewritten as 

)2/(2/ 2444   TTecba .                                         (1.2.16) 

Fig. 1.2.1 shows the change of the Hamiltonian ),H(   for the test values of the 

integrals a; b; c, and e for d = 2, 0,1 
 .  

Consider now eq. (1.2.5) for d = 3 ( 0 yz ). In this case, for every quadruple a; b; 

c; e  R, with a0, we immediately obtain from (1.2.10) 

 

 

.4,3,2,1;2,1

,/2

,5129316

2/5

2421











 



ji

cb

eabccab

ij

i

                     (1.2.17) 

We note here that R ),( ji   
for 0 i , and therefore we consider below only the 

roots 0 i  (we map out equality 0 i , taking into account e0, otherwise (1.2.5) 

degenerates into the standard KP equation).  

Inequalities (1.2.11) taking into account (1.2.17) are now given by 

                                     ,03/10)2/( 22  ebca                                     (1.2.18) 

 .03/10)48/( 22  ebca                                   (1.2.19) 
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In the case e > 0 and a > 0, the condition Ri , i.e.,  

eabc 24 )9/512(                                              (1.2.20) 

gives 02,1  . Elementary analysis then shows that 


)1.17()16(

11
SS   and, if strict 

inequality (1.2.20) holds 
)17()16(

22 
 SS . Thus, for the existence of the local minimum of 

),H(   for e >0 and a >0, it is sufficient to have 

a b 2 e / c 4 < 9/512.                                           (1.2.21) 

When e >0 and a <0, for each quadruple of a, b, c, eR we have from the equality of 

(1.2.13) 01  and, therefore, 


R)16(

2,1
S . For 

)16(

2
S , elementary analysis of 

inequalities (1.2.18)-(1.2.19) gives us 
)17()16(

22 
 SS .  Thus for any e >0 and a <0 the 

function ),H(   is limited from below. 

         Analogous consideration in the case e <0 shows that for a <0, when condition 

(1.2.20) is satisfied for every quadruple   a,b,c,eR,  we  have 02,1 
 
and,   therefore, 

 R)16(

4,3,2,1
S ; for a>0 we have  02 ,)16(

4,3
 RS 01   but 




)1.17()16(

11
SS .   

         For a = 0 and e 
 0   (i.e., e  0), instead of (1.2.17) we have 

2,1,1              

,)/2(,3/16 2/52





ji

cbcbe iji

 
for every triplet of functions Recb ,, . For e <0 it immediately follows that 

 R
j

S . For e >0, it is not difficult to show that )14(
  SS . 

Fig. 1.2.2 shows the change of the Hamiltonian ),H(   for the test values of the 

integrals a, b, c, e for d = 3, 0,1 
 . 

 

 
 

Figure 1.2.1. Change of the Hamiltonian H ( , ) in the 2D case (d = 2) along lines 

   3/152
/4  cb  for the test values ofthe integrals: 1  a =0.5, b =0.5, c =1, e = 0.02;  

 2  a = 0.5,  b = 0.5, c = 0.5, e = 0.5;  3  a = - 0.5, b = 0.5, c =1, e =  0.02.  

 4a =1, b =1, c = 0.5, e =  1; 5 a= 0.5, b= 0.5, c = 1, e = 0.02 
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To sum up the above results, we conclude the following. In the 2D case the 

Hamiltonian (1.2.6) of  eq.(1.2.5)  is limited from below  at  the  fixed  projection of  the  

 
 

 

momentum Px for the integral values e>0 and a 0  (i.e. when =1, 0 in expression 

(1.2.6)) and has the local minima for e >0 and a <0 (=1, >0) and e<0 and a>0 

(=1, <0) when the conditions (1.2.15) and (1.2.16), respectively, are satisfied. 

In the 3D case H has a local minimum for e > 0 and a  0 [i.e. when =1,  0 in 

(1.2.6)] if condition (1.2.21) is satisfied, and it is limited from below for e > 0 and a < 0 

(=1, >0). Note that the class of scale transformations (8) of course does not include 

all possible deformations of the Hamiltonian H but the estimations obtained above 

justify that it is limited for the cases considered when, according to Lyapunov’s 

theorem, absolutely and locally stable soliton solutions should exist. Analysis of the 

boundedness of  H on the numerical solutions of (1.2.4) for d = 2 and  d = 3 obtained in 

[61],[62],[15] was presented in [27] and it has confirmed the results presented above. 

This is a noteworthy fact that the GKP equation accounting, unlike the usual KP 

equation, the next order dispersive correction has the stable 3D solutions. 

1.2.3. Case of the 3-DNLS equation 

       Consider now a case of the 3-DNLS equation in the BK system, i.e. eqs. (1.1.19), 

(1.1.21), using the same approach as in the previous Section for the GKP equation (see 

also [19]). We rewrite 3-DNLS equation (1.2.3) by performing the formal change 

hu   into the Hamiltonian form 

)H( h/h xt  ,                                           (1.2.22) 

 
 

Figure 1.2.2. Change of the Hamiltonian H( , ) for d=3 along  

the lines 
2/5)/2(  cb  for the test values of the integrals:   

1 a=1, b =1, c =1, e = 0.025;  2 a =1, b =1, c =1,  

e =0.017;  3 a=0.5, b =1, c=0.5, e=0.02; 4 a=0.5,  

b=1, c=0.5, e=0.02; 5 a=1, b=1, c=0.5, e=0.02. 
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with the Hamiltonian [29] 

  
)(arg,

, = H

2

2

2
1*4

2
1

hhw

dwshhh

x

xx







 r

          (1.2.23) 

which has a sense of energy of the system, and solve the variation problem (1.2.7) 

where  rdhPx

2

2
1  is the momentum projection onto the x axis, that illustrates the 

fact that all finite solutions of eq. (1.2.22) are the stationary points of the Hamiltonian 

for fixed  Px. It is needed now to prove the Hamiltonian’s boundedness (from below) for 

fixed Px. Consider the scale transformation )/,/(),( 12/1  


 rr xhxh  ( , С) 

conserving Px, in complex vector space С. The Hamiltonian as a function of ,  is 

given by 
22121)H(   cba,  ,                         (1.2.24) 

where       rrr dwcdhhsbdha xx
2*4 )()2/(,,||)2/1( .  

         The necessary conditions for the existence of the extremum (1.2.10) immediately 

allows us to obtain the extremum’s coordinates 

                      

,)/(1)/(

,/

22













 



caba

ca

                               

(1.2.25) 

where 0b  if C R  because 0,0  ca  by definition, and 0b  if C . The 

sufficient conditions for the existence of the local minimum of H at the point  ii  ,  

are given by inequalities (1.2.11) and we therefore obtain for 0b  

  1851322/
1




dca .                             (1.2.26) 

Thus it follows from (1.2.11) and (1.2.24)-(1.2.26) that the Hamiltonian H of eq. 

(1.2.22) is limited from below, i.e. 

)21(/3 H 2ddb  ,                                      (1.2.27) 

where 0b  if condition (1.2.26) holds. In this case the 3D solutions of 3-DNLS 

equation are stable. The solutions are unstable in the opposite case, 0,1  bdca . 

Condition 0b  corresponds to the right circularly polarized wave with 

1/4 2  BnT , i.e. when 1,1  s  in eq. (1.2.3), and to the left circularly 

polarized wave when ,1 1s . It is necessary to note that the sign change 

,11  11s  is equivalent to the change  ,tt  and for negative  

the Hamiltonian becomes negative in the area "occupied" by the 3D wave weakly 

limited in the k -direction; in this case condition (1.2.27) is not satisfied. The change 

of the sign of b to positive [when 1,1  s  or 1,1  s  in eq. (1.2.3)] is 

equivalent to the analytical extension of solution from real values of y, z to the pure 

imaginary ones: izziyy  ,  and, therefore, equivalent to the change of sign of  

in the basic equations. In this case instead of inequality (1.2.27) the opposite inequality 

will take place. From the physical point of view this means that if the opposite 

inequality is satisfied, the right polarized wave with the positive nonlinearity and the left 

polarized wave with the negative nonlinearity are stable. Note that in the particular case 

0  in eqs. (1.2.1), (1.2.2) (1D approximation), instead of inequality (1.2.27) and the 
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opposite one, it is easy to obtain the conditions 0H   and 0<H , respectively, that is 

completely in agreement with the results obtained in [46] for the 1-DNLS equation. 

Thus the analysis of the transformation properties of the Hamiltonian of the 3-

DNLS equation allows us to determine the ranges of the respective coefficients as well 

as H which has the sense of the energy of the system, corresponding to the stable and 

unstable 3D solutions. So, we have proved the possibility of existence in the 3-DNLS 

model of absolutely stable 3D solutions. 

1.2.4. Conclusion 

       So, we have investigated analytically the problem of stability of multidimensional 

solitons and nonlinear wave packets in the framework of model of the BK class of 

equations. Under the assumption of negligible dissipative effects, these solutions 

coincide with those of the GKP class equations in the form (1.1.19), (1.1.20) with = 0 

and the 3-DNLS equation (1.1.19), (1.1.21). In the first Section we have presented 

analytical estimates and formulate the sufficient conditions for the stability of solutions 

of GKP equation in the 2D and 3D cases, based on the transformational properties of the 

system’s Hamiltonian for the whole range of the dispersive coefficients. Then an 

analogous problem for the 3-DNLS equation in the 3D geometry has been studied. 

Despite the fact that the considered classes of the Hamiltonian’s deformations for both 

equations do not include all possible deformations of H, the obtained results clearly 

demonstrate the stability of the solutions if some (found and formulated) conditions are 

satisfied and can at least be considered as the necessary conditions of the stability of the 

multidimensional solutions. 

The application of our analysis to the problem of the FMS waves beam's 

propagation in magnetized plasma enables us to prove [35], for example, that the 3D 

beam propagating at  angle to magnetic field doesn't focuse and becomes stationary 

and stable in the cone of 2/1)/(arctan mM  when the inequality 

3/4)]cot1([cot)cot/( 12422  Mm  

is satisfied. Let us note also that the obtained results give us the possibility to interpret 

correctly some our numerical and theoretical results on the dynamics of the internal 

gravity waves' solitons, induced by the pulse-type sources, which propagate at heights 

of the ionosphere F region [32] from the point of view of such solitons stability. 

Note also that our analytical results presented above are well confirmed by the 

results of our numerical experiments on the study of structure and stability of 

multidimensional solitons in the model of the 3-DNLS equations [27],[29],[31]. So, we 

have obtained that for a solitary wave propagating in a plasma, on a level with wave 

spreading and wave collapse (in other terminology, self-contraction), the formation of 

the 3D solitons can be observed. These results are well applicable and useful in studies 

of dynamics of the Alfvén waves propagating in space plasma. 

1.2.5. Appendix 

      Performing the transform 43 /8' cbatt   in  eq. (1.2.12), we  obtain  the   reduced 

equation 

0''' 24  rqtptt .                                                 (A1) 

The cubic resolvent kernel z3 +2pz2 + (p2 4r)zq2 =0, using the change zx2p/3, can 

be reduced to the equation  

0''3  qxpx ,                                                    (A2) 
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where 8422144310 /2';/2' cebaqcbep  , with the discriminant 

 4434812326 322   bcaeecbD .                                   (A3) 

In the case 0e  and, 0a  we have 0D , therefore eq. (A2) as well as the resolvent 

kernel in the real vector space R for each quadruple of the values of functions a, b, c, 

e R have one root. Thus, using Descartes’ rule of signs, we can conclude that (1.2.12) 

for e >0 and 0a  has one positive root tR (note that t  0 does not satisfy (1.2.12), in 

this case R). It follows from the analysis of eq. (1.2.12) that in the space R for 

RtS  the equalities 

  0inf,/4supinf
0

4/13

00



t

a
t

a
t

a
ScbeSS .                             (A4) 

 

take place. 

Consider now the case when 0,0 
 ae . It follows from eq. (1.2.12) that for a 0 

this equation foes not have roots t >0 in the space R, therefore, we limit ourselves by an 

analysis of (1.2.12) for a >0. When  
3444 32/  ecbaF                                                 (A5) 

we have D >0 from (A3). It then follows that (A2) and the resolvent kernel in the space 

R for each quadruple of the functions a, b, c, e R have one root, and eq. (1.2.12), 

taking into account the rule of signs, has two positive roots t1,2 R.  

Let us estimate boundaries of the set RtS . With the two changes htt  and 

htt  in (1.2.12), we obtain, respectively, the sets 

  ,28
144  

iii eahbhiac                                           (A6) 

                                         ,28)1()1(
144  

iiiii eahbhiac                                 (A7) 

i = 1, 2, 3, 4. 

Solving inequalities (A6) and (A7) with the condition (A5), we obtain 

 

  
  
    
   ,3/cos'28'

,81032,','maxmininf

,1052/11cosArc

,43/23/cos1032sup

1
21

134
21

5
1

1
1

35

eaFFFh

eahhS

eaS

t

t















                        (A8) 

   ,3/43/cos'28' 1
22 eaFFFh   

    
.21'                               

,'2'2/3232cosArc 3327
2

FFF

FFFFF




 

If condition (A5) is not satisfied, we have D 0. In this case, a simple analysis shows 

that  (A2)  and the  resolvent  kernel  for each quadruple  of  the  functions  a, b, c, e R 

( 0,0  ae ) have one positive and two negative roots. Therefore, eqs. (A1) and 

(1.2.12) in the real vector space  R have no roots.  
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1.3. Qualitative analysis and asymptotics of solutions of the GKP-class equations  

 

In this Section we study the dynamical systems associated with the generalized 

Kadomtsev-Petviashvili (GKP) equation and consider the structure of possible 

multidimensional solutions and their asymptotics. We also present some considerations 

on constructing the phase portraits of the systems in the 8-dimensional phase space for 

the GKP equation on the basis of the results of qualitative analysis of the generalized 

equations of the KdV-class. 

1.3.1. Basic equations 

       Consider the generalized Kadomtsev-Petviashvili (GKP) equation (or so-called 

Belashov-Karpman (BK) [61],[62],[15] equation without the terms describing the 

dissipation and instability)1:  

  uuuuuut  κγβα 5
η

3
ηηη                          (1.3.1) 

,2
ζ

2
ζ 21

           
 

where 1  and 2  are the transverse coordinates. At 0γ   eq. (1.3.1) is the classic 

Kadomtsev-Petviashvili (KP) equation which is the completely integrable Hamiltonian 

system and has in case 2
ζ1
  the solutions in form of the 1D (for 0βκ  ) or 2D (for 

0βκ  ) solitons (see [27],[59]). The structure and the dynamics of the solutions of the 

non-integrable analytically GKP model (1.3.1) with const,   has been investigated 

in detail in [61],[62] where it was shown that in dependence on the signs of coefficients 

,  and  the 2D and 3D soliton type solutions with the monotonous or oscillatory 

asymptotics can take place. In [16] the asymptotes of the 1D analogue of eq. (1.3.1) 

with const,   were studied, and the sufficiently complete classification of its 1D 

solutions in the phase space was constructed.  

Note, that if the dispersion in medium is variable, introducing the high order 

dispersive correction (term with  ) into the KP equation has a principal role. Thus, for 

example, in the problems of the propagation of the 2D gravity and gravity-capillar 

waves on the surface of "shallow" water [15] when  is defined respectively as 

6/2
0Hc  and   gHc  /36/ 2

0  where H is the depth,  is the density, and  

is the coefficient of surface tension of fluid, the depth can be variable, ),,( yxtHH  , 

and in this case  also becomes the function of the coordinates and time. Similar 

situation takes place on studying the evolution of the 3D fast magneto-sonic (FMS) 

waves in a magnetized plasma in case of the inhomogeneous and/or non-stationary 

plasma and magnetic field [13],[35] when  is a function of the Alfvén velocity 

vА = f [ B (t , r), n (t , r)] and angle )( Bk
 :  )/)(cot2/( 22

0
2 Mmcv iA  . In these 

cases the situations, when 0  or even becomes equal zero are possible, that, 

however, does not mean that the dispersion in medium is completely absent, simply it is 

necessary to keep the next order dispersive term in the Taylor expansion of a full 

dispersion equation with respect to k, at this, a balance between nonlinearity and 

dispersion, defining the existence of the soliton, will be conserved, and the term 

                                                           
1 The role of these terms was considered in detail in [15],[27]. 
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proportional to the fifth derivative will appear in the KP equation. Therefore, if the 

dispersion can vary in medium, it is necessary to consider the BK equation in form 

(1.3.1), namely the GKP equation. 

So, our purpose is the generalization of the results obtained in [16] to the 

multidimensional cases when  or/and  are not constants (the dispersion is variable) 

with due account of the results presented in [15],[27].  

To avoid unnecessary cumbersome expressions, consider eq. (1.3.1) in the 2D form 

assuming that 2
ζ1
 . Further generalization of the technique used (as well as the 

results obtained) to the full 3D case 2
ζ

2
ζ 21

  is rather trivial, as we demonstrate 

below. Assume that 1  and, for clarity, 6α   (the latter can be easily obtained by 

the scale transform uu )α/6(  in the GKP equation). 

       Now, let us introduce the new variables: ζηη  , ζηζ  . Applying first   and 

then   to (1.3.1) we obtain the pair of one-dimensional equations: 

 
  uuuuuu

uuuuuu

t

t

253

253

6

,6








                             (1.3.2) 

written in the reference frame with the axes η  and ζ  rotated through an angle +45 

relative to the axes  and . Representation (1.3.2) means in fact that the starting eq. 

(1.3.1) admits two types of 1D solutions, ),( tu  and ),( tu  , satisfying the first and the 

second equations of the set (1.3.2), respectively. It is necessary, however, to bear in 

mind that the "one-dimensionality" of these solutions nevertheless implicity assumes the 

linear dependence of each of the new variables η  and ζ  on both coordinates,  and .  

Integrating eqs. (1.3.2) over η and ζ , respectively, we obtain equiform generalized 

KdV equations 

0γβ)6κ(

,0γβ)6κ(

5
ζ

3
ζζ

5
η

3
ηη





uuuuu

uuuuu

t

t
                    (1.3.3) 

coupled with each other by the way of the change of the coordinates made above. Now, 

transferring to the coordinates moving along the corresponding axis with the velocity 

, i.e. applying the change tκηη'  , tκζζ'   in eqs. (1.3.3) and omitting “primes” 

for simplicity, we write eqs. (1.3.3) in the standard form: 

.0γβ6

,0γβ6

5
ζ

3
ζζ

5
η

3
ηη





uuuuu

uuuuu

t

t
                                 (1.3.4) 

So, we can now conduct the analysis for only one generalized equation of the set 

(1.3.3), and then, making the inverse change of the variables, extend the results to the 

2D solutions ),,( tu   of the GKP equation (1.3.1) with 
2
ζ . 

1.3.2. Qualitative analysis for 1D equation 

       Taking into account the more general case we extend the class of eqs. (1.3.4) by 

introducing the arbitrary positive exponent p of the nonlinear term:      

0γβ6 5
η

3
ηη  uuuuu p

t .                                (1.3.5) 

Equation (1.3.5) for 0  is the usual KdV equation when p =1, and it is the modified 
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KdV (MKdV) equation when p=2. The asymptotics of (1.3.5) with p =1 were first 

investigated in [61],[63] where it was shown that depending on the signs of the 

coefficients  and  the soliton type solutions with monotonous or oscillating 

asymptotics can take place. But note, that eq. (1.3.5) with 0 and 1p  is not exactly 

integrable (i.e., the known analytical methods such as the IST method, are not 

applicable to this equation). In [16] eq. (1.3.5) was investigated by the methods of the 

both asymptotic and qualitative analysis, and, as a result, the sufficiently full 

classification of its solutions was constructed. In this Section we mainly follow the 

ideas and technique of [16].  

Note, that from the physical point of view, the cases when in eq. (1.3.5) p =1,2 are 

the most interesting, and applications for p >2 are presently unknown. However, since 

equations of the family (1.3.5) with an arbitrary integer p >0 demonstrate, to a 

considerable extent, similar mathematical properties, we use here a general approach 

elucidating, apart from other, the dependence of the characteristics of the solutions on 

the nonlinearity exponent. 

       Performing transformation tVx   and integrating (1.3.5) in   we obtain 

0
1

6 421 


 
 uuu

p
Vu p .                                  (1.3.6) 

Assuming without loss of generality that 0 and 1 , after the change u =Vw, 


 4/1

V
 
  we convert (1.3.6)  to 

0
1

6
)sgn()sgn( 1122/14 


 






pp

wV
p

s
wwVVwV       (1.3.7) 

where 






. oddfor               1

 even for      )(sgn

p

pV
s  

Depending on sign of V in (1.3.7) the following two cases can be considered: 

a) V > 0: 

0
1

6 1122/14 


 






pp

wV
p

s
wwVw ;                     (1.3.8a) 

b) V < 0: 

0
1

6 1122/14 


 






pp

wV
p

s
wwVw .                   (1.3.8b) 

However, as one can see from (1.3.5), the velocity of the wave, V, depends on the 

equation’s coefficients and it is restricted by: 

                                 










.1,4/1

;1,4/1

max

min
ph

ph

V

V
V  

(1.3.9.1)  

(1.3.9.2) 

The right-hand sides of inequalities (1.3.9) correspond to results obtained in [61] and 

comparing these relations with expressions (1.3.8a) and (1.3.8b) leads to contradictions 

in the cases 1  and , 0V , respectively. Therefore, below we will limited by 

the consideration of cases (a) with  and (b) with 1 and , 04/1  V . 

Qualitative analysis and asymptotes of the solutions. First, we note that every equation 

of the set (1.3.8) is equivalent to the set of the first order ordinary differential  equations 

1

1 1
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                       (1.3.10) 

where the dots stand for the -derivatives, and the signs in the brackets correspond to 

three cases mentioned above; furthermore, C = | V |1/4. Solutions of eqs. (1.3.10) are 

stable if there exist the singular trajectories of the imaging point in the phase space(w, x1, x2, 

x3) of the set (1.3.10). Each trajectory of its kind is related to the state of equilibrium 

near the maximum of the soliton-like solution and at the boundaries .  Assuming 

as the boundary conditions that 

3,2,1,0   nww
n

at ,                                (1.3.11)                                           

we can find from (1.3.10) the number as well as the coordinates of the singular points: 

                                  

,
6

1
,0

)1(41
p

pj
Cs

p
ww




                                           (1.3.12) 

where the points w1=0 and wj correspond, respectively, to   and the bending 

points of the function u ( );  j =2 for the odd and j = 2, 3 for the even p, in the last case 

w2=w3. Considering only real roots of (1.3.12) we immediately conclude (using  

Sturm’s theorem) that for the odd p there are two singular points, and for any even p 

there are three singular points. The distance between the singular points defines the 

amplitude of the soliton-like solution of (1.3.6). Besides, the value of the nonlinearity 

exponent p defines a character of dependence V = f (u): for p>1 this dependence 

becomes nonlinear (Fig. 1 . 3 . 1 ) unlike the known linear one for p =1 (e.g., in the case 

of the KdV equation). As one can see in Fig. 1.3.1, for the even p the solutions of eq. 

(1.3.6) can have the positive as well as negative polarity ( 0
u ) for any sign of V . 

       To investigate the types of the singular points, it is necessary to linearize the set 

(1.3.10) in the neighborhood of every point. Using Taylor’s formula, we obtain from eqs. 

(1.3.10) [16]: 

 
 

Figure 1.3.1. Dependence V = f (u) for eq. (1.3.6) for  

different values of p. Numbers of curves corresponds  

p =1, 2, ..., 6. 
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1) for the singular point w1=0, that corresponds to u1=0 in (1.3.6), taking into account the 

conditions (1.3.11), 
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                                   (1.3.13.1) 

2) for the singular point wj, that corresponds to 
p

j sVpu 6/)1(   in (1.3.6), 
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                                    (1.3.13.2) 

Since the sets (1.3.13) are essentially four-dimensional, we investigate them by 

expanding the corresponding canonical systems into the subsystems [27]. In this case, it 

is possible to consider the phase portraits of the linear sets (1.3.13) as projections of the 

singular points and trajectories onto two planes. For the singular point w1=0 we obtain 

that the eigenvalues of the matrices of subsets of set (1.3.13.1) (see [27]) corresponding 

to the phase planes P1(w,x1)  and P2(x2,x3) are defined by 

   

2/1

422/12P,1
2,1 42











































CCP

.                      (1.3.14) 

In the case (a) with , 21,  are real on the phase plane P1 and pure 

imaginary on the phase plane P2, besides, 21   on both planes. In the case (b) with 

1 , taking into account the conditions (1.3.9), the characteristic roots 1  and 2  are 

complex with positive and negative real part on the planes P1 and P2, respectively, and 
 21 . In the case (b) with 1 , taking into account condition (1.3.9.2), all four 

roots are real and 21   on both planes. Therefore, the singular points w1= 0 of three 

types exist in the phase space, namely: the “saddle–center” point, the “stable focus–

unstable focus” point, and the  “saddlesaddle” point in the cases mentioned above, 

respectively. 

Considering by analogy the matrix of subsets corresponding to set (1.3.13.2) we 

obtain eigenvalues for the singular points wj defined by (1.3.12) in three cases 

considered for the subsets corresponding to the projections to the phase spaces P1(w, x1) 

and P2(x2, x3) [16]: 

   
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










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
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
pCC .                      (1.3.15) 

One can see from (1.3.15) that the character of the singular point depends on the 

nonlinearity exponent p defining the wave velocity pupsV 1)1(6  . Nevertheless, 

conditions (1.3.9) remain valid  in these cases as well.  

Analysis of (1.3.15) enables to conclude the following. The eigenvalues 1  and 2   

are complex (moreover 

 21 ) with the positive real parts on the plane P1 and the 

negative ones on the plane P2 in case (a) ( 1 ) taking into account the condition 

(1.3.9.1). In case (b) with 1 1  and 2  are real on the plane P1 and pure 

imaginary on the plane P2, and 21   in the both cases. In the case (b) with 1  

1
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the situation is analogous to that of the case (b) with 1 . Therefore, only singular 

points  wj  of  the type “stable focus–unstable focus” take place in the phase space in the  

case (a), and of the type “saddlecenter” take place in the case (b) for both signs of  . 

To study the global phase portraits including singular trajectories corresponding to 

the stable solutions of eqs. (1.3.10), in [27],[16] the Bendixon and Dulac criterions have 

been used, and also the first and the second Lyapunov quantities have been calculated. 

Omitting here cumbersome mathematical calculations, we note that in all three cases 

considered the closed trajectories have place in the phase space. At this, formulae 

(1.3.14) and (1.3.15) enable us to obtain such parameters of the curves as their 

directions and, consequently, the angles with respect to the coordinate axes on both 

planes, and, therefore, to construct the global phase portraits. 

The examples of such phase portraits for the cases (a) and (b) for p=1, 2 are shown 

in Fig. 1.3.2,a,b and Fig. 1.3.3,a,b. 

Using the values of the characteristic roots 1  and 2  (1.3.14) for singular points 

w1=0, taking into account the conditions (1.3.9) and (1.3.11) we obtain the asymptotics 

of the solutions of eq. (1.3.5) for considered cases [27], namely: 

1) for the cases (a) and (b) with 1  

   











2/1
422/1

1 42exp CCAw                   (1.3.16.1) 

(the upper/lower sign corresponds to the cases (a)/(b), respectively);  

2) for the case (b) with  1

 
 

Figure 1.3.2. The phase portraits of the solutions of (1.3.10a) with =1 for p=1 (a) and p=2 (b) 

(solid and broken lines correspond to the phase trajectories respectively in the planes P1 and P2) 

and numerical solution of eq.(1.3.5) with  for p=1. 
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        ,1C2C2cos1C2C2expAw
2/12/1212/112/12/1212/11

2 



 





     (1.3.16.2)  

where A1, A2 and  are arbitrary constants. As we can see from (1.3.16), in the 

solutions of (1.3.5) in dependence of the signs of V and  the solitons with both 

monotonous and oscillating asymptotics can take place. At this, the phase portraits 

shown in Fig. 1.3.2,a,b correspond to the solitons with monotonous asymptotics, and the 

phase portraits shown in Fig. 1.3.3,a,b correspond to solitons with oscillating 

asymptotics. Figs. 1.3.2,c and 1.3.3,c show the results of numerical integration of eq. 

(1.3.5) for the initial condition )/exp( 22
0 lxuu  , that corresponds to the results of the 

asymptotic analysis. 

1.3.3. Generalization of the results to the GKP-class equations 

       Making the inverse change of the variables, extend the obtained results to the 2D 

solutions ),,( tu   of the GKP equation (1.3.1) with 
2
ζ . The asymptotics of the 

solutions are defined by relations [15],[27]: 

a) for the cases 0V , 1β   and 0V , 1β   (the upper and lower signs, 

respectively): 













  χγ4γ)2(exp

2/1
421/2-

1 CCAw ,                       (1.3.17) 

b) for the case 0V , 1β  : 

 
Figure 1.3.3. Phase portraits of the solutions of (1.3.10b) with 

=1 for the same values of parameters as in Fig. 1.3.2,a,b – 

respectively the positions (a), (b), and  numerical solution of 

(1.3.5) with , 3.16, p=1 (c). 
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
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
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2 CCCCAw  (1.3.18) 

Where A1, A2 and   are the arbitrary constants, 
4/1

 VC , and  tV )-(κζηχ   

(here the signs "plus" and "minus" relate to the first and second equations of the set 

(1.3.2), respectively). As we can see from (1.3.17), (1.3.18)2, solitons with monotonous 

as well as oscillating asymptotics can take a place depending on the signs of V and  as 

the solutions ),,( tu   of eq. (1.3.1). (Note, that for 0β   and any 0γ   solutions of 

eqs. (1.3.2) have the form )χ(γexpχ)( 1-1/41
21

 CCAAw  and, consequently, also 

describe a soliton with monotonous asymptotics [15],[27].) Fig. 1.3.4 shows the results 

of numerical integration of eq. (1.3.1) with the initial condition 

 2
2

22
1

2
0 //exp lylxuu  , 

that confirms the results of our asymptotic analysis. 

 

a 

 

b 

 
 

Figure 1.3.4. General view of a 2D soliton of eq. (1.3.1) with 2
ζ  for p =1:  

(a) =1, =0.8 (t = 0.2); (b) =1,  = 3.16 (t = 0.5). 
 

As to the proper transform of the phase portraits of the system and "bind" them for 

the 2D equation, owing to the phase space is 8-dimensional in this case, we can employ 

the results obtained in [16] coupling the characteristics of every singular point of each 

equation of the set (1.3.2) in the 8-dimensional phase space, at this the type of the 

singularities in the 4-dimensional subspaces (see [27]) under the inverse transform of the 

coordinates,   2/ζηη   and   2/ζηζ  , is not changed, and only parameters of the 

phase portraits that correspond to solutions of the same class change (leading to the 

respective changes such parameters as the amplitude, the fronts steepness, frequency of 

the oscillations etc.). 

1.3.4. Concluding remarks 

       To conclude, we note that for the BK equation we considered only the particular 

cases when it is possible to neglect the effects of dissipation and different types of 

instability here. For other cases when it is necessary to account dissipation and 

instabilities, more complex wave structures resulting from the simultaneous presence of 

all the effects discussed, for example, in [27] can be observed. Indeed, results obtained 

numerically in [14],[64],[38], demonstrate that in general BK model [27] with 0 in 

the presence of the Gaussian random fluctuations of the wave field (for harmonic initial 

conditions and initial conditions in the form of a solitary pulse) stable wave structures of 

the soliton-like type can be formed too, with the time evolution. Furthermore, stable 

soliton structures can be formed also for 0 . An analytical study of such cases is 

                                                           
2 Other correlations of signs of V and  are not realized (see [15],[27]). 
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highly complicated, however, although the approach considered above can be used for 

them as well. Note also that the results presented here for the GKP equation can be very 

useful when studying solutions and interpreting the multidimensional phase portraits of 

more complicated multidimensional model equations (see, for example, 

[15],[27],[38],[31],[32]). 

 

1.4. Applications 

We consider here some applications of the theory for real complex continuous 

media on the basis of the equations of the BK system.  

In Sect. 1.4.1 the structure and dynamics of ion-acoustic waves in an unmagnetized 

plasma, including the case of weakly relativistic collisional plasma (when it is necessary 

to take into account the high energy particle flows which are observed in the 

magnetospheric plasma), are studied analytically and numerically on the basis of a 

model of the Kadomtsev-Petviashvili (KP) equation. We show that, if the velocity of 

plasma particles approaches the speed of light, the relativistic effects start to strongly 

influence on the wave characteristics, such as its phase velocity, amplitude, and 

characteristic wavelength, with the propagation of the two dimensional solitary ion-

acoustic wave. These our results can be used in the study of nonlinear wave processes in 

the magnetosphere and in laser and astrophysical plasma. 

In Sect. 1.4.2, on the basis of the model of the three-dimensional (3D) generalized 

Kadomtsev-Petviashvili (GKP) equation for the magnetic field ℎ = 𝐵∼/𝐵 the formation, 

stability, and dynamics of 3D soliton-like structures, such as the beams of fast 

magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a 

low-frequency branch of oscillations when β = 4πnT/B2<< 1 and β > 1, are studied. The 

study takes into account the highest dispersion correction determined by values of the 

plasma parameters and the angle )( Bk
  which plays a key role in the FMS beam 

propagation at those angles to the magnetic field that are close to π/2. The stability of 

multidimensional solutions is studied by an investigation of the Hamiltonian boundness 

under its deformations on the basis of solving of the corresponding variational problem. 

The evolution and dynamics of the 3D FMS wave beam are studied by the numerical 

integration of equations with the use of specially developed methods. The results can be 

interpreted in terms of the self-focusing phenomenon, as the formation of a stationary 

beam and the scattering and self-focusing of the solitary beam of FMS waves. These 

cases were studied with a detailed investigation of all evolutionary stages of the 3D 

FMS wave beams in the ionospheric and magnetospheric plasma. 

The nonlinear dynamics of the 3D solitary Alfvén waves propagating nearly 

parallel to the external magnetic field in plasma of ionosphere and magnetosphere, 

which are described by the model of the 3-DNLS equation, is studied analytically and 

numerically in Sect. 1.4.3. Under the assumption of negligible dissipative effects the 

analytical estimates and the sufficient conditions for the stability of 3D solutions of the 

3-DNLS equation are obtained, based on the transformational properties of the system’s 

Hamiltonian for the whole range of the equation coefficients. On the basis of asymptotic 

analysis the solutions asymptotics are presented. To study the evolution of the 3D 

Alfven solitary waves including propagation of the Alfven waves’ beams in a 

magnetized plasma the equation are integrated numerically using the simulation codes 

specially developed. The results show that the 3-DNLS equation in the non-dissipative 

case can have the stable 3D solutions in the form of the 3D Alfvén solitons, and also on 

a level with them the 3D solutions collapsing or dispersing with time. In terms of the 

self-focusing phenomenon the results obtained can be interpreted as the formation of the 
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stationary Alfvén wave beam propagating nearly parallel to the magnetic field, or 

Alfvén wave beam spreading, or the self-focusing of the Alfvén wave beam. The 

influence of the dissipation in the medium on structure and character of evolution of 3D 

Alfvén waves is studied. 

The dynamics of the 2D solitary nonlinear internal gravity waves (IGW), as well as 

traveling ionospheric disturbances (TID) of the electron density excited by them at 

heights of the ionosphere F-region, for conditions close to those of the F-layer assuming 

that the source of initial perturbation has the pulse character is studied in Sect. 1.4.4 

analytically and numerically. On a level with general case the rather interesting 

applications when the sharp gradients of the ionospheric parameters are the functions of 

space coordinates and time, namely the IGW and TID dynamics in the frontal regions of 

the solar terminator and solar eclipse are considered. The results obtained describe the 

dynamical structure, evolution and transformation of the IGW and TID at heights of the 

ionosphere F-layer including its strongly heterogeneous regions. 

1.4.1. Nonlinear Ion-Acoustic Waves in a Plasma in View of Relativistic Effects 

Despite the essential progress taking place in this field in recent years ([27],[75], 

[76], and numerous references in these works), the study of nonlinear wave processes in 

real media with dispersion still remains actual. In particular, this concerns the dynamics 

of fluctuations in cases in which high energy particle flows in the medium 

(magnetosphere, compact astrophysical systems, e.g., white dwarfs, laser plasma [51], 

[91]) take place, essentially changing such parameters of propagating wave structures as 

their phase velocity, amplitude, and characteristic length. A rather large number of 

works is devoted to investigations of such relativistic effects (e.g., [42], [50], [76], [83], 

[90], [92]); however, practically all of them consider only a one-dimensional (1D) 

approach. In particular, in [75], [76] and in earlier works by Washimi and Taniuti [100] 

and Das and Paul [45], the relativistic effects for the ionacoustic branch of oscillations 

were investigated in a 1D plasma. The studies by Nejon [81] and Taniuti and Wei [93] 

are perhaps exceptions: however, only some extreme cases were studied in these papers. 

The purpose of our investigation is to study the relativistic effects in the dynamics 

of ion-acoustic multidimensional nonlinear wave structures in electron-ionic plasma, 

which is especially important in astrophysical applications and in magnetosphere 

physics. To solve this problem, in principle, we could start from the general set of 

hydrodynamic equations for the relativistic case (e.g., [48]); however, since we are 

interested in the effects which are displayed at relativistic velocities in comparison with 

the nonrelativistic case, it would be more logical to consider first the nonrelativistic 

approach and, further, introducing the relativistic factor (by analogy with [81]) to 

consider its influence on the time-space characteristics of multidimensional nonlinear 

ion-acoustic wave. We shall undertake this approach further. 

In the absence of the magnetic field and for a negligible ion temperature, the 

equations of motion and continuity for ions take the form [15]                              

 0,=)(,=)( vndiv
t

n

M

e
vv

t

v
i

i 









                      
(1.4.1) 

where M  is the mass of an ion and   is the electric potential. Comparison with the 

equations in generalized variables for an ideal gas in neglect a dissipation  
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where   and )(= cc  have the sense of a generalized “density" and velocity of 

“sound," respectively, at density   in neglect a dispersion [60], shows that in this case 

the ion density in  and ion-acoustic velocity 1/2)/(= MTc es  play the role of   and c ; the 

dispersion “length" is defined by 0

222 /8=/2= neTD e  , where 0n  is the unperturbed 

electron density. The electrons in the ion-acoustic wave are Boltzmann distributed  

 )./(exp= 0 ee Tenn 
                                             

(1.4.2) 

The ion and electron densities are related to the electric potential   via Poisson’s 

equation  

 ).(4= ie nne 
                                              

(1.4.3) 

The dispersion equation for the set (1.4.1)–( 1.4.3) is written as [44]  

 )./(1= 22222 kDkcs 
                                          

(1.4.4) 

Following further to the techniques developed in [27] and proceeding from the 

presented reasons, let us consider the basic equation describing the dynamics of the ion-

acoustic waves in an unmagnetized collisional plasma and discuss its possible solutions; 

after that, introducing the relativistic factor, let us consider the effects related to 

particles moving with the velocities, which are rather close to the speed of light. 

Let us consider the wave packet propagating in the direction close to the x  axis. 

We assume that the wave numbers of its harmonics are small satisfying the inequalities  

                                           𝑘𝐷 ≪ 1,     𝑘𝑥
2 ≫ 𝑘⊥

2 ,      𝑣 ′ ≪ 𝑐𝑠,                              (1.4.5)                                                

where v  is the x  component of ion velocity. It is well known that the weakly 

dispersive (see the first inequality of (1.4.5)) ion-acoustic wave steepens in the direction 

of its propagation; therefore, at some time moment, the second inequality of (1.4.5) 

“switches on." Conditions (1.4.5) enable us to reduce the dispersion relation (1.4.4) to 

the form  

);/2(1 2222

xxxs kkkkc    

therefore, limiting ourselves in the nonlinear expansion by the terms quadratic in the 

wave amplitude and considering the solution in the form of a propagating wave 

),,(=  rtcxtuu s , and applying the procedure described in [27], we obtain the 

nonlinear equation  
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                   (1.4.6) 

 which, after homothetic transformation and in the reference frame moving along the x  

axis with the velocity sc  coincides with the Kadomtsev-Petviashvili (KP) equation in its 

standard form [17]:  

 ,=,= 223
zy

x

xxt udxuuuu  
                 (1.4.7) 

 where 1=  is related to the positive dispersion, 1=   corresponds to the negative 

dispersion, respectively, and the factors at the equation terms for the case of ion sound 

are [60]  

./4=,/=/2,=/2,=,/
2

3
= 2

0

22 enTDMTDccnc esssis   

Generally speaking, the sign in the right-hand side of (1.4.6) for the ion-acoustic wave 

is positive, such that the dispersion is negative, 1=   in (1.4.7). However, there are 

cases for other modes when the dispersion is positive, i.e., there is a “minus" sign in the 

right-hand side of (1.4.6). The term vc xs  describes the wave propagation along the x  
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axis with the “sound" velocity, and other terms responsible for dispersion, nonlinearity, 

and diffraction describe slow changes of the acoustic field on the background of the 

wave motion with the velocity sc . Such acoustic waves are mainly characteristic for 

isotropic media (e.g., an unmagnetized plasma), but sometimes it can be observed in 

anisotropic media as well. Thus, if the characteristic frequency of the ion-acoustic wave 

packet significantly exceeds the ion-cyclotron frequency in a magnetized plasma, Hi , 

the plasma anisotropy can be neglected and therefore (1.4.6) can be reduced to the KP 

equation (1.4.7) [44]. In the opposite case, when ω≪ωHi , the anisotropy cannot be 

neglected. In this case the additional term ],[ viHi  ( i  is the dimensionless vector of the 

x  axis) appears in the right-hand side of the equation of motion (1.4.1), and the sign of 

the second term in the dispersion equation changes to minus. In this case we also have 

the equation of the KP class but with the right-hand side of the form ux   [102]. The 

upper sign in this equality, as in eq. (1.4.6), corresponds to the case of negative 

dispersion, and the lower sign corresponds to the positive one.  

 
Figure 1.4.1. General view of 2D solution of the KP equation (1.4.7) at 6= , 1= . 

 

In [17], the isotropic case of (1.4.7) for the ion-acoustic waves in an unmagnetized 

plasma was considered. Further, the results were generalized for a wider spectrum of 

nonlinear systems in [27]. Using the approaches proposed in these works, a numerical 

simulation based on specially developed high-accuracy methods [12], [27] was 

conducted for the initial condition in the form of a solitary pulse of form 

]/)//([exp=),(0, 22

0 Llylxuyxu yx   with periodic boundary conditions. The figure 

shows an example of the numerical results obtained for the two-dimensional (2D) 

)=( 2

y  eq. (1.4.7). 

We can see that, as a result of the evolution of the 2D acoustic perturbation 

),(0, yxu  in an isotropic plasma, a 1D soliton of the KP equation is formed. The form 

of the soliton corresponds to that obtained analytically for the negative dispersion in 

[59] by the Krylov-Bogolyubov method and in [104] by the inverse scattering transform 

(IST) method. It was shown in our numerical simulation that the soliton velocity and the 

first three integrals of the 2D KP equation for sufficiently large t are conserved within 

the limits of the accuracy of the numerical simulation:  
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where τ  and yxh ,  are the steps on the time and space grids, respectively (the last two 

integrals have a sense of momentum and energy of medium described by the KP 

equation). This confirms our earlier results [15] and the existence of a 2D ion-acoustic 

soliton in such a physical system. Let us now consider the problem of the influence of 

relativistic effects on the evolution of the ion-acoustic wave. 

As we already demonstrated, the ion-acoustic waves in a plasma can be described 

by the KP equation (1.4.7). However, if the velocity of plasma particles approaches the 

speed of light, the relativistic effects start to influence strongly the wave characteristics 

(such as its phase velocity, amplitude, and the characteristic wavelength) in the 

propagation of the 2D solitary ion-acoustic wave. 

For the 2D ion-acoustic solitary waves in a weakly relativistic collisional plasma, 

the KP equation in form (1.4.7) can be obtained when the relativistic factor cu/  is taken 

into account [81] by the reduced perturbation method [93]. We can rewrite it in the 

following form:  

 ,
2

1
=)(
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1
)(
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1

2

3
1

3

1
1

11
1 
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d                 (1.4.8) 

 where 1

1/2

11 = u  is a small perturbation of the electrostatic potential 

 2

2

1= ,   is the small expansion parameter; and 1u  is the perturbation of 

the plasma particle velocity )=( 2

2

10  uuuu ,  
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                       (1.4.9) 

Equation (1.4.8) is written in the reference frame moving along the x -axis: 

)(= 1/2 tx  , y = , t3/2=  , where   is the phase velocity. Note that the 

coefficient at nonlinear term 0> , since θ1≫θ2 . In this case we can obtain the  

stationary solution as propagating in the system solitary wave. Introducing the new 

variable  yx kk=  and substituting it into (1.4.8), let us write the solution in 

the form of a 2D wave 

                  

,)(
1

sech= 2
01













xx
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kk

k

W
                          (1.4.10) 

 where the amplitude 0  and the characteristic size W  are defined by the expressions  

                                      

,
δ

)β(θ2
,

)α(θ

δ3
2/1

1

1

0 







 W                              (1.4.11) 

and 2)/(
2

1
/= xyx kkk  , and the boundary conditions are 01  , 01 n

  for 

1,2=n  and  || . The dispersion law for these waves is given by  

]./2)([2= 222

1 xyxx kkkk 
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       We see from (1.4.9) that the factors at the nonlinear term, as well at the dispersion 

term, are defined by the relativistic factor 
1 ; eq. (1.4.11) shows the dependence of the 

amplitude and the characteristic length of the 2D ion-acoustic soliton of the KP equation 

on the weakly relativistic effects. Comparison of the results following from (1.4.9)-

(1.4.11)  with  those for  the  three  extreme cases considered by Kadomtsev  and
 

 

Table 1.1. Comparison of the obtained results with the results for three extreme cases 

  
 

Parameter 

 

 

Obtained results 

Results of Kadomtsev and Petviashvili [59], Nejon [81], 

Washimi and Taniuti [100]; and Das and Paul [45]. 

0=/0 cu , 
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Petviashvili [59], Nejon [81], Washimi and Taniuti [100], and Das and Paul [45] is 

given in the table. Here  









  22/1

10
2

1
1θ)(ω kv/ks , 

where 0v  is the velocity of the ion flow (if 𝑣0~0 and the relativistic effects are ignored, 

we have 2

2

1
1 ks  ). One can see that the obtained results include all three extreme 

cases too, but they are essentially more general, because they describe the influence of 

the relativistic effects on such parameters as the amplitude, characteristic size, and the 

phase velocity of the 2D solitary wave, which, in its turn, are defined by the 

dependencies of the factors at the nonlinear term, as well at the dispersion term of the 

KP equation: )( 1  and )( 1 , respectively, on the particles’ velocity u . 

One can also see that the dependencies of the amplitude and characteristic size of 

the wave on relativistic factor essentially differ for the 2D and 1D cases (compare the 

second and the last column in the table): in the expressions for 0  and W , we have the 

parameters   and s , respectively. 

Thus, in this paper on the basis of a model of the KP equation, the structure and 

dynamics of ionacoustic waves in an unmagnetized plasma, including the case of 

collisional weakly relativistic plasma, when the high energy particle flows should be 

taken into account, were studied analytically and numerically. In particular, when the 

kinetic energy of ions /22

0Mu  at 0.1/0 cu  reaches values 4.7  MeV, the 2D weakly 

relativistic ion-acoustic solitary waves will describe the motion of high energy protons 

with a velocity that is significant in comparison with the speed of light, that is observed 

in the magnetospheric plasma (trapping region, outer radiation belt, plasma sheet) [99]. 

We showed that, if the velocity of plasma particles approaches the tenth shares of the 

speed of light (for example, in the region of the maximum of the outer radiation belt on 
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L-shell 3.1=L  [69], the relativistic effects start to influence strongly the wave 

characteristics, such as its phase velocity, amplitude, and the characteristic wavelength, 

at propagation of the 2D solitary ion-acoustic wave. Let us also note that, besides the 

physics of nonlinear processes in the magnetosphere, the study of the relativistic 

nonlinear waves has also applications in such physical systems as laser plasma [91] and 

astrophysics [42], [9], [51], [90]. 

 

1.4.2. Nonlinear 3D Beams of FMS Waves Propagating in the Ionosphere and 

Magnetosphere 

The objective of this Section is to study the formation, structure, stability, and 

dynamics of multidimensional (two-dimensional (2D) and three-dimensional (3D)) 

soliton-like structures generated at a low-frequency branch of oscillations in the 

ionospheric and magnetospheric plasma when β = 4π𝑛𝑇 𝐵2⁄ ≪ 1  and 1> . These 

processes are described by the following equation [29]:  

            ,=,=,=),(A 22
zy

x

t udxffuutu  
                 (1.4.12) 

 which corresponds to the dispersion law in the limiting case of long waves [60]:  
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( 1/22 )/(4= menepe   and 1/22 )/(4= Menipi   are the electronic and ionic plasma 

frequencies, respectively, MnBv iA /4= 2  is the Alfvén velocity, M  is the ionic mass, 

  is the angle between the direction of wave vector and magnetic field B) and, 

depending on differential operator A  describes waves propagating longitudinally and 

transversely relative to the external magnetic field. The case in which the lower sign 

(Alfven mode) is implemented in the dispersion relation was studied in detail in [31], 

here we are interested in the case with a  plus  sign, when the operator  A  has the form  

              ),(=),(A 3
21

2
xxxxuut 

                          
(1.4.13)  

and eq. (1.4.12) represents the generalized Kadomtsev-Petviashvili (KP) equation 

(Belashov-Karpman (BK) equation [62], [27]), and in case when β = 4π𝑛𝑇/𝐵2 ≪ 1 at 

MceBBi /=<   (where Bi  is an ion-cyclotron frequency);, |𝐤|𝑟𝐷 ≪ 1, describes the 

propagation of fast magnetosonic (FMS) waves in a magnetized plasma at 𝑘𝑥
2 ≫

𝐤⊥
2 ,   𝑣𝑥 ≪ 𝑣𝐴, near the cone of angles relative to the magnetic field B (which is assumed 

to be homogeneous) 
1/2)/(arctan= mM  [13]. In this case, function u  has the meaning 

of a dimensionless amplitude of the magnetic field of the wave, ℎ = 𝐵∼ 𝐵⁄   while the 

coefficients of terms describing nonlinear, dissipative, and dispersive effects are 

determined by the plasma parameters and the angle θ=(B,k). 

Equations (1.4.12) and (1.4.13) can not be analytically integrated. Therefore, in 

order to study the stability of multidimensional solutions, we will use the approach 

developed in [11] and investigate the Hamiltonian boundness for eqs. (1.4.12) and 

(1.4.13) upon its deformations, which conserve the system momentum, by solving the 

corresponding variational problem. We will also carry out an asymptotic analysis of 
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multidimensional solutions in an analytical investigation of this system. The equations 

were integrated numerically with specially developed methods and codes described in 

detail in [27] in order to study the evolution of 3D solutions, including the propagation 

of a 3D beam of FMS waves in the magnetized plasma. These problems will be 

considered below for the set of eqs.  (1.4.12)  and (1.4.13). 

The problem of the stability of solitary wave solutions for KP and BK models 

remains highly relevant and is widely discussed in many literature sources related to the 

soliton theory (for example, [27], [73], [84], [49]). As for the BK dissipation-free 

equation, it has already been solved analytically [11]; herein, in the investigation of the 

stability of (1.4.12) and (1.4.13) solutions with 0= , we will follow the method 

developed in the above-mentioned paper in the context of the problem under discussion. 

Let us make a transformation of coordinates and rewrite eqs. (1.4.12)  and (1.4.13)  with 

0=  in a Hamiltonian form:  

 ),/H(= uu xt                                             (1.4.14) 

 where  

 ,)(
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1
)(

2
)(

2
=H 32222 druvuu xxx 








 


           (1.4.15) 

uvx =2 , 
1/2

21 ||=  , and 2sgn=  . Stationary solutions of eq.  (1.4.14) are obtained 

from the variational problem 0=)H( xvP
 
 ( druPx

2

2

1
=   is a projection of system 

momentum on the x -axis, v  has the meaning of a Lagrange factor), illustrating the fact 

that all finite solutions of eq. (1.4.14) are stationary points of Hamiltonian (1.4.15) 

under a fixed xP . In accordance with Lyapunov’s theorem, the stationary points of a 

dynamic system which realized the Hamiltonian maximum or minimum are absolutely 

stable; if the extremum is local, then locally stable solutions are possible. Unstable 

states correspond to the Hamiltonian monotonic dependence on its variables, i.e., the 

case in which the stationary point is a saddle one. Hence, it is necessary to prove the 

Hamiltonian boundness (from below) at a fixed xP . Let us consider scale 

transformations in a real vector space R  [29]  )/,/(),( )/2(11/2  



 rxurxu d
 (where 

d  is a problem dimension, and  , R ) that conserve the momentum projection xP . 

Hamiltonian (as a function of  ,   parameters) will take the form  

                    ,=),(H 4)/2(11/2222   ecba d
                        (1.4.16) 

where drua x
2)(/2)(=   , drvb x

2)((1/2)=  , druc 3=  , and drue x

22 )(/2)(=  . 

The necessary conditions of extremum existence are defined by the following set of 

equations: 0=H , 0=H , while sufficient conditions for the Hamiltonian 

minimum are provided by a set of inequalities  
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The joint solution of these equations and inequalities yields the following results (Fig. 

1.4.2). In the 3D case (d=3 in the equations), 3D solutions are absolutely stable at 1= , 

0> . For 1= , 0  the locally stable solutions can be observed, when the condition 

9/512</ 42 ceab   is satisfied for the integral Hamiltonian coefficients (1.4.16). Hence, 

we easily proved the possible existence of absolutely and locally stable solutions in the 
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BK model and found the stability conditions for the 3D soliton solutions. It should be 

noted that the BK equation takes into account the dispersion correction of the next 

order, in contrast to the usual KP equation, and has stable 3D solutions, in contrast to 

the KP model [71]. The used approach, when applied to the problem of FMS wave 

beam propagation in the magnetized plasma (see the following Section), makes it 

possible to prove, for instance, that a 3D beam propagating at an angle of   to the 

magnetic field is not focused; it becomes stationary and stable in the cone of angles 
1/2)/(arctan< mM  when the following condition is valid [30]:  

4/3.>)]cot(1cot[)cot/( 12422 Mm  

As follows from the asymptotic analysis of possible solutions of eqs. (1.4.12)  and 

(1.4.13), the asymptotics of solutions at 0>2  and 1=1   in terms of 

Vtxuw )/|,|,(= r  are defined as follows: 

(a) when the velocity of wave propagation along the x -axis is 0>V  and 1=1   

and when 0<V , 1=1   (upper and lower signs, respectively):  

 };]4[){(2exp= 1/2

2

421/2

2   CCAw l                          
(1.4.17)  

(b) when 0<V , 1=1 :  
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2

1   CC                            (1.4.18)  

where 1A , 2A  and   are arbitrary constants, and 
1/4|=| VC  and tVx )(||=  r . 

As follows from eqs. (1.4.17) and (1.4.18), eqs. (1.4.12) and (1.4.13) with 0= , 

depending on the V  and 1  signs, can have soliton solutions )|,|,( txu r  with both 

monotonous and oscillating asymptotics. It should also be noted that the solutions at 

0=1  and 0>2  have the form of )/(exp)/(= 1/4

221 CCAAw   and consequently 

also represent solitons with monotonous asymptotics [62]. 

It should be recalled that FMS waves can propagate in magnetized plasma at β =

4π𝑛𝑇/𝐵2 ≪ 1  in the frequency region of MceBBi /=<  , while in equations 

(1.4.12)-(1.4.16), from the physical point of view, function u  is a dimensionless 

amplitude of magnetic field of the wave: ℎ = 𝐵~ 𝐵⁄ .The dispersion law at |𝐤|𝑟𝐷 ≪
1,  𝑘𝑥

2 ≫ 𝑘⊥
2 , and 𝑣𝑥 ≪ 𝑣𝐴  will have the following form:  

 ),)(/(1 2222

xxxA kDkkkv                                    (1.4.19)  

where k  is a transversal (relative to the wave propagation direction) component of the 

wave vector, xv  is an x -component of ionic velocity, D  is a dispersion length, and   

is the angle between wave vector component xk , and the external magnetic field B. It 

should be also recalled that the term “low dispersion" means that the primary nonlinear 

process is a threewave interaction of low-amplitude waves; the low nonlinearity 

condition is based on the small angle between the interacting waves. At a relatively high 

ionic temperature, Mm/> , the dispersion length in (1.4.19) is defined by the 

following equation [13]:  

 
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where BiTii v  /=  is an ionic Larmor radius. Under this process the plasma is 

quasineutral, because 1/22 )/(4= Menipi = . According to (1.4.20), the dispersion is 

positive (phase velocity grows with growth in || k ),  except for angle regions near 

0= and /2=  . With propagation that is almost transversal relative to the magnetic 

field B, when 
1/2/4)(|/2|   the dispersion is negative and is defined by effects 

related to 

 

 
 

Figure 1.4.2. Changing of ),(H   at 3=d  for different values of integral coefficients along 

the lines of 
5/2)/(2=  cb  at: (1) 1.0=a , 1.0=b , 1.0=c , 0.025=e ; (2) 1.0=a , 1.0=b , 

1.0=c , 0.017=e ; (3) 0.5= a , 1.0=b , 0.5=c , 0.02=e ; (4) 0.5= a , 1.0=b , 0.5=c , 

0.02= e ; (5) 1.0=a , 1.0=b , 0.5=c , 0.02= e . 
 

the finiteness i . It is known that propagation of the low amplitude FMS wave with a 

narrow angle distribution can be described by the KP equation ((1.4.12), (1.4.13) at 

0== 2 ) [74]. For such angles, when dispersion is positive for low || k  (at a 

relatively high ionic temperature), the 3D FMS wave packet in the plasma with 

Mm/>  does not form stable stationary solutions and spreads for the angles 
1/2)/(|</2| Mm  or collapses outside of this cone [71]. (It should be noted that a 

similar phenomenon is occasionally termed as wave “self-compression" [97]). The last 

case, when a relatively intensive FMS wave beam is limited in the k -direction, can be 

characterized by the self-focusing phenomenon [30]. This problem was solved for the 

first time in [74] via the averaging of initial equations and subsequent numerical 

solution. Yet, relation (1.4.20) will not be valid for the angles 1/2)/(< pikc , which are 

characterized by intensive reconstruction of the oscillation dispersion mechanism. At 

Mm/<  the dispersion can be defined for any angle   based from the hydrodynamic 

equations, and the FMS wave structure will depend in this case on sign of the dispersion 

coefficient  



V.Yu. Belashov, E.S. Belashova, O.A. Kharshiladze. Nonlinear Wave Structures... 
 

41 

 

 ,θcot
ω2

χ(θ)γ 2

2

2
2

1 









M

mc
vDv

pi

AA  

which is defined by angle  ; in particular: the dispersion is negative for propagation 

that is almost transversal if 
1/2)/(|/2| Mm , and it is positive for all other angles. 

The KP equation can also be used in this case; and for a relatively intensive FMS wave 

beam, which is limited in the 
k -direction, we can expect self-focusing of a beam 

propagating at such angles   to the magnetic field, where the dispersion is positive 

[105]. 

 

 
Figure 1.4.3. Dispersion behavior for FMS waves with respect to  

the angle   and ratio Mm/ . 
 

In both cases, Mm/>  and Mm/< , it is necessary to take into account the fact 

that 01   near the cone of angles, where dispersion changes the sign. Obviously, this 

does not mean that the dispersion disappears in this region. It just means that the 

description based on the KP equation model in its standard form is not correct in this 

case. Near the 
1/2/4)(|/2|  , where 01   at Mm/> , the results of [74] should 

be clarified and even reconsidered. For example, relation (1.4.19) should be 

supplemented by a dispersion term of the next order, which will play a major role in this 

case [27]. An analogous situation is possible at Mm/<  near the cone of angles 
1/2)/(arctan= mM . In both cases, the dispersion relation takes the form of 

)](/2[1 4

2

2

1

1

0

22

xxxxA kkckkkv  

 . The dispersion correction of the next order 

can be obtained by decomposition of the full dispersion equation into the Taylor’s series 

by k  [27]. In the case of Mm/< , which is considered in detail below, we obtain  
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)].cot(1cot4)cot[3(
8

= 2422

4

4

2 



M

mc
v

pi

A  

Hence, the dispersion character becomes much more complicated and is now 

defined by correlation of signs of coefficients 1  and 
2  (Fig. 1.4.3). At 0>1 , 0<2 , 

we observe negative dispersion (region B in Fig. 1.4.3), while the dispersion is “mixed" 

at 0>1,2  (region A) and 0<1,2  (region C) (the dispersion sign is different for low 

and high k ). In this case, low-amplitude FMS waves with a narrow angle distribution 

will be described by the BK equation [62]; in the non-dissipative case, it will have the 

form [29]  

                        ,/2)(=)( 5

2

3

1 hvhhhhh Axxxtx                   (1.4.21) 

where  sin(3/2)= Av . In this case, a nonlinear term hh x , which is the result of 

sound velocity renormalization, reflects a low probability of other nonlinear processes 

caused by vector nonlinearity. In contrast to the KP equations, the solutions of equation 

(1.4.21) are characterized by a more complicated structure and dynamics, which is 

related to the ratio of values and signs of the dispersion coefficients 1  and 2 . Hence, 

it is found in the case of Mm/< , in contrast to the case, of Mm/>  (which was 

considered in [74]), that the 3D beam of FMS waves, which propagates in the plasma at 

angle   to the external magnetic field, is not self-focused and becomes stationary and 

stable in the cone of angles 
1/2)/(arctan< mM  when the following conditions are 

satisfied:  

4/3,>)]cot(1cot[cot 124

2
2 










M

m
 

or, in other words, when 0>1,2  in (1.4.21). This conclusion is confirmed by our 

analytical (see the previous Section) and numerical [62]) results for 3D solitary wave 

structures propagating in low dispersive media, where the presence of the highest 

dispersion correction in BK (as opposed to KP) stops the wave collapse at the initial 

stage of development of self-focusing instability. This result is of key importance, 

because, prior to the works of [62], [11]), neither analytical nor numerical studies 

identified 3D stable wave structures such as 3D solitons. It is the accounting for higher-

order dispersion effects that made it possible to found 3D stable soliton solutions in the 

BK equation model, in contrast to the results obtained for the standard KP equation 

model [105]. 

In order to study the dynamics of an FMS wave beam characterized by a narrow 

angular distribution, we solved the boundary problem (in contrast to [62], in which the 

Cauchy problem was considered). We numerically integrated the corresponding 

equation, because the exact analytical solutions of the BK equation, even for the non-

dissipative case, are not currently known. 

Let us consider the problem of modeling of the FMS wave beam dynamics in the 

magnetized plasma. It is assumed that there is a 3D FMS beam propagating in the 

plasma at angle   to the external magnetic field near the cone of angles 
1/2)/(arctan= mM . Using the substitutions stx  , ysy 1/2 , zsz 1/2 , 

sxt  , hh )(6/ , 
1/4

2 |=| s , and /2= Av  we obtain from (1.4.21)  

                             ,=)6( 53 hhhhhh tttxt                            (1.4.22) 
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where 
1/2

21 ||=  , 2sgn=  . Equation (1.4.21) describes the FMS wave beam 

propagating along the x -axis from the boundary 0=x . If it is assumed that 

  )(1/= 2 , and also )(exp)(cos=),0,(= 2

0  mtthh , then the boundary 

condition is defined as the FMS wave beam localized in the ),( zy  plane and time-

periodic axially symmetric beam of FMS waves. 

Equation (1.4.22) with boundary condition 0h  was integrated numerically. The 

series of performed numerical experiments related to the modeling of FMS beam 

propagation at its different intensities at the boundary of 0=x , 0h  and different angles 

  (see above the cases A, B, and C) made it possible to obtain the following results. In 

region A (corresponding to 1= , 0> ), as in [27] and [30], the spatial evolution of 

the FMS wave beam at the initial stage at any 0h  results in beam focusing, which is 

related to the predominant role of nonlinear processes in this time range. Meanwhile, as 

in the usual KP equation, we observe (Fig. 1.4.4, curves 1 and 2) beam compression in a 

transversal  -direction in the course of its propagation along the x -axis, such that its 

transversal characteristic size 𝑙𝜌(𝑥)~𝑙𝜌(0)ℎ(0)/ℎ(𝑥)  decreases with simultaneous fast 

growth of the beam intensity in its axis with an increment of  Γ = (1 2𝑊⁄ )𝑑𝑊/𝑑𝑡~2  

(where  /4= 2hW  is a wave energy in the volume unit), which is just slightly 

dependent on  . In this case, the characteristic dimensions of the beam, which 

represents  a wave pulse, decrease, its “wings" start lagging behind its central part, and 

self-focusing instability develops (Fig. 1.4.4, curves 1 and 2; Fig. 1.4.5). This evolution 

type is also characterized by an increase in P  and a decrease (at low 0> ) in the 

Hamiltonian H  in the system due to a nonlinear term, which grows at this evolution 

stage much faster than dispersion terms. 

Under further growth of t , due to a decrease in a transverse size of wave pulse l  

(Fig. 1.4.4), the term, which is proportional to the fifth derivative in the equation 

(1.4.22), starts playing a predominant role (it is well-seen in the analysis of variations in 

the integral  terms making up the Hamiltonian H). As a result, the “collapse" of the 

wave pulse wings behind its main part does not lead to a rapid increase in the field  
 

 
Figure 1.4.4.  Changing of a cross-section of the wave beam under its propagation in the x -

direction: (1) 1= , 1.34= ; (2) 1= , 2.24= ; (3) 1=  , 1.34= ; (4) 1=  , 

 1.34=  ; (5) 0= , 1.34=  . 
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Intensity  and  singularity formation  in the  major peak region, which is  typical  for  the 

standard KP equation model with 0>/1 k  [27]; as a result, a ring region of the elevated 

field concentration is formed (Fig. 1.4.6). Further evolution of this structure will make it 

possible to form additional peaks in the x-axis behind the pulse (Fig. 1.4.6). In this case, 
 

 
Figure 1.4.5. Solution in the ),( x  plane at 1= , 0.89=  corresponding to the amplitude 

maximum stage. 
 

the wave pulse stops being compressed and starts defocusing (Fig. 1.4.4, curves 1 and 

2). This stage is completed by the formation of a stationary wave beam, i.e., by 

transition into the regime of constxh =)(max  and constxl =)( , which corresponds to 

the results described in the second Section. The role of the term, which is proportional 

to the fifth derivative in the eq. (1.4.22), along with the role described above, consists of 

the appearance of small-scale oscillations forming a regular oscillatory structure of the 

tail  (Fig. 1.4.6). 

 

 
Figure 1.4.6.  Solution in the ),( x  plane at 1= , 0.89= . 



V.Yu. Belashov, E.S. Belashova, O.A. Kharshiladze. Nonlinear Wave Structures... 
 

45 

 

 

       In regions B and C (Fig. 1.4.3), which correspond to 1=   and 0||  , a sonic 

wave  scatters with  propagation  along  the x -axis  at  any  beam  intensity  (0)h   at the 

 
Figure 1.4.7.  Variations in a cross section of the beam under its propagation along the x -axis 

in the plasma with ),,(=  xt  at a standard deviation of 0.04=  for the same   and   

values as in Fig. 1.4.4. 
 

boundary (Fig. 1.4.4, curves 3 and 4), just as in the electromagnetic wave self-action 

process in the media, where derivatives 22 / xk  and 
22 /  k  have different signs (for 

example, this phenomenon is characteristic for ion-cyclotron waves, whistlers, etc.) 

[72]. 

Fig. 1.4.4 demonstrates that, at 0= , when (1.4.22) transits into the KP equation 

with a negative dispersion, there are no solutions as a self-focusing beam of FMS 

waves. Therefore, the self-focusing effect is not observed in the considered model when 

0= . According to the test numerical experiments for the model (1.4.22) with 0= , 

self-focusing is possible only at 0<  (Fig. 1.4.4, curve 5), when the FMS wave beam 

described by this model does not correspond to any real situation [27]. 

Hence, according to the study results based on the BK equation model (1.4.22), the 

self-focusing phenomenon of the FMS beam, which propagates in the plasma at the 

angles to the magnetic field near the cone of 
1/2)/(arctan= mM , cannot be observed, in 

contrast to the standard KP equation model, even if the dispersion for low k  is positive. 

In this case, however, together with the beam scattering, we can observe nonlinear 

stationary propagation. It should also be noted that eqs. (1.4.21) and (1.4.22) at 

|π 2 − θ⁄ | ≫ (𝑚 𝑀⁄ )1 2⁄  should also be supplemented with terms proportional to mixed 

derivatives, because xkk  || , in this case and the dispersion equation acquires terms 

proportional to 𝑘𝑥
𝑖 |𝐤⊥

𝑗
|, where 1,2=, ji , etc. 

It should be noted in the conclusion that it is also necessary under the ionospheric 

and magnetospheric plasma conditions to take into account the effect of stochastic 

fluctuations of the wave field ),,( rxth  on wave beam evolution, which should be taken 

into consideration in basic equations. Hence, eq. (1.4.22) should be supplemented with a 

term such as ),,(  xt  and rewritten as follows:  
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 .=)),,(6( 53 hxthhhhh tttxt                    (1.4.23) 

In [14], eq. (1.4.23) at 0=  for the case of low-frequency fluctuations, when 

)(= t , was integrated analytically. The results can be easily applied to (1.4.23) with 

)(= t . The interpretation of results obtained in [14] in terms of this problem is 

indicative of the fact that even low stochastic fluctuations of the wave field will lead to 

the decay of the wave pulse upon its propagation, accompanied by the wave 

transformation into an oscillatory structure. Meanwhile, in the case of ),,(=  xt , the 

analytical study of the corresponding process becomes extremely complicated, and [30] 

carried out numerical integration of eq. (1.4.23) with a stochastic term, which is a 

function of time and space coordinates. Fig. 1.4.7 demonstrates the results of numerical 

modeling of the FMS wave beam evolution in a medium with stochastic fluctuations of 

the wave field in the form of Gaussian noise in the model (1.4.23) with ),,(=  xt . 

The obtained results are qualitatively similar to the case of )(= t : a decrease in 

amplitude of the FMS wave beam upon its propagation with the subsequent wave 

destruction (comparison with Fig. 1.4.4). 

In the course of this investigation, we studied analytically and numerically the 

problem of the stability and dynamics of 3D soliton-like structures, such as a beam of 

FMS waves, which are formed in a low-frequency branch of oscillations in plasma, for 

the cases when β ≡ 4𝜋𝑛𝑇/𝐵2 ≪ 1  and 1> . The study was based on the model of the 

3D BK-equation for the magnetic field ℎ = 𝐵~ 𝐵⁄ , upon the assumption of homogeneity 

of the external magnetic field B, and takes into account the highest dispersion correction 

determined by the plasma parameters and the angle )(= kB, . According to the results, 

in contrast to the KP equation model, when the FMS wave beam propagates at the 

angles to the external magnetic fields near the cone of 
1/2)/(arctan= mM , the self-

focusing phenomenon is not observed, even if dispersion for low k  is positive. It is 

proved that on a level with the magnetic sound scattering the nonlinear stationary beam 

propagation can be observed; the analytical and numerical methods made it possible to 

prove the possibility of the formation of stable 3D solitary beams of FMS waves in the 

course of evolution. It is demonstrated that the presence of stochastic wave field 

fluctuations in the medium reduces the FMS wave beam amplitude upon propagation, 

followed by beam destruction. 

Our work did not explicitly take into account the possible effects of the external 

magnetic field inhomogeneity that can take place in the Earth’s ionosphere and 

magnetosphere. For instance, the field inhomogeneity can result in soliton acceleration 

[89] and other phenomena related to the imbalance between nonlinear and dispersive 

effects, for example, in soliton deformations and destruction, as happens during the 

propagation of nonlinear wave structures in the variable dispersion media (see, for 

example, [27], [40]). The latter can be caused in plasma as heterogeneity of its 

composition in space, which will lead to spatial dependence of the values such as Mm/ , 

in  and, consequently, 1/22 )/(4= Menipi   and also the field B heterogeneity, and then 

MnBv iA /4= 2 . In this case, the dispersion coefficients 1 , 2  in the BK equations will 

also become functions of spatial coordinates. Hence, the heterogeneity effect can be 

taken into account in our model if we assume that )(= rfB , while 1 , 2  and Av  are 

functions of r  in eqs. (1.4.21), (1.4.22). However, such generalization of the BK 

equation is beyond the scope of the research presented in this paper. 
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It should be noted in conclusion that the results can be directly applied to nonlinear 

wave dynamics in the ionospheric and magnetospheric plasma, because, in our opinion, 

they will contribute to a better understanding of the physics of nonlinear wave processes 

and may be useful in the interpretation of the results of laboratory and space 

experiments related to the excitation, evolution, and interaction of FMS wave solitons 

and of self-action effects, such as wave collapse and wave beam self-focusing. 

1.4.3. Nonlinear Alfvén waves propagating in plasma of ionosphere and 

magnetosphere 

       We study here stability and dynamics of the multidimensional soliton-like Alfvén 

structures forming on the low-frequency branch of oscillations in the ionospheric and 

magnetospheric plasma which are described by equation [28] 

       

22,,),(A zy

x

t udxffuutu  


 ,             (1.4.24) 

when for                                               

)(||3),(A 222  iupsut xx                                 (1.4.25) 

it falls into 3D derivative nonlinear Schrödinger (3-DNLS) equation class. Derivation of 

eq.  (1.4.24) with differential operator (1.4.25) was presented in detail in [27] with use 

of the same approach and conditions as in [85],[87],[88]. In the case when 

1/4 2  BnT  the 3-DNLS equation (1.4.24), (1.4.25) describes dynamics of the 

finite-amplitude Alfvén waves propagating nearly parallel to homogeneous magnetic 

field B for |1|2/)(  BiBBhu zy , 0/ B Bh  where )1( iep  , and e is the 

“eccentricity” of the polarization ellipse of the Alfvén wave [18], 

 








0

2
0

20 )()(
2

dсс  defines the logarithmic damping rate, and it is the 

characteristic rate of the relaxation damping of the “sound” wave [27]. Here  is 

perturbed plasma density 










0lim

x
, с  and 0с   are the velocities of the high and 

low-frequency “sound” mode (the last one coincides with 
2/1

0 )/( ie mTс  ) and ),(  t  

is the function defining the relaxation process. The upper and lower signs of 1  

correspond to the right and left circularly polarized wave, respectively; the sign of 

nonlinearity is accounted by the factor )1(sgn ps  = 1 in the nonlinear term; and 

2/Ar , iAA vr 0/ . 

Equations (1.4.24), (1.4.25) are not completely integrable. Therefore, to study the 

stability of multidimensional solitons we use the method developed in [19] and 

investigated the Hamiltonian bounding with its deformation conserving momentum by 

solving the corresponding variation problem. In the analytical study of this set we use 

also asymptotic analysis of its multidimensional solutions. To study evolution of 3D 

solitons including propagation of the Alfven waves’ beams in a magnetized plasma the 

equations were being integrated numerically using the simulation codes specially 

developed and described in detail in [27]. 

To study the stability of multidimensional solutions of eqs. (1.4.24), (1.4.25) with 

0  we use the same approach as in [19] similar to the one in [35] used for the BK 

equation. We rewrite 3-DNLS equation (1.4.24), (1.4.25) by performing the formal 

change hu   into the Hamiltonian form 
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 (xth H )/ h ,                                              (1.4.26) 

where H/h is a variational derivative, with the Hamiltonian [29]  

   )(arg,, = H 22

2
1*4

2
1 hhwdwshhh xxx 




 r  ,   (1.4.27) 

which has a sense of energy of the system, and solve the variation problem, (H + vPx) 

= 0, where  rdhPx

2

2
1  is the momentum projection onto the x axis, v is  Lagrange's 

factor, that illustrates the fact that all finite solutions of eq. (1.4.26) are the stationary 

points of the Hamiltonian for fixed  Px. Conforming with Lyapunov's theorem, the 

stationary points of a dynamical system realizing maximum or minimum of H are 

absolutely stable; if the extremum is local then the locally stable solutions are possible. 

The unstable states correspond to monotonous dependence of H on its variables, i.e. to 

the case when the stationary point is a saddle point. Thus, it is needed to prove the 

Hamiltonian’s boundedness (from below) for fixed Px. Consider the scale 

transformation )/,/(),( 12/1  


 rr xhxh  ( , С) conserving Px, in the 

complex vector space С. The Hamiltonian as a function of ,  is given by 

H
22121),(   cba  ,                           (1.4.28) 

where    


rrr dwcdhhsbdha
xx

24 )()2/(,*,||)2/1( . The necessary 

conditions for the existence of the extremum, 0H,0H   , immediately allows 

us to obtain the extremum’s coordinates 













  )/(1)/(,/ 22 cabaca ,                      (1.4.29) 

where  0b  if CR   because 0,0  ca  by definition, and 0b  if C . The 

sufficient conditions for the existence of the local minimum of H at the point  ii  ,  

are given by [35] 

     

0),(H       ,0
),(H),(H

),(H ),(H
2

22

22










ji

jiji

jiji
,      (1.4.30) 

and we therefore obtain for 0b  

  1851322/
1




dca .                                (1.4.31) 

Thus it follows from (1.4.28)-(1.4.31) that the Hamiltonian H of (1.4.26) is limited from 

below, i.e. 

)21(/3 H 2ddb                                               (1.4.32) 

where 0b  if condition (1.4.31) holds. In this case the 3D solutions of 3-DNLS 

equation are stable. The solutions are unstable in the opposite case, 0,1  bdca . 

Condition 0b  corresponds to the right circularly polarized wave with 

1/4 2  BnT , i.e. when ,1 1s in eqs. (1.4.24), (1.4.25), and to the left 

circularly polarized wave when ,1 1s . It is necessary to note that the sign change 

,11  11s  is equivalent to the change  ,tt  and for negative  

the Hamiltonian becomes negative in the area "occupied" by the 3D wave weakly 

limited in the k -direction; in this case condition (1.4.32) is not satisfied. The change 
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of the sign of b to positive [when 1,1  s  or 1,1  s  in eqs. (1.4.24), 

(1.4.25)] is equivalent to the analytical extension of solution from real values of y, z to 

the pure imaginary ones: izziyy  ,  and, therefore, equivalent to the change of 

sign of  in the basic equations. In this case instead of inequality (1.4.32) the opposite 

inequality will take place. From the physical point of view this means that if the 

opposite inequality is satisfied, the right polarized wave with the positive nonlinearity 

and the left polarized wave with the negative nonlinearity are stable. Note that in the 

particular case 0  in eqs. (1.4.24), (1.4.25) (1D approximation), instead of inequality 

(1.4.32) and the opposite one, it is easy to obtain the conditions 0H   and 0<H , 

respectively, that is completely in agreement with the results obtained in [46] for the 1-

DNLS equation.  

Thus the analysis of the transformation properties of the Hamiltonian of the 3-

DNLS equation allows us to determine the ranges of the respective coefficients as well 

as H which has the sense of the energy of the system, corresponding to the stable and 

unstable 3D solutions. So, we have proved the possibility of existence in the 3-DNLS 

model of absolutely stable 3D solutions.  

Now, following [27] consider the character of the asymptotics of the axially-

symmetric solitary pulse solution of the 3-DNLS equation when   )/1(2 . In 

this case eqs. (1.4.24), (1.4.25) can be written in the form of the set 

 

 hhhihhsh

hhhihhsh

t

t
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
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


 
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



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

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





)/1(

,)/1(

2222
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written in the reference frame with the axes xx  ,η  rotated through an 

angle /4 relative to the axes x and . Further obvious transformations give us the set 
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                                 (1.4.33) 

written in the coordinates t ηη' , t ζζ' , i.e. in the frame moving along the 

corresponding axis with the velocity . So, we can conduct the analysis for only one 

equation of the set (1.4.33) and then, fulfilling the inverse change of the variables, 

extend the results to the 3D axially-symmetric solutions ),,( txh   of the 3-DNLS 

equation  with   )/1(2 . 

As it is known from [27],[46], an exact solution of the 1D DNLS equation is given 

by 

        
  )2(cosh)(exp)(exp)(exp)2/(),( 222/1 AxtiAAxiAxAtxh            (1.4.34) 

where A is the amplitude of the wave (see [27] for detail). Now we can apply the inverse 

change of the variables,   2/ζηx ,   2/ζη , and, extending solution (1.4.34) 

to the 3D case (1.4.24), (1.4.25) with   )/1(2  write at once for 0  

  )2(cosh)(exp)(exp)(exp)2/(),,( 222/1   AtiAAiAAtxh  

where  tVx )(χ  , and V is the velocity of the wave propagation relative to 
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the coordinate axis x or  for the first or the second equations of set (1.4.33), 

respectively.  

The dependence of the form of the solution on dissipation in the system as well as 

the dynamic characteristics of the solution for 0  will be considered in the next 

Section in detail. 

Note, that our analytical results are well confirmed by the results of our numerical 

experiments on study of structure and stability of multidimensional solitons in the 

model of the 3-DNLS equations [27],[29]. So, we have obtained that for a single 

solitons, on a level with wave spreading and wave collapse (in other terminology, self-

contraction), the formation of multidimensional 3D solitons can be observed. Let us 

now consider the nonlinear effects for 3D soliton structures propagating in a magnetized 

plasma. 

For the numerical investigation, we consider the 3-DNLS equation in the integral-

differential form (1.4.24), (1.4.25) and integrate it in the axially-symmetric geometry 

when 2222 ,)/1( zy   . The initial conditions are taken in the form of 

the axially-symmetric solitary pulses of two types: 

 soliton-like axially symmetric pulse: 

 22
0 /)(exp)()0,,(  lxixhxh                           (1.4.35) 

with    2/12
0 cos)sin4cosh(sin22)(


 xxh  and  

dxxhsxsx
x

)()4/3(cos2)( 2
0

2



 ,  where 0 ; 

 modulated plane wave: 

 2222
0 ///2exp)0,,(  llxixHxh x  ,                    (1.4.36) 

where   is the wavelength, 0H  is the amplitude, and xl and l are the 

characteristic scales of the Gaussian envelop modulation in the x and -directions. 

Note that for =0, the initial conditions (1.4.33) and (1.4.34) are equivalent to those 

used for the numerical simulation of the evolution of the 1D Alfvén wave in 

[46],[47]. 

To investigate the structure and evolution of the 3D pulses, we have done a number 

of simulation runs for both signs of the integral parameter b and various initial values of 

the Hamiltonian by defining various initial values for the pulse amplitude and the 

widths xl and l . Thus, for non-dissipative case, when 0  in eqs. (1.4.24), (1.4.25), 

we have obtained the following results. 

1. For =1, s = 1, large >0, and the initial pulse weakly limited in the transverse 

-direction when the stability condition (1.4.32) is satisfied, the evolution for large t 

results in formation of the stable 3D (axially-symmetric) solution (Fig. 1.4.8). 

2. At the opposite signs of  and s [that is equivalent to change ,tt    in 

eqs. (1.4.24), (1.4.25)] the Hamiltonian (1.4.27) of the 3-DNLS equation becomes 

negative, and, as it follows from the results of numerical experiments, a 3D Alfvén 

wave spreads with evolution (Fig. 1.4.9). 

3. At =1, s = 1 for small 0  and initial pulse rather strong limited in the -

direction the conditions of the existence of the local minimum of H (1.4.30) are not 

satisfy, and in the numerical experiments one can observe development of the 3D 

collapsing solutions of the 3-DNLS (Figs. 1.4.10 and 1.4.11). Note, that this effect is 

typical for all nonlinear systems where the Hamiltonian is unlimited for fixed first 

integrals (in this case, for the momentum Px) and the quadratic terms in the expression 
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for H  [the first and third terms in expression (1.4.27)] are positively defined. For 

example, the same effects have been observed in the systems describing the evolution of 

the FMS waves [35] and Langmuir waves [103] in a plasma. 

      The series of the numerical experiments being carried out for b > 0 when 

1,1  s and 1 , 1s  in eqs. (1.4.24), (1.4.25) with =0 showed that for these 

conditions in all cases  (for different initial values of the Hamiltonian and the 

parameters llx , ) the  initial 3D axially symmetric pulses spread with evolution. That is  

 

 
 

Figure 1.4.8. Evolution of a 3D right 

circularly polarized nonlinear pulse (1.4.33) 

for =1, s =  1, =1; 

H >  3bd / (1+2d 2) > 0: a) t=0, b) t=25, 

 c) t=50, d) t=75. 

Figure 1.4.9. Evolution of a 3D right 

circularly polarized nonlinear pulse (1.4.34) 

for =1, s = 1, =1; H > 0:  

a) t=0, b) t=50, c) t=100. 

 

 

rather as obvious so far as with such conditions for coefficients the inequality 

 221/3H < ddb   (see Sect. 2) doesn’t satisfy and, therefore, the 3D solutions of the 

3-DNLS equation are unstable. 

       But, if we fulfil the transform 
*shh   in the 3-DNLS equation, i.e. consider left 

circularly polarized waves, that the signs in the expression for the Hamiltonian (1.4.27) 

 

 

 

 

 

 

Figure 1.4.10. Dynamics of a 3D right 

circularly polarized nonlinear pulse (1.4.34) 

(cross-section by the  -plane in the point hmax) 

for =1, s =  1, = 0.2; 

0<H< 3bd / (1+2d 2) .  

 

Figure 1.4.11. Evolution of a 3D right 

circularly polarized nonlinear pulse 

(1.4.33): a) t=0, b) t=25, c) t=30; the 

equation coefficients and H are the same as 

in Fig. 1.4.10. 
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change to opposite and for all cases considered above we will observe a mirror opposite 

picture. Thus, a case 1,1  s  for big values 0 , and also the cases 1,1  s  

and 1,1  s  for small values 0  correspond to the cases (1.4.24), (1.4.25) and 

(1.4.26), accordingly, with the opposite signs of the Hamiltonian. An example of the 

dynamics of a 3D left circularly polarized pulse is shown in Fig. 1.4.12. 

       Summing the above up, conclude that the 3-DNLS equation (1.4.24), (1.4.25) with 

=0 can have the stable 3D solutions in the form of the 3D Alfvén solitons, and also on 

a level with them the 3D solutions collapsing or dispersing with time. The form of 

solution is defined by signs of the equation coefficients  and s, and also by the form of 

initial condition. The results obtained above can be also interpreted in terms of the self-

focusing phenomenon. So, formal change tx   enables us to do a transition from the 

Cauchy problem (1.4.24), (1.4.25) and (1.4.33) or (1.4.24), (1.4.25) and (1.4.34) to the 

boundary-value problem describing the propagation of the 3D Alfvén wave beam 

localized in the -plane along the x axis from boundary x = 0. In this case the results 

obtained above can be interpreted as: 1) the formation of the stationary Alfvén wave 

beam propagating along the x axis; 2) Alfvén wave beam spreading; and 3) the self-

focusing of the Alfvén wave beam. It is interesting to note that we observe here the 

dynamics of the Alfvén wave beam propagating in plasma with  > 0 at near-to-zero 

angles with respect to the external magnetic field B, which is qualitatively similar to the 

dynamics of the FMS wave beam propagating in plasma with dispersion coefficient 

01   [35] at angle close to 2/  with respect to the external magnetic field [74]. 

 

 

 

Figure 1.4.12. Evolution of a 3D nonlinear 

left circularly polarized pulse (1.4.34) for 

 = s =  = 1;  H > 0: a) t=0, b) t=50, c) 

t=100. 

Figure 1.4.13. Change of the amplitude of a 3D 

axially symmetric Alfvén wave (solid lines), P 

(chain lines) and H (dashed lines) of the 3-DNLS 

equation with  = 1: (1) =1, s =1, =1.5; (2) 

=1, s =1, =1.5; (3) =1, s =1, =0.1. 
 

The presence of dissipation in a plasma can be caused by many reasons. For 

example, in [80] it is shown that the dissipation processes of circularly polarized parent 

Alfvén waves in solar wind plasmas can be observed due to the presence of the beam 

induced obliquely propagating waves, such as kinetic Alfvén waves (KAW) as a result 

of the nonlinear wave-wave coupling. Similar effects can be observed at nonlinear 

interaction of KAW and FMS wave for intermediate -plasma when <<1 [79]. But in 

the context of our problem we consider here the case when the presence of dissipation 

in the system [>0 in eqs. (1.4.24), (1.4.25)] is caused by the relaxation processes of the 

viscous type in a medium (the particular physical reason of the energy dissipation 

depends on the type of the medium). In this case the dissipation changes the character of 
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the evolution of the 3D nonlinear pulse, and in evolution of the Alfvén wave the 

exponential decrease of its amplitude with time is observed: 

   
)(exp)0()1()()1( 22222

teteh   , 

where  ieh  1 . In this case, the damping rate is of the same order of magnitude as 

in the BK model [27] (we have obtained in our numerical simulations the averaged 

value 1.3~  ). Moreover, similar to the BK model, some steepening of the pulse’s 

front takes place, and the back slope of the pulse decreases. The proof of that behavior 

is, in particular, in the different character of the change of the integrals of motion, 

                                              rdeP 22 )1( 
          

and 

     



 



  ,11 =  H

2

2
122422

2
1 rdwese xx  

                                    
    ,1arg,12  ieiewx   

in the regions behind and in front of the main maximum. Indeed, in all cases P and |H| 

decrease faster in front of the pulse. For various values of the coefficients in the 3-

DNLS equation, the character of the evolution is the following: 

1. For 1,1  s , and relatively large >0, the initial pulse is weakly limited in 

the direction perpendicular to its propagation, and loses its energy with evolution 

( 0H   with t ). In this case, the amplitude of the pulse decreases with 

time (as we noted above, exponentially, with the rate proportional to ) and, as a 

result, the solitary wave disperses. Recall here, that in the case of = 0, the 

evolution after initial “sub-focusing” of the pulse leads to the formation of the 

stable 3D Alfvén soliton (see above). 

2. For 1,1  s , when the Hamiltonian becomes negative and the Alfvén wave 

pulse for =0 spreads with its evolution, the presence of the dissipation 

accelerates this process significantly (for ~1 we have obtained in the 

simulations averaged 4.3~  ). The effect of the steepening of the front of the 

pulse takes place as well in this case. 

3. For 1,1  s , relatively small >0, and the initial pulse strongly limited in 

the transverse -direction, when development of the wave collapse is observed 

in the simulations for =0, the presence of the dissipation can rapidly delay or 

(for large >0) even stop this process. In this case, the role of the dissipation in 

the 3-DNLS model is different from that in the model of the 3D BK equation: it 

is now the decisive factor in the stopping of the wave collapse. 

Figure 1.4.13 shows the change with time of the amplitude and the integrals P and 

H (averaged throughout the region of numerical integration) for the three cases 

described above and =1. 

In conclusion, we have considered analytically and numerically the nonlinear 

dynamics of the 3D solitary nonlinear Alfven waves propagating nearly parallel to the 

external homogeneous magnetic field in a plasma on the basis of model of the 3-DNLS 

equation. For non-dissipative case we have obtained the analytical estimates and the 

sufficient conditions for the stability of 3D solutions of the 3-DNLS equation and 

proved that the equation can have the stable 3D solutions in the form of the 3D Alfvén 

solitons, and also on a level with them the 3D solutions collapsing or dispersing with 

time. The asymptotics of the solitary solutions were studied. Our numerical experiments 

showed that in terms of the self-focusing phenomenon one can observe as a result of the 

evolution the formation of the stationary Alfvén wave beam propagating along the 
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external magnetic field as well as Alfvén wave beam spreading or the self-focusing of 

the Alfvén wave beam. The influence of the dissipation of viscous type in a plasma on 

structure and character of evolution of 3D Alfvén waves was studied. In our research we 

have not taken into account the possible effects of magnetic field inhomogeneity and 

non-stationarity which can take place in the Earth’s ionosphere and magnetosphere. So, 

inhomogeneity can result, for example, in soliton acceleration [89] and other 

phenomena associated with infringement of balance between nonlinear and dispersive 

effects, for example, in destruction of the soliton, jast as it takes place for the FMS 

waves propagating in the ionosphere and magnetosphere [27],[35]. In our model the 

effect of the inhomogeneous magnetic field can be accounted if we assume that 

)(0 rB f  and, hence, ,  and Av  are the function of r in (1.4.24)-(1.4.27). To study 

the effects of non-stationarity of the magnetic field we can assume that )(0 rB f  or, 

by analogy with the Kadomtsev-Petviashvili (KP) equation [14], introduce into the 3-

DNLS equation the term which describes the wave fluctuations of the magnetic field in 

time. Thus, we can expect the effects of formation of short-wave structures with soliton 

destruction and development of turbulence of the wave field, being similar to that for 

the KP model [27]. However the generalizations of the 3-DNLS model mentioned 

above leave beyond our research here. 

The results obtained are very important for the best understanding of physics of 

nonlinear wave processes in plasma of ionosphere and magnetosphere and can be rather 

useful at interpretation of the results of experimental studies in laboratory and space 

experiments on excitation, evolution and interaction dynamics of the Alfvén solitons as 

well as the self-influence effects (the wave collapse and the wave self-focusing of the 

wave beams).  

1.4.4.  IGW and TID in the ionosphere of the Earth 

       Structure and dynamics of internal gravity waves (IGW) and associated traveling 

ionospheric disturbances (TID) have been extensively studied for more than forty years 

[53]-[56]. Despite extensive observations involving numerous various technics such as, 

e.g., vertical and slanted ionospheric as well as satellite sounding [39] and recently 

developed imaging technique using multipoint GPS networks [96], the associated theory 

is less developed. 

To solve the wide range of problems associated with wave perturbations at the 

ionospheric F-layer heights, it is necessary to take into account essential factors such as 

the middle- and large-scale traveling ionospheric disturbances (TID). TID directly affect 

variability of the ionospheric parameters as well as those of the Earth’s ionosphere 

waveguide. One of the most convenient approaches to these problems is to study TID 

dynamics in terms of the internal gravity waves (IGW) [27]. Of special interest are the 

IGW solitons and soliton-like wave structures as traveling in the F-layer stable large-

scale wave formations, caused by various reasons such as the isolated magnetic 

substorms [10] and shear flows [5-7], solar terminator and solar eclipse [40], seismo-

volcanic processes, and high-power artificial explosions [27],[40]. Here we first 

investigate the dynamics of the solitary nonlinear IGW (as well as TID excited by them 

at the heights of the ionosphere’s F-region) for conditions close to those of the F-layer, 

by omitting the physical nature of the sources, but assuming that it has the pulse 

character (more details about excitation of the pulse disturbances by various physical 

sources are given below as well as in the references listed above). Then we consider 

applications of the obtained results to the problems of the generation of IGW in the 

regions with sharp gradients of the ionospheric parameters such as electron density, 
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temperature, scale heights for the ions and neutral particles, etc. As particular cases we 

consider the frontal regions of the solar terminator and solar eclipse. To confirm our 

conclusions we give some results of natural radiophysical experiments in the end. 

       For the isothermal model of Earth’s atmosphere, we take into account 
22
ykk  , 

and 1xHk  in the linear approximation, and expanding in k up to the fifth order, 

write the dispersion law as [27] 
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  (1.4.37) 

where the second term in the right-hand side describes the diffraction divergence in the 

transverse direction of the wave propagation, the third and the fourth terms describe the 

dispersive effects of corresponding order, and the last term is the same in vertical 

direction;    2/1
/1,2 HgHV gg   is the Brunt–Väisälä frequency, H is the 

scale height of the neutral atmosphere, and 
ph

VV min/ , where 
ph

Vmin  is the minimum 

phase velocity of the linear oscillations. In this case, taking into account the weak 

nonlinearity of the dimensionless function u=u z/ac which has a sense of vertical 

velocity of the neutral particles, a=exp(z /2H), c = gH  and neglecting dissipative 

effects, from the hydrodynamic equations for the neutral gas we obtain the equation 
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 (1.4.38) 

which is written in the reference frame moving along the x-axis with the velocity V (ξ= 

xVt). The upper signs in (1.4.37) and (1.4.38) correspond to the positive wave 

dispersion, and the lower signs correspond to the negative one (without loss of 

generality we further assume that V<0 and, as can be easily seen from (1.4.37), ε<1). 

The obtained equation is the generalization of the Kadomtsev-Petviashvili equation (so-

called Belashov-Karpman (BK) equation), for the first time it has been obtained in 

[10],[61] and investigated in detail in a number of works (see [27]). It is written here for 

the velocity of the neutral component at the heights of the F-region with 0 z  

without dissipation and describes the nonlinear IGW solitons and nonlinear wave 

packets, with the structure determined by both the coefficients and the function u(0, ξ, 

y) corresponding to the initial condition, i.e., it depends on the sort of perturbation and 

accordingly the type of the source as well. 

The structure of the solutions for the initial disturbance of the wave pulse type 

corresponding to various physical sources as, for example, the terrestrial and 

anthropogenic factors [as well as the “quasi-one-dimensional” sources of the global 

character, such as the solar terminator (ST) and solar eclipse (SE)], is described in detail 

in [27] and depends on ε. Indeed, the 2D solitons with the algebraic (for ε<<1) or the 

oscillating (in the direction of propagation, for 1 ) asymptotics correspond to the 

upper sign in (1.4.38), whereas the dispersing wave packets and/or the 1D solitons 

which are stable in the case of the negative dispersion [27] correspond to the lower sign. 

       Let us consider the case of the upper sign in (1.4.37) and (1.4.38) and study the 

excitation by the IGW solitons of the middle- and large-scale TID for the conditions 

close to those in the F-layer. Considering the solitary IGW traveling at the near-to-

horizontal angles, the continuity equation for the electron density in the F-layer is given 

by [27] 
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0    

(1.4.39) 

where N (t, z) is the total electron density,    DIDHzD i ,sin/exp 2
0  is the 

ambipolar diffusion coeffcient, Hi is the scale height for ions, I is the magnetic 

inclination,  iHPz /exp0   and Q are, respectively, the recombination rate and 

the ion production rate, the exponent 0P2 characterizes the gas intermixing, uz =acu  

is the vertical component of the velocity of neutral particles, and 00 ,' tttt   is the 

moment of the start of the neutral component’s perturbation. Now we approximate the 

profile of the electron density at the height z for fixed time momentby 

),/(exp1 iHzNN 
01 


z

NN , and obtain that solution of (1.4.39) is given by [27]  
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Here, the function u satisfies (1.4.38). When ε<<1 and the solution of (1.4.38) is 

the 2D soliton with the algebraic asymptotics, the solution (1.4.40) for the quasi-pulse 

source of IGW is shown in Fig. 1.4.14. In Fig. 1.4.15 the results of numerical simulation 

for initial IGW disturbances normalized on 1,  ),,0(max/),,0(
,

yuyuu
y




, are 

presented. If 1  then the perturbation of the electron density N as well as the IGW 

soliton has the oscillating asymptotics shown in Fig. 1.4.15a.  

The solution of (1.4.38) and (1.4.40) for the conditions typical for the F-layer gives 

us the following results. The solitary IGW excite in the F-region the solitary TID of the 

electron density, their structure depends on the form of IGW and the ionospheric 

parameters determined by the photo-chemical and dynamic processes at the height 

considered. The amplitude of TID increases in the direction of the geomagnetic latitude 

m=45, the wave front steepens, and at the latitude m=45 the wave becomes similar 

to the shock wave. 

The two-fold increase of the IGW amplitude results in the increase of the TID 

amplitude: 35% for ε<<1; close to 100-105% for 1 . For all the studied cases we 

note the phase shift of TID relative to the phase of IGW (t ~ 0.55 min) and the effect 

of the relaxation of the electron density perturbations which increase with the 

decreasing ε characterizing essentially the medium’s dispersion. Figure 1.4.15 shows 

the simulation results for IGW solitons with a velocity on the order of 200 m/s at z=0 

and I = 63.4. 

Thus such ionospheric characteristics as the height of the maximum and the critical 

frequency of the F-layer increase proportionally to the TID amplitude when the 2D 

nonlinear IGW propagates, as well as experience relaxation similar to the relaxation of 

the electron density 'N . 

In addition to the general study of the dynamics of solitary waves in the F-region of 

the  Earth’s  ionosphere, the middle-scale and  large-scale wave  effects  associated with 
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a 

 

b 

 

 

Figure 1.4.14. IGW soliton u(,y) for  = 12 (a) and associated perturbation of 

          the normalized electron density    %100),0(/),0(),('  tNtNtuNN  (b). 

 

a 

 

b 

 

 
Figure 1.4.15. Profiles of the perturbations (in the relative values of u where the amplitude of 

the initial condition u(0, , y) is normalized on 1) at y=0: IGW (the curve 1) and TID  ( 'N )  

(the curve 2):  = 1.2 (a) and  = 12 (b). 
 

motions of the fronts of ST and SE were investigated numerically within the framework 

of the above developed weakly nonlinear approximation neglecting the dissipation 

effects. Following [40] let us consider, at first, the wave effects caused by ST motion. 

Let's define ST as the area separating space, shined by a full disk of the Sun, from area 

of the full shadow rejected by the Earth.  

At heights of the F-layer of ionosphere where concentration of the charged particles 

is a lot of above, than in underlaying areas, at the ST movement, in connection with 

infringement of balance of ionization and the dynamic balance by it, caused by fast 

change of a degree of light exposure in the frontal zone of ST, the area of sharp 

gradients of the basic ionospheric parameters (electron density, electron and ion 

temperature, recombination rate, ion production rate, etc.) moving with a ST speed 

(linear speed of rotation of the Earth at height of F-region) is formed.  

Let us consider the dynamical model of the F-layer [40] considering time (of 

corresponding periods) dependences of ionospheric characteristics, defining processes 

of diffusion, ionization and recombination at heights of F-region, i.e. effects of 

influence of ST on a plasma, associated with sunrise-sunset processes. This dynamical 

model is the following set of the equations: 

 22
00 /)(exp chmNm tttNN  ,   

  ,/)0,(),(expsec1exp)0,(),( 0000 mNhQehQzQ  
 

),/()(),/()(,00 gmTTkHgmkTHTDD iieieeim            (1.4.41) 

   ,/)(exp,/)(exp 2222
chmiimichmeeme tttTTtttTT 

  ,/)(exp1 22

chm tttP   
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where the functions describe background (in relation to time scales of investigated 

disturbances) changes at heights of the F-region and are defined by the expressions 

              
)(expsin),(exp),()()( 2

0010   IDDPzNtNtN               (1.4.42) 

where  ln,,/ 00 ii HhhhzHz  corresponds to the electron density 

maximum; 00 /2 DHi  ;  is the zenith angle of Sun; cht  characterizes the time 

scale, the index m corresponds to the maximal value of function;  are some functions 

defining effect of influence on corresponding component; other designations are 

standard in physics of ionosphere.  

Let's note the following important circumstance. At a choice of corresponding 

scales and a kind of functions  the generalized dynamic model (1.4.41), (1.4.42) will 

describe a time course of the basic ionospheric parameters for corresponding "source", 

that is equivalent to the complement of the problem by initial and boundary conditions.  

If, for example, to assume that 24cht  hours and choose the characteristic for the 

F-layer values of the amplitudes of imemmm TTDhQN ,,),0,(, 000  and time momentes mt  

corresponding to the maxima of corresponding functions, we obtain that the model 

(1.4.41), (1.4.42) describes in some approach (the degree of approach is defined by a 

choice of functions k , at kk const  we have zero approach) a daily course of the 

basic ionospheric parameters [40]. In this case, besides other, the model can be used for 

investigation of dynamics of middle- and large-scale wave structure of the F-layer in 

areas with sharply expressed gradients of the ionospheric characteristics (morning and 

evening sectors) on a background of slow (daily) changes. 

From the continuity equation for the electron density in the F-layer (1.4.39), 

considering the wave disturbances propagating under corners, close to a horizontal, at 

 exp)(1 zN  with due account of the change Vtt   it is easy to obtain (where V is 

the ST velocity at the corresponding height h, and  is the spatial coordinate along V) in 

the reference frame related to the source the expression for vertical component of the 

neutral particles’ velocity [27]: 
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   (1.4.43) 

where Vt /'  , and the values of parameters are defined by the dynamical model of the 

F-layer (1.4.41), (1.4.42) with due account of dependences of basic parameters on time.  

       In approach of an isothermal ionosphere, taking into account the weak nonlinearity 

of the function u=u z /ac, a=exp(z/2H), c = gH  and weak dispersion ( 1xHk ), 

the BK equation (1.4.38) and corresponding dispersive equation (1.4.37) are valid. For 

such global phenomenon as ST it is possible with sufficient accuracy to suppose that 

0/  y . Making the changes  tVtVVuu 4/154/1 )/(,)/(,/  , 

where 
2/)12(  ac , 

44]/)2[( VH , vp
ph

ccVV /,/
min

  and 

omitting strokes, write  eq. (1.4.38) for 0/  y  in a more convenient form: 

0)(2 532/1  


 uuuuut .                                 (1.4.44) 

Equation (1.4.44) is the 1D analogue of the BK equation and it is written in the 

k

k
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reference frame connected with ST. For eq. (1.4.44) with the initial condition (1.4.43) 

and zero boundary conditions (the last are valid for the characteristic periods of a 

problem, sufficiently small in comparison with the length of a day), using the model 

(1.4.41) and algorithms developed in [21], we solved the Cauchy (initial) problem at z = 

0, H, 2H. The values of the ionospheric parameters of model were chosen close to 

characteristic ones for F-layer in conditions of a daily cycle of winter and summer 

seasons. 

Figure 1.4.16 shows the examples of simulation results obtained in [40] for 

geomagnetic latitude m=45. As one can see from figures the obtained solutions testify 

to generation by the ST front both in morning, and in evening sectors some kind of 

solitons-like wave "forerunners" in the neutral particles velocity u with the periods 

~40-60 mins which scales are essentially various for summer and winter seasons and 

are defined by a lot of factors: height z, geomagnetic latitude, value of dispersion  

depending, in its turn, from values of some ionospheric characteristics, and also features 

of change of ionospheric parameters in a concrete daily cycle. Simulation for 0/  y  

[eq. (1.4.38)] shows that, generally, the picture for z=0 is the train of 2D solitons-like 

waves (with yx kk  ) similar to the multisoliton solutions of the KdV equation (the 

case y=0). For z = H, 2H the qualitative form of the solution is maintained, although 

they are less regular and (on the average) the largeramplitude waves. The characteristics 

of such soliton-like formations strongly depend on the season and the ionospheric 

parameters. 

 

 
 

Figure 1.4.16. Perturbations of the neutral particles velocity u in the F-layer of ionosphere 

caused by ST (a, b  morning sector; c, d  evening sector): а, c) winter, b, d) summer; t=0 

corresponds to the moment of sunrise (a, b)  

and sunset (c, d) at height z=0. 
 

Figures 1.4.17 and 1.4.18 show the results, obtained in the experiments of 1-min 

vertical sounding of the ionosphere fulfilled in the radioobservatory of Kazan Federal 

University (Nasyrov, Personal communication, 2014). In both figures one can see also 

the solitons-like wave “forerunners" in the electron density in the maximum of the F-

layer NmF2 with T ~50-60 mins. Figure 1.4.18 shows also daily course of NmF2 
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calculated with the use of model IRI-2012 (curve 2) for the same time. One can note 

that this ST effect is not account in any way by IRI-2012 model. 

If in eqs. (1.4.41), (1.4.42) to choose cht
 
corresponding such source as a SE spot, 

that the model will describe quite adequately the wave effects in the F-layer of the 

ionospheres associated with passage of such disturbing factor as SE [40]. Such 

investigations showed (see example in Fig. 1.4.19) that the characteristic periods of 

“forerunners” of the SE front are ~3-10 min, and its spatial scales are defined by the 

parameters of the F-layer. 

 

 
Figure 1.4.17. Daily course of parameters hmF2 and NmF2 (winter, 1-min vertical sounding) 

(Nasyrov, Kazan Federal University, Personal communication, 2014). 

 

 

 
Figure 1.4.18. Daily course of NmF2 (winter, 1-min vertical sounding) and model  

IRI-2012 (Nasyrov, Kazan Federal University, Personal communication, 2014). 
 

Simulations for the conditions corresponding to the partial solar eclipse observed 

on March 18, 1988, and the sunrise and sunset periods on March 1–10, 1990, (an 
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interval of the International Geophysical Calendar) agree well with the results of special 

targeted experiments on the passive slanted sounding of the ionosphere done in these 

periods in the Far-Eastern region of Russia (see refs. in [27]). Thus we conclude that 

despite some idealization of the problem, the approach based on the generalized KP 

equation allows us to predict the effects of the TID dynamics in the F-region of the 

Earth’s ionosphere reasonably well. 

In conclusion, we note that in real conditions in the ionosphere it is necessary to 

take into account dissipative processes which really lead to decreasing of the 

perturbations. In this case eq. (1.4.38) should be complemented by the dissipative term 

of form  in the left-hand side [27] with the factor 

                 
   ,)/1/1(3/4)2()()2/( 1

00

2
0

2
0 pv ccdcc   


 

where c  and c0 have a sense of the “highfrequency” and “lowfrequency” sound. The 

case 0  was investigated in detail in [27],   where  it  was shown  that the presence of 
 

 
 

Figure 1.4.19. General view of numerical solution of the GKP equation [function u(, y)] for  

the pulse source of type of the SE spot [(x, y)-plane] V1667 km/h = 463 m/c (linear velocity 

 of the Earth rotation at height of the F-layer maximum). 
 

dissipative term leads to both the exponential decrease of the amplitude with the rate 

 ~)(t  and effects of destruction of the structure and the symmetry of the IGW 

soliton (see example in Fig. 1.4.20) accompanied by the relaxation in the recovery of 

the electron density after the wave passes [40]. 

The  effects of  stochastic  fluctuations of the wave field  u(t,x,y) on the evolution of  
 

 

 

 
 

Figure 1.4.20. Evolution of 2D IGW soliton for =1, =1.2: t = 0, 0.2. 
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the ionospheric perturbation can also be accounted for in the basic equations. Thus, 

accordingly, (1.4.38)  should be complemented by the term like χ(t, x, y).   In the case of 

the lowfrequency fluctuations when χ=χ(t), eq. (1.4.38) for ε=0 was investigated 

analytically in [14]. 

The obtained results can be easily applied to (1.4.38) with χ=χ(t) on the left-hand 

side. Thus the interpretation of the results [14] in terms of problem (1.4.38) and (1.4.39) 

enables us to conclude that even small stochastic fluctuations of the wave field lead to 

the damping of the solitary IGW (with its propagation) accompanied by the transform of 

the wave to an oscillatory structure. Figure 1.4.21 shows an example of the results of 

numerical simulation of the IGW soliton evolution in medium with presence of 

stochastic fluctuations of the wave field in the form of a Gaussian noise. One can see 

that soliton with evolution acquires a short wave structure and it is destroyed. In the 

case  χ(t, x, y),  however,  the  analytical  study  of the process becomes too complicated, 

 

 
 

Figure 1.4.21. Evolution of 2D IGW soliton with presence of stochastic fluctuations of the 

wave field: the Gaussian noise =(t) for the standard deviation  = 0.02 (<<1). 
 

and in [27] numerical integration of (1.4.38) and (1.4.39) with the stochastic term was 

done. The obtained results appear to be qualitatively similar to the case χ=χ(t), namely, 

the decrease of the amplitude of the solitary oscillating IGW is observed, with the 

subsequent destruction of the wave.  

Let us note that the problem of destroying the large-scale wave disturbances and 

transit of them into chaotic regime was solved also in [66],[67], and physical reasons 

which lead to developing of chaos and order-disorder transition can be the same as we 

noted above, on a level with other reasons noted in [66],[67]. 
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2. VORTICAL STRUCTURES IN COMPLEX CONTINUOUS MEDIA 

2.1. Introduction  

In this part the results of analysis and numerical simulation of evolution and 

interaction of the N-vortex structures of various configuration and different vorticities in 

the continuum including atmosphere, hydrosphere and plasma are presented. It is found 

that in dependence on initial conditions the regimes of weak interaction with quasi-

stationary evolution and active interaction with the "phase intermixing", when the 

evolution can lead to formation of complex forms of vorticity regions, are realized in 

the N-vortex systems. For the 2-vortex interaction the generalized critical parameter 

determining qualitative character of interaction of vortices is introduced. It is shown that 

for given initial conditions its value divides modes of active interaction and quasi-

stationary evolution. The results of simulation of evolution and interaction of the two-

dimensional and three-dimensional vortex structures, including such phenomena as 

dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, 

hydrodynamic 4-vortex interaction and also interaction in the systems of a type of 

“hydrodynamic vortex – dust particles” are presented. The applications of undertaken 

approach to the problems of such plasma systems as streams of charged particles in a 

uniform magnetic field B and plasma clouds in the ionosphere are considered. It is 

shown that the results obtained have obvious applications in studies of the dynamics of 

the vortex structures dynamics in atmosphere, hydrosphere and plasma. 

2.2. Basic equations 

Here we study numerically the interaction of the vortex structures (so-called 

FAVRs, see [101]) in the continuum, and, specifically, in fluids (such as atmosphere 

and hydrosphere) and plasmas in two-dimensional (2D) approximation, when the Euler-

type equations are applicable. The Euler equation for the inviscid incompressible fluid 
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  in the 2D case takes form of the following set: 
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Add here the equation of continuity: 
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where for ideal incompressible fluid 0d/d  t  and, hence,  
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Introduce further the flow function 

  sdsinu  

where u is a fluid velocity, s is a displacement,  is an angle between u and s (function 

 is positive when the streamlines are directed clockwise). It is easy to show, that 
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is the vector of vortex, and for flat motion 
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is a vorticity. 

Now present the Euler equations in new variables  vorticity and flow function, 

making differentiation of the equations in (2.1) on y and x accordingly. Then, in the 

absence of external forces, after elementary transformations we obtain: 
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As, according to eq. (2.2) for a flat motion 0
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, that from  eq. (2.5) we have 
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Equation (2.6) in variables “vorticity  the flow function” is the equation of carry 

of a vortex and is nonlinear, as u and v are the functions of . The last two terms in (2.6) 

are convective ones, and the convection in this case means that the vortex is carried on a 

current. 

With due account of (2.3) we can rewrite (2.4) in the form 
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, that is the Poisson equation for the flow function 
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Thus, the dynamics of vortical structures in their flat movement for the case of an 

inviscid incompressible fluid is described by the set of equations of carry of a vortex 

(2.6) and the Poisson equation (2.7) for the flow function. 

Simple model of 2D magnetized plasma [94] is the quasi-particles (or the charged 

filaments aligned in a uniform magnetic field B) which move with the central-directed 

velocity 2/ BBE . The equations of motion of these quasi-particles (filaments) have 

the form 
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where ie  is the charge per unit length of the filament and 

  )(lnH jijiee rr                                    (2.9) 

is the Hamiltonian which has the sense of energy of Coulomb interaction. 

In a continuous limit this 2D plasma satisfies the equations: 

0



v

t
,   

B




z
v


,                                   (2.10) 
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,                                                    (2.11)         
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where  is the charge density, ),( yx vvv ,   is the potential of an electric field and 

)/,/( yx  . Independently on the scale of coefficient B these continuous 

equations are formally identical to the equations for the 2D movement of an inviscid 

incompressible fluid (2.6), (2.7) where  is the z-component of vorticity , and  is the 

flow function. If the vorticity is presented by discrete vortexes (with circulations ie ) 

then the motion of a fluid is described by the Hamilton equations with B=1. Note, that 

the equations of motion of clouds of ideal ionospheric plasma have a similar form. 

Another 2D continuous models can be represented by vortexes or the filaments 

(quasi-particles) with the Coulomb interaction [95] and include the Debye radius of 

shielding in the Poisson equation (2.11). At this, it is necessary to proposed that the ions 

move with the guiding-centre velocity, and electrons (for example, moving along a field 

B) have the Boltzmann distribution. Then ionic current is still described by (2.10), and 

eq. (2.11) is rewritten in the form of 

 22 k ,                                             (2.12) 

where 2k  is the Debye shielding. This model is also presented by charged filaments 

(quasi-particles) satisfying (2.8), but, unlike (2.9), with the Hamiltonian  

  )(H 0 jiji kkee rr ,                                      (2.13) 

which describes the shielded Coulomb interaction between filaments. 

       One more model of plasma which can be expressed in the similar form, has been 

introduced in [52]. Its distinctive feature is inclusion of the ionic-polarized current 

through the equation of motion of ions 
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The electrons have also the Boltzmann distribution here but the Debye length is 

supposed tending zero so, that full charging neutrality is conserved. In this case 1k  is 

not Debye length, but it is the ion Larmour radius (electron temperature), and shielding 

is an indirect effect of the ion-polarized current. Let us note here that in space plasmas, 

in addition to vortices with dimensions of the order of the ion Larmor radius calculated 

at the electron temperature the vortical structures with spatial scales of the order of the 

Larmor radius calculated at the ion temperature can exist [1], however “classic” model 

of  Hasegawa-Mima [52] does not take into account them. In this case the general 

structure of the equations is the same, but it is necessary to consider 1k  as some 

generalized ion Larmour radius. 

The hydrodynamical model of a rotating fluid [43] describing a motion of the Earth 

atmosphere also corresponds to shielded interaction. Atmospheric currents in a 

horizontal plane are described by the equation: 

zR
v 

 vhg
td

d
,                                           (2.15) 

where h is atmospheric depth, and R is the Coriolis force. Small change of h satisfies 

the equations identical to model of shielded guiding-centre plasma and a role of length 

of shielding plays the Rossby radius, RgH0 . 

There are also some other examples of vortex motion in plasmas and rotating fluids 

which were discussed in detail, for example, in [77],[85]. They also use hydrodynamic 

description and can be reduced to the equations similar to the presented above. 

Thus, write a set of equations describing a motion of a fluid, gas or plasma in the 
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generalized variables: 

.                  

,           ,0

2 








f

Bt

z
vv



                               (2.16) 

In dependence on the considering medium the functions and variables in eqs. (2.16) 

will have various physical sense (Table 2.1), and the set (2.16) will get the form of one 

of described by the eqs. (2.6)-(2.15) ones.  

 

   Table 2.1. Sense of the variables in dependence on type of medium 

Function Fluid, gas Plasma 

B B = 1 module of a vector of a magnetic induction 

 flow function  potential of an electric field  

 
z-component of 

vorticity 
line density of a charge  

F f = 0 

  f = 0      – plasma with Coulomb interaction; 

 2kf  plasma with shielded Coulomb 

interaction 

 

Note that function f  has various sense in dependence on considering model of medium. 

So, for an inviscid incompressible fluid and also for charged filaments (quasi-particles) 

with the Coulomb interaction f = 0, for filaments (particles) with the shielded Coulomb 

interaction  2kf . Further we consider only a case when f = 0, which corresponds to 

rotation of local vortical structures in a fluid or to evolution of the charged filaments 

(quasi-particles) in a homogeneous magnetic field. Generalization for  2kf  is 

rather trivial. 

2.3. Modeling technique 

For numerical simulation we used the contour dynamics (CD) method [101], to 

some extent modified (see [26] for detail). This has yielded us a possibility not only to 

observe evolution of a single vortex, but also to study the interaction between vortices 

having different sizes, vorticities and symmetry orders (different modes), and also to 

simulate the 3D vortex structures. A general idea of CD method is that the interaction 

between the boundaries of the regions with constant   is considered, and due to this the 

dimension of the problem decreases on unit. Analytical solution of the Poisson equation 

(2.16) with f = 0 for flow function  has the form [23] 

 


 ),(]ln[dd
2

1
r ,                                    (2.17) 

where rln  is Green’s function of eq. (2.2), and 
2/122 ])()[(  yxr . Then a 

value of velocity can be obtained by differentiation of integral (2.17), namely: 

]dd][ln[),( 0  

Г

yxryx eeu .                              (2.18) 

Further, obtain the change of the contour coordinates with time by solving differential 

equation yx yxx, y eeu      )(  . For the computer simulation of the vortex structures the 
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contour’s boundary is divided into N lattice points (moreover, the point quantity should 

be rather great), and the temporal evolution is computed for each point. Thus eq. (2.18) 

is written in the discrete form using the 3-layer difference scheme with approximation 

order )(O 2 : 

   


 
N

n

y
p
nx

p
n

p
n

p
m

p
m u

1

11 sincos2 eexx ,                (2.19) 

where
nm

nm
n

xx

yy




tg , which stability is guaranteed by the condition 

 vuh
yx

n ,max/
,

  where u and v are the x and y components of the velocity of the 

contour point, respectively. We omit here the details of the CD method and nuances of 

its modification for modeling of the FAVR evolution. You can find them in [26]. 

Equation (2.19) allows us to found a value of velocity of each point of contour in 

dependence on influence to it of the points of both the same contour and the contour 

interacted with it. So, one can observe the time evolution of the vortex structure setting 

its initial form. 

2.4. Numerical simulation and discussion 

Let us consider the results of numerical simulation in terms of the vortex motion of 

the inviscid incompressible fluid, as more visual and directly applicable to physics of 

the atmosphere and hydrosphere.  

For the first time the CD method has been used for simulation of evolution of 2D 2-

vortex systems of FAVRs in [101], after that there was a whole series of similar studies 

of different authors in which, however, the problems of evolution of more general N-

vortex systems and possible modes of vortical interaction depending on their initial 

configuration were not considered. For the first time such studies have been undertaken 

in [20]. 

In general, to study the evolution of vortex structures with different symmetry 

orders it is necessary to insert a small amplitude perturbation

)](cos1[0 tmRr m   (where 0R  is a conditional radius,  is an eccentricity, m 

is symmetry order (mode),  is an angle and 2/)1(0  mm ) to the circle region with 

constant vorticity. But, taking into account that the results of evolution for one and two 

vortices with different m were described in detail in [33],[36], let us stay on results on 

interaction of FAVRs and consider the most simple cases of circle vortices when m=1 

and, therefore, 0m . As it was found in [25] for such FAVRs the result of the 

evolution depends on sign of vorticity (“polarity” of vortex)   [ =  in eqs. (2.16)] and 

the distance  between boundaries of vortices. We fulfilled a number of the series of 

numerical simulations for study of 2-vortex interaction, the interaction in the N-vortex 

systems, including interaction between the hydrodynamical vortex structures and the 

dust particles in a plasma, and also interaction of two 3D plane-rotating vortex 

structures within the framework of many-layer model of medium, in dependence on 

some parameters: initial distance between vortices, value and sign of their  vorticities, 

and spatial configuration of the vortex system. Consider the examples of the basic 

results.  
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2.4.1. Two-vortex interaction 

For two circle vortices having opposite polarities we observed that at an initial 

stage they approach and further move in the same direction, rotating in opposite 

directions (Fig. 2.1). Thus, the vortices practically don't interact independently on value 

of .  

 

 
 

Figure 2.1. Evolution of two circle vortices with opposite polarities  

( 11 
  
and 12  ). 

 

For the circle vortices having the same polarities the result of evolution depends 

essentially on . So, our results show that at interaction of a pair of circle vortices some 

cases can take place: 

1. For rather big  they, on a level with rotation about their own axes, rotate 

around the common center and one can observe a deformation of the vortices  they are 

drawn out, taking the form close to elliptical, but in due course return to an original state 

[Fig. 2.2(a)], thus their interaction is weak and it is reduced to a cyclic change of their 

shape (so-called "quasi-recurrence" phenomenon [101] is observed).  

 

 
 

Figure 2.2. Interaction of two vortices with 121   at initial distance 

between each other: a)  = 2d;  b)  = d/2. 
 

2. With decreasing of a distance the vortices start ever more to be deformed 

during interaction, that results in formation of the cusps [20]. At further evolution it 

causes appearance of the filaments of vorticity [20] (see. Fig. 2.3) and, as a result, the 

vortices disintegrate. 
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3. For rather small  the vortices, on a level with rotation about their own axes 

and around their common center, interact forming a common vortex region which 

consists of the vorticities of more small scales [Fig. 2.2(b)]. Thus, in this case the 

regime of active interaction with the "phase intermixing" takes place, and different 

configurations are possible too from small coupling of the vortices down to full junction 

of two vortices [68]. 

 

 
 

Figure 2.3. Formation of filaments of vorticity. 

 

In our numerical experiments we have found that critical initial distance for two 

interacting vortices dividing these two types of interaction 4/3dcr  , where d is the 

vortex diameter. 

Note, that qualitative character of interaction of the vortices with different 

symmetry orders is, in general, the same, but in this case the vortex structures with more 

high symmetry order m liable to more high deformation (the vortex filaments appear) 

and have the greater tendency to destruction [24]. 

To make more strong analysis we shall suppose, that the qualitative change (some 

kind of a "jump") in a character of interaction of two vortex regions happens with 

transition to a "phase intermixing" state. The problem is to find some generalized 

critical parameter describing the interaction of the vortices in terms of such jump, which 

value would allow us to predict the qualitative character of the result of vortex 

interaction. 

As such parameter we offer to use the following function of the basic 

characteristics of interacting vortex structures corresponding to their state at t = 0: 

   





 21
0

2

1
2

sin11 e
l

S
 ,                                    (2.20) 

where S is the area of each interacting FAVR3, l is the distance between their centers, 1 

and 2 are the values of the vorticities (and 12), 2/)( 210 eee   is the eccentricity 

averaged on two vortices, and 21   is the sum of angles of inclination of large 

axes of the vortex ellipses concerning a line, connecting their centers (see Fig. 2.4). 

                                                           
3 Suppose, for a determinacy, that the areas of interacting vortices S1 = S2 = S. 
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Figure 2.4. Illustration to definition of the initial state parameters of vortex system. 
 

Let us introduce the following denotations for critical parameters corresponding to 

an initial state of a vortex system and determining the transition to the "phase 

intermixing" state with change of the sizes and positional relationship of vortices, ratio 

of their vorticities, eccentricity and angle , respectively: 
2/ lS ,   21 /  ,     1

01


 e ,    2
0 sin1  

and write function  (2.20) in the following form 

0 .                                                   (2.21) 

To justify the expediency of offered criterion (2.21) we fulfilled some series of 

numerical experiments in which the critical values of parameters , ,  and 0 for 

vortex regions of the circle and elliptical form, as the models most often meeting in 

numerous applications, were calculated. 

With the purpose finding of the critical value of the parameter , the system 

consisting of two circle vortices with equal values of vorticities and radiuses was 

considered: at fixed distance between the centers of two vortices we increased their 

radiuses (and, accordingly, areas) until there was an interaction. Thus the parameters 

corresponding to the critical state of vortex pair were fixed. The quantities which 

uniquely determinate initial configuration of the system of two circle vortices are shown 

in Fig. 2.4. 

In our numerical simulations for the cases corresponding the initial states between 

the centers of vortices l =1, 2, …, 5 we have found that the beginning of interaction in 

all cases responds the approximately same value of parameter . The values of 

parameters, at which there is a qualitative change in the character of interaction  the 

transition from steadily rotated pair to the "phase intermixing" state, are shown in Table 

2.2. So, the results of numerical simulations enable us to conclude that the critical value 

of parameter , at which there is qualitative change in the interaction of the vortices, 

equals 267.0cr . For cr  the merging of the vortex regions does not happen 

during interaction, but as soon as parameter reaches its critical value, there is a 

qualitative jump in behavior of the vortex system, and the vortices start to be 

intermixed. 
The next series of the numerical simulations purposed a calculation of the critical 

value of the parameter . Our results showed that the vortices with the greater value of 

 are exposed to the greater deformation, their filamentation (i.e. formation of the 

filaments of a vorticity) happens faster, thus the change in character of the interaction 

happens at the ratio of vorticities 11.1/ 21   (remind, that 21  ), therefore, 

11.1cr . 
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                 Table 2.2 

S l /l  

0.267864 1 0.416 0.267864 

1.067791 2 0.417 0.266947 

2.399785 3 0.417 0.266642 

4.271168 4 0.417 0.266947 

6.669121 5 0.417 0.266764 

 

To answer a problem on the critical value of the parameter  a series of simulations 

for vortices of elliptical form was conducted (Fig. 2.4). We fixed the area S, at which 

the circle vortices still save a stable state, and at constS  changed the eccentricities 1e

and 2e . Further, we found the critical value 0e , at which the vortex system loses its 

stability transferring to the "phase intermixing" state. Thus, we considered the cases 

corresponding to the initial states between the centers of vortices l =1, 2, …, 5. The 

values of critical parameters, at which there is a qualitative change in the behavior of the 

system of two elliptical vortices, are presented in Table 2.3. 

 

                 Table 2.3 

L /l  0e  

1 0.180 0.266033 0.863847 

2 0.180 0.266033 0.866426 

3 0.183 0.266033 0.863834 

4 0.180 0.266490 0.863341 

5 0.180 0.266764 0.863037 

 

Numerical simulations have shown that there is the same for all cases a critical 

value of the averaged eccentricity, at which the "phase change" happens 864.00 e , 

that corresponds to  = 7.143. Thus, as one can see from Table 2.3 the ratio /l is also a 

constant in a critical region, however it cannot be used as the critical parameter for the 

description of interaction, because, at first, it takes different values for elliptical and 

circle vortices (see Table 2.2), secondly, it is less information as determines only a 

distance between boundaries of the vortices, to say nothing about their form. Therefore, 

for definition of the function  we use parameter , expressed through the averaged 

eccentricity. 

Further investigations have been connected with finding of the critical angle of 

inclination (see Fig. 2.4) of the elliptical FAVRs for the initial state of a system, at 

which the evolution results in qualitative change in character of their interaction. The 

simulations fulfilled show that increase of the angle of declination of the vortex regions 

  at t = 0 more than on 4 leads to the transition to the unstable state. Thus, we mean as 

angle of inclination the summing angle 21  , and, for example, the case when 

 221  is analogous to the case 0,4 21  . As it follows from processing of 

the results of this series of the simulations, the critical value of the corresponding 

parameter is 005.10  . 

Summing all presented above results we can define a critical value of the genera-

lized parameter  (2.21) as a multiplication of four parameters crcrcr  ,,
 
and cr0 : 
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129.20  crcrcrcrсr . 

Numerical simulations for cr  with simultaneous variation of critical parame-

ters  ,,  and 0  corresponding to the change of sizes and positional relationship of 

vortices, the ratio of their vorticities, eccentricity and the summing angle of inclination 

of their major axes , respectively, have confirmed capability and expediency of usage 

of the parameter   for prediction of character of interaction of the 2D vortex structures. 

Note that the obtained results, despite their general significance in theory of vortex 

dynamics, can help to predict the temporal behavior of 2-vortex system in real physical 

media such as atmosphere, hydrosphere and plasma. 

2.4.2. Interaction in N-vortex systems 

To study the interaction in more complex N-vortex systems we considered the 

problems with N =3 and N =4 in two variants: 1) for vortices linearly disposed at initial 

time, and 2) for vortices disposed at initial time in the corners of appropriate equilateral 

figures, and we used the critical parameter  in the analysis of obtained results. Fig. 

2.5(a) shows an example of simulation of the interaction for initially linear disposition 

of four vortices. One can see that for rather big and equal initial distance between 

vortices the evolution leads to formation of two vorticity regions as a result of more 

strong interaction of each of the "outer" vortices with closest "inner" vortex. Thus, the 

interaction of forming pairs is similar to that of two vortex cases. In case 2/di   we 

observed the formation of a complex vortex structure which consists of many vorticities 

of more small scales [Fig. 2.5(b)]. Further evolution of such structure leads to formation 

of complex turbulent field. Note that in the last case we can also see that the interaction 

between outer vortices is stronger. 

 

 

 

Figure 2.5. Interaction of four linearly disposed vortices with 121  :  

a) di  ; b) .2/di   
 

This can be explained by the fact of more strong "attraction" of outer vortices to the 

"center of mass" of the vortex system because the outer vortex is attracted to the center 

by three other vortices, and the inner vortex is attracted to the center by two vortices 

and, to opposite side  by one outer vortex. To test this statement, in the next series of 

numerical experiments we have arranged outer and inner vortices on different initial 
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distances. As a result, we observed the formation of common vortex structure from two 

inner vortices (see Fig. 2.6). The results obtained for the 4-vortex system and the 

simulations for the 3-vortex system showed that in both cases, owing to effect noted 

above, the critical initial value cr  dividing quasi-stationary and active types of 

interaction is less than that for 2-vortex case. 

 

 
 

Figure 2.6. Interaction of four linearly disposed vortices with  

121 
 
for dout   and .2/dinn 

 
 

In the next series of numerical experiments we studied the interaction between the 

vortices disposed at initial time in the corners of appropriate equilateral figures. The 

following results were obtained. In case of evolution of three vortices with different 

signs of  being at initial time in the corners of a triangle, we observed that a pair of 

them, having opposite polarities, behaves as well as a pair of vortices with opposite 

polarities in 2-vortex case, and third vortex does not participate in interaction almost, 

practically independently on the value of )3,2,1(  ii . The similar character of 

interaction is observed for four vortices with different signs of  being at t = 0 in the 

corners of square (see Fig. 2.7, numbering of the vortices  clockwise, since the upper 

left corner). 

 

 
 

Figure 2.7. Interaction of four vortices for di  with: a) 0,0 4231  ;  

b)  0,0 4321  .
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Figure 2.8. Interaction of four vortices with the same polarities for:  

a) 2/di  ; b) .di   

 

The character of interaction in the 3- and 4-vortex systems consisting of vortices 

having the same polarities depends essentially on the distances between them like that 

in the 2-vortex case. The examples of such interaction for crd  2/  and  

crd   are shown in Fig. 2.8. One can see that in the first case the four vortices are 

rotated forming one big vortex structure which consists of many vorticities of more 

small scales. In the second case we observed a "quasi-recurrence" phenomenon. Similar 

pictures take place in the 3-vortex systems when at 0t  the vortices are in the corners 

of triangle on the distances cr  or cr  one from another. 

2.4.3. Three-dimensional vortices interaction 

Our modification of the CD method enables also to simulate the interaction 

dynamics of the three-dimensional plane-rotating vortex structures in the "two-

dimensional approximation" within the framework of multilayered model of medium. 

Fig. 2.9 shows an example of results of numerical simulation of interaction of two three-

dimensional vortices with the exponential decreasing of their vorticity in (x, y)-planes of 

rotation with z-coordinate. One can see that, in the beginning, the vortices' central 

regions start to interact and only then other their areas are involved in the interaction. 

Such behavior is explained by stronger interaction of central regions, which are located 

at the relatively short distance from each other and their vorticities have relatively big 

values, so that the ratio  /  is big in comparison with that for top and bottom of 

vortices.More strong analysis, however, requires a more detailed study of the regimes of 

this interaction, that has been discussed in detail above. 

 

2.5. Some examples of applications 

Consider now some examples of applications of our results to the problems of study 

of vortex motions in the atmosphere, hydrosphere and in a plasma of ionosphere. 

2.5.1. Vortical motions in the atmosphere and hydrosphere  

Using our technique we studied numerically the evolution and interaction of 

synoptic vortices and vortical structures in a fluid such as atmosphere and hydrosphere. 

Figures 2.10 and 2.11 show the examples of our results on modeling the evolution of the 
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cyclonic type synoptic vortex in the atmosphere and of the 4-vortical interaction in the 

channel Naruto (Japan), respectively, in comparison with photos of real systems. Here 

we used our modified CD method for vortex structures with due account of scale 

parities of parameters of the model and real vortices which were simulated (see Table 

2.4 below for detail).  

 

 
 

Figure 2.9. Interaction of three-dimensional plane-rotating vortex structures  

in the many-layer model. 
 

In these figures one can see that our numerical results qualitatively coincide with 

the real systems which are simulated.  

Using the quasi-2D approach with many-layer approximation of the 3D vortical 

structure by the  FAVR system we studied also the time evolution of a tornado, and  our 

model vortex  (FAVR system)  has been associated with real tornado  from video-record 

(see Fig. 2.12). One can see that our simulation reflects the basic features of evolution 

of a tornado such as its form, spatial structure and dynamics of evolution. In particular, 

we investigated an influence of the  perturbation  imposed  on  the  tornado  axis  on  its 

dynamics. We established as a result, that small cross-section indignation leads to 

inappreciable fluctuations of an axis and, as a whole, does not influence on structure and 

stability of a vortex. Let us note also that vertical motions in tornado, which are 

sufficient in such 3D natural vortices,  are  taken into account implicitly by the modified 
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Figure 2.10. Modeling of evolution of the cyclonic type synoptic vortex 

(numerical result and satellite photo). 
 

CD method as each point of the contour of each layer  interacts with each point of the 

contours of other layers. So, using our approach we can forecast tornado evolution and 

simulate interaction of such type of vortices. 

 

 
 

Figure 2.11. Modeling of the 4-vortical interaction in channel Naruto,  

Japan (numerical result and air photography). 
 

As we mentioned above, to make modeling it is necessary to know the scale parities 

of parameters of the model and the real system which is simulated. One can see some of 

them in Table 2.4. 

2.5.2. Vortical structures in a plasma 

Using 2D model of plasma of Taylor-McNamara [94] we studied the dynamics of 

charged filaments which represent streams of charged particles in a uniform magnetic 

field B. Figure 2.13 shows the examples of our results for a few cases of the particles' 

streams with their cross-section perturbations. As is known such perturbations lead to 

deformations of a magnetic field in a zone polar cusp, which influence on dynamics of 

streams of the charged particles. 
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Figure 2.12. Evolution of the 3D tornado vortex. 
 

Table 2.4. Scale parities of parameters of modeling and some real vortex systems 

Parameter Model values Tornado Tropical cyclones Ocean vortices 

R 1 102m 105 m 2.5104m 

V 1 100 m/s 10 m/s 2.5 m/s 

 1 1 s-1 10-4 s-1 10-4s-1 

T 2 2 s 2104 s 2104s 

 

We have found that the structures of vortical type are formed especially quickly and 

more intensively, than more amplitude of perturbations and quantity of the filaments 

participating in interaction, and also than more close to each other filaments are located. 

One can see also that the cross-section perturbations of velocity of a stream lead to its 

transition in a unstable state with formation of folds and complex vortical structures. 

Next example is the interaction in the vortex-dust particles system. The theoretical 

analysis and the experimental results [98] show that in a plasma with gradient of dust 

charge the vorticity of dust particles can exist. (In particular, it was found that vertical 

vortices rotate with frequency 0.2-1.5 s1. Experiments were made in argon with the 

particles of melanin (the size of particles is about 3 microns). During electrical 

discharge the formation of two vortices with opposite signs of vorticity was observed.) 

This gives a possibility to study the interaction between the "hydrodynamic" vortex 

structures and dust particles by use of the CD-method considering the dust particles as 

vortices of very small scales [23]. We studied numerically the interaction of the 

particles having nonzero value of a vorticity with the vortical area of greater size. The 

results of our numerical simulations showed that the character of interaction in this case 

depends on the value of particles’ vorticity. If this value is very small then the 

interaction is not observed. When the vorticity of dust particles becomes like vorticity of 

the "hydrodynamic" vortex, the interaction becomes significant. The examples of 

simulation for both linear dust layers and dust cloud are presented in Fig. 2.14, where 

one can see that the dust particles are involved by a vortex in large-scale rotation. 
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Figure 2.13. Vortex structures formation at cross-section perturbations of the charged 

     filaments: (a) one perturbed line; (b) and (c) two lines with 

 perturbations of the same and opposite polarities. 
 

This result is especially important for numerous possible applications in physics of 

an atmosphere and plasma where presence of dust particles practically always takes 

place. 

Next example of the application of our approach is investigation of the evolution of 

plasma clouds in the ionosphere. Such clouds are formed in the ionosphere under the 

influence of solar ionization of artificial injected Ba in rocket experiments at heights of 

the F-region of ionosphere [78]. An example of our modeling results is presented in Fig. 

2.15. One can see, that such plasma structures, that lead to formation of the aligned 

along magnetic field B electron-ionic irregularities (mainly in collision plasma with 

small 2/4 BnT ), diffusing across field B at evolution, get irregular “striped” 

structure. This effect is rather new because it was not found earlier (see, for example, 

[82]). Our result coincides with the experimental data obtained in rocket experiments 

[78]. Such irregularities lead to development of nonlinearity in a F-layer and can lead to 

dispersion and fading of HF and VHF radio waves. 

2.5.3. Other possible applications 

Our approach can be useful in studies of other applications which are connected 

with dynamics of vortex and spiral structures in space and laboratory plasmas. One can 

note, for example, such of them as modeling of formation and evolution of vortical 

structures in astrophysics (such as spiral structure of Galaxies and solar flare activity 

associated with the dynamics of magnetic loops and magnetic tubes in the solar corona). 

Next examples are related to hydro- and aerodynamics (formation of vorticities and 

vortical chains at flowing of solid bodies by streams of gas and a fluid), and to the 

problem of magnetic confinement of plasma and controlled fusion, and also to some 

plasma technologies. 

 

2.6. Conclusion 

So, we have presented here the results of analysis and numerical simulation of 

evolution and interaction of the N-vortex structures of various configurations and 

different vorticities  in the continuum including atmosphere, hydrosphere and plasma on  
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Figure 2.14. Interaction of dust particles with rather big values of vorticity  

with "hydrodynamic" vortex: a) linear dust layers; b) dust cloud. 

 

 
 

Figure 2.15. Evolution of artificial electron-ionic ionospheric  

inhomogeneity, cross-section section. 

 

 

the  basis  of  the model described by eqs. (2.16)  in  terms  of  the  vortex  motion of the 

inviscid incompressible fluid. We have found that in dependence on initial conditions 

the regimes of weak interaction with quasi-stationary evolution and active interaction 

with the "phase intermixing", when the evolution can lead to formation of complex 

forms of vorticity regions, are realized in the N-vortex systems. For the pair of the 

vortices at 2-vortex interaction we managed to find the function  having the sense of 

critical parameter which uniquely determines a qualitative character of their interaction. 

It was shown that for given initial conditions its value divides modes of active 

interaction and quasi-stationary evolution. Thus, comparing the value of  with its 

critical value cr  we can predict the result of interaction of the vortices, namely: if 

cr  then “phase intermixing” of vortices is not observed with evolution, in the 

opposite case, when cr , the merging of vortices with further formation of the 

vorticities of more small scales is happen. For the vortices of the circle and elliptical (or 

close to elliptical) form, the value of generalized critical parameter 129.2cr  

corresponds to the “phase change” point. This result concerns only the systems which 

consist of two vortices. The generalization for a case of arbitrary number of vortex 

regions (in particular, for the 2D and quasi-3D N-vortex cases considered here and in 

[36]) requires padding investigations.  

The results of simulation of evolution and interaction of the 2D and 3D vortex 

structures, including such phenomena as dynamics of the atmospheric synoptic vortices 

of cyclonic type and tornado (on the basis of the multilayered model of medium [37]), 

hydrodynamic 4-vortex interaction and also interaction in the systems of a type of 
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“hydrodynamical vortex–dust particles” (when the dust particles are involved in rotation 

by hydrodynamic vortices), and dynamics of plasma clouds in the ionosphere of the 

Earth were presented. Other possible applications of the results obtained can be 

associated with the study of dynamics of the Alfven vortices in plasma of the 

ionosphere and magnetosphere of the Earth [88], stability of vortex structures of 

different types and origins, including the quasi-geostrophic vortices in an ocean [68], 

dynamics of the acoustic-gravity waves in the Earth atmosphere [57], self-organization 

of the large-scale nonlinear vortex structures in an inhomogeneous ionosphere [2]-

[4],[7],[65], and motions in dust devils on surfaces of Earth and Mars [58]. The 

approach proposed in the paper enables also to study the motions in the hydrodynamic 

model of rotating fluid that corresponds to the screening interaction [43], and it can be 

useful for description of zonal flows in vortices in the ionospheric plasma [41]. 

We have shown that the generalized set (2.16) with f =0 can describe also the 

dynamics of quasi-particles with Coulomb interaction model [see eqs. (2.10) and 

(2.11)], and the results obtained and presented in the paper can be easily extended to the 

2D simple systems where the plasma is represented by charged filaments, aligned with a 

uniform magnetic field B, that move with the guiding-centre velocity 
2/ BBE . We 

have demonstrated the application of undertaken approach developed in [33],[36] to the 

problems of such plasma systems as streams of charged particles in a uniform magnetic 

field B. Note, that this approach can be useful and also for other 2D continuum models 

when 0f  in the Poisson equation (2.16). They can describe the vortices or filaments 

with the non-Coulomb interaction. In the last case it is assumed that ions move with the 

guiding-centre velocity but electrons have a Boltzmann distribution, thus the additional 

term  2kf  describes the Debye screening  see models (2.10), (2.12), (2.13) and the 

Hasegawa-Mima model [52] which includes additionally the ion equation of motion 

(2.14). 

In conclusion, in this Part of the book we have proposed the approach for 

investigations of the evolution and dynamics of the vortices of different types and origin 

in a continuum, have considered some problems on the basis of the modified CD 

method developed, and have shown that the results obtained have obvious applications 

in studies of the problems associated with the vortex movements in the atmosphere and 

hydrosphere, and in a plasma of the ionosphere and magnetosphere of the Earth.  
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